MEASUREMENT

INTRODUCTION

The objective of this article is to provide an overview of
software measurement and how it has progressed over the
past few years. To begin with, the terms software measure
and software measurement will be defined as they will be
used throughout the article.

* A software measure is a mapping from a set of objects
in the software engineering world to a set of objects
in the mathematical world. Objects in the software
engineering world may be projects, products and pro-
cesses. Objects in the mathematical world may be
numbers or vectors of numbers. These mappings can
be defined on different scales such as nominal, ordi-
nal, interval, or ratio (Zuse, 1991).

A measure can be used to characterize some property
of a (class of) software engineering object(s) quantitatively.
For example, the measure Lines-of-Code characterizes the
property size of software source code by associating a num-
ber (i.e., number of lines of code) with it. The measure
Number-of-Design-Faults characterizes the property error



proneness of the software design process by associating a
number (i.e., number of design faults detected) with it. The
measure Number-of-Staff-Hours characterizes the prop-
erty resources-consumed of a software project by associat-
ing a number (i.e., number of staff-hours used) with it.

 Software measurement is a technique or method that
applies software measures to a (class of) software
engineering object(s) to achieve a predefined goal.
Such goals of measurement vary along five character-
istics (Basili, 1989; Basili and Rombach, (1988): what-
software engineering objects are being measured,
why they are being measured, who is interested in
these measurements, which of their properties are
being measured, and in what environment they are
being measured.

o Object of measurement. People measure different soft-
ware engineering objects ranging from products to
processes and entire projects. Example products are
source code components, software designs, software
requirements, and software test cases. Example pro-
cesses are the architectural design process, the coding
and unit test process, and the system test process.

» Purpose of measurement. People measure software
engineering objects for different purposes. Examples
include characterization, assessment, evaluation,
prediction, and improvement.

 Subject of measurement. Different people or organiza-
tions are interested in measuring software engineer-
ing objects. Examples are the software designer, soft-
ware tester, software manager, software quality
ensurer, and the entire software development organi-
zation. .

e Measured property. People may be interested in dif-
ferent properties of software engineering objects. Ex-
ample properties include cost, adherence to schedule,
reliability, maintainability, and correctness.

¢ Context and environment measurement. Software en-
gineering objects are measured in different environ-
ments. Example characteristics of an environment
may be the kinds of people involved, technology used,
applications tackled, and resources available.

The following example goals are formulated according
to the above five dimensions:

¢ To“characterize” the “cost” of “projects” from a “copor-
ation’s viewpoint,” so that the planning of future proj-
ects (e.g., how much effort will a new project cost?)
can be supported.

¢ To “characterize” “weaknesses and strengths” of the
“current processes and products” from a “project man-
ager’s viewpoint,” so that it is known what problems
have to be expected (e.g., what types of errors are
commonplace?).

¢ To “assess” the “effectiveness” of “candidate tech-
niques” in dealing with certain problems from a “proj-
ect planner’s viewpoint” (e.g., does functional testing
minimize certain fault classes?).
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s To “characterize” “problems” with the “current pro-
cess.and products” and the “effectiveness” of “candi-
date techniques” in dealing with those problems from
a “planner’s viewpoint,” so that the most effective
techniques can be adopted (e.g., which technique will
minimize current problems?).

¢ To “evaluate” the “quality” of the “process—product”
from a “quality ensurance person’s viewpoint” (e.g.,
what is the reliability of the product after delivery?).

¢ To“evaluate” the “functionality and user friendliness”
of the “delivered product” from a “customer’s view-
point” (e.g., does the product provide the needed funec-
tionality and is it easy to use?).

Each of the above example goals requires a different set
of measures, and the data collected according to these mea-
sures. require different interpretations. Measurement
must be sensitive to different goals.

HISTORY OF MEASUREMENT

In this section we will provide an outline of the historical
steps that have lead us to the current status in the area
of measurement. The discussion will be centered around
the concept of goal of measurement and its dimensions as
introduced in the last section.

During the sixties, seventies and early eighties software
measurement was in its primitive stage. This is reflected
by the fact that measurement goals were not explicit nor
comprehensive. Implicit goals reflected the “production”
view that there was a common set of goals shared by the
entire software community. People disagreed over the use-
fulness of measures and measurements without realizing
that they had different goals in mind. How else could it
be possible that entire papers were devoted to discuss the
usefulness of individual measures out of context. The lack
of comprehensiveness is best demonstrated by the lack of
coverage along our five goal dimensions.

Let us review some of those goals:

¢ The scope of measurement was mostly limited to en-
tire projects and products at the code level. The impor-
tance of upstream products and processes for im-
provement were not fully recognized.

¢ The main purpose was to control project- and product-
level software properties. The necessity of first under-
standing the cause-and-effect relationships between
various project, process and product factors was un-
derestimated.

* The dominant perspective was those of project man-
agers who wanted to gain control over their projects.
The need of all people involved in software develop-
ments for quantification was not clearly understood.

o The main property being measured were defects and
cost at the project level, and volume—structure of the
resulting code. Example project measures character-
ized product quality as perceived by the customer
(e.g., customer trouble reports), schedule (e.g., calen-
dar start and completion times for major project
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phases), and cost (e.g., number of staff-months). Ex-
ample product measures (typically confined to the
code level) characterized size (e.g., lines of code) and
complexity (e.g., number of control paths). The im-
plicit assumption was that there exists a fixed num-
ber of properties of interest, rather than to be flexible
and allow the user of measurement to identify any
property of interest.

+ Measurement was typically performed in constrained
environments (e.g., individual projects within the
same organization). The characteristics of these envi-
ronments were not captured explicitly. This reflected
the fact that people did not understand the depen-
dency of models and measures on environment char-
acteristics. There were enough indications of this mis-
conception when people attempt to reuse models and
measures naively across different environments with-
out revalidation.

Hardly any measurement methodologies existed. Measure-
ment was perceived as technology that could be applied
as an add-on to software development projects. As a conse-
quence of this approach:

¢ Measures were selected, interpreted, and used based
on project managers’ intuition. The underlying atti-
tude was that there exists a standard set of develop-
ment processes, models and measures. This produc-
tion-style view simplified the selection of measures
and their use. However, it did not do justice to the
complexity of software products and its development
processes.

¢ Data collection and especially validation were not em-
phasized (Basili and Weiss, 1984).

¢ The production-style view of software developments
also gave the dangerous impression that measures
and related results could be reused across project and
even organizational boundaries without modification
or revalidation.

The measurement activities automated were typically lim-
ited to libraries for storing trouble reports and tools for
tracking resources such as computer time.

Practical applications of software measurement were
limited to the collection of trouble reports (i.e., failures
according to the IEEE terminology (1983). Analysis was
hampered by the fact that little data were collected regard-
ing the causes of failures (i.e., faults and errors). From
that point of view, trouble statistics gave a snapshot of the
defect quality of individual projects without the possibility
of doing better in future projects.

Most researchers concentrated their efforts on develop-
ing new models and measures. Examples range from proj-
ect resource (Basili, 1980) and defect (Belady and Lehman,
1976) to code size (Halstead, 1977) and complexity (Mec-
Cabe, 1976), models and measures. Many studies con-
ducted during that period did not describe the environ-
ment, goals, and experimental procedures to be reused by
other researchers.

Currently the situation is characterized by a community
consensus (Rombach and co-eds, 1993) that:

¢ The scope of measurement needs to include entire
projects, products at all levels (i.e., from requirements
to code and test) and processes. This requires better
explicit models especially for upstream products and
processes.

e The purposes of measurement are understanding,
planning and control, and improvement, in this order.

¢ The persepctives have to reflect all roles people play
in software projects: planners, managers, quality as-
surance, developers, etc.

* The properties being measured depend on the scope,
the purpose and the perspective of interest. There is
no fixed set of measures for all goals and environ-
ments.

e Empirically based models can be established for soft-
ware development in specific environments.

¢ The impact of changing environments on those mod-
els is currently subject of studies.

As far as measurement technologies are concerned, sig-
nificant progress has been made regarding

¢ Models for continuous improvement that provide the
appropriate context for measurement: Quality Im-
provement Paradigm, Total Quality Management,
SEI Capability Maturity Model.

¢ Models for goal oriented measurement.

¢ Better infrastructure for experiment design, data col-
lection and validation, and analysis.

The future agenda in software measurement, as it looks
today, includes

¢ Integration of measurement into automated software
engineering environments.

o Integration of modeling and measurement technology
for processes.

* Rigorous and appropriate infrastructures and meth-
odologies for collection, validation and analysis of
software engineering data.

o Support of industrial paradigms and software fac-
tories.

o Frameworks for experimentation and analysis in
large industrial environments.

e Inclusion of quantitative and experimental ap-
proaches into teaching curricula, training programs
and technology transfer approaches.

SOFTWARE MODELS AND MEASURES

It is important to have many kinds of models and mea-
sures. Models and measures are inseperable companions.
Measures are intended to characterize some property of a
software engineering object in quantitative terms. How-
ever, different models may exist for the same property. It



is, therefore, impossible to judge the appropriateness of
a chosen measure without understanding the underlying
property model the measure is supposed to quantify. In
the following sections the different types of measures and
models needed are discussed and examples of project, prod-
uct, and process models and measures are given.

Types of Measures

There is a distinction between objective and subjective
measures, abstract and specific measures, complex and
simple measures, product and process measures, and di-
rect and indirect measures. There is a lot of information
that cannot be measured objectively; it may be an estimate
of the extent or degree in the application of some technique,
a classification, or qualification of problem or experience,
usually done on a nominal or ordinal scale. An example
may be the subjective measure team experience with some
technology. Such a measure can be defined in an opera-
tional way on a nominal scale as follows:

. None.

Have read the manuals.

Have had a training course.

. Have had experience in a laboratory settmg
. Have used it on a project before.

. Have used it on several projects before.

(s I N CR CRay

Defining each value between 0 and 5 in an operational
sense has the advantage of guaranteeing consistent data
collection. Without such operational definitions, subjective
measures are usually limited, because it is in the eye of
the beholder to judge a given team as having an experience
level of either 0 or 5.

Most measures reported in the literature are abstract
measures in the sense that they are derived from some
abstract model. They need to be tailored to the specific
characteristics of an environment before they can be ap-
plied. Those tailored measures are called specific. For ex-
ample, the abstract measure of fan-in—fan-out needs to be
tailored to specific languages such as Fortran or Ada before
it can be applied practically.

Simple measures are those based on a single property;
complex measures are those based on a vector of properties.
For example, the project measure number of faults is a
simple measure; the measure number of faults per 1KLoC
is a complex measure because it is based on two properties:
errorproneness and size.

The need for product, project, and process measures was
noted earlier. Direct measures of a property are measures
suited to define this property quantitatively. Indirect mea-
sures of a property are measures suited to predict the
values of direct measures. Very often, direct measures (e.g.,
number of failures per unit of operation as a direct measure
of reliability) can only be measured after delivery of the
product. Indirect measures (e.g., number of failures per
unit of testing or complexity of the product) enable one to
explain or even predict the values of the direct measures
early.

MEASUREMENT 649

Types of Models

Measures are organized into models in two ways:

¢ Attribute Models: the model states that an external
attribute of a software artifact is represented by one
or more internal attributes direclty associated with
measures; e.g., the size of a software module is repre-
sented by lines of code. Models of this kind are gener-
ally used to characterize a qualitative aspect in a
quantitative way.

¢ Relationship Models: The model establishes a (gener-
ally functional) relationship among one attribute and
a list of other ones; e.g., the effort needed to develop
a code module is a function of the number of lines of
code in the module. Models of this kind are used either
to represent the relationship among quantative as-
pects or to describe a relationship among qualitative
aspects in terms of their quantitative characteriza-
tions.

A well known example of relationship models is pro-
vided by the so called cost models such as COCOMO
(Boehm, 1981). They are mostly automated and proprie-
tary. The experience reported is mixed: they seem to work
in certain environments, but not in others. It seems to be
hard to tailor them to the characterics of different environ-
ments. Most of these models predict “project cost” based
on the “anticipated size of a product” (e.g., Lines of Code),
“the complexity of the product requirements” (e.g. fanction
points), and other subjective measures of the environment
such as “experience of personnel” or “technology level used
for development”. Typical resource allocation models de-
scribe the staffing profile and/or project schedule.

Most product models are still emphasizing software
code. Static code models, reliability models, and other de-
fect models exist. Static code models are primarily based on
size and complexity. The most popular size and complexity
measures are Halstead’s (1977) software science measures
and McCabe’s (1976) cyclomatic complexity measure as
well as variations thereof. In addition, data-based complex-
ity measures such as information flow measures (S. Henry
and Kafura, 1981) and data binding measures (Basili and
Hutchens, 1983) have been used as alternatives to McCa-
be-style measures to characterize complexity. The experi-
ence is also mixed: they seem to- work in certain environ-
ments but not in others.

Many reliability models have been published (Husa,
1980). These models are typically intended to assess the
quality of a software product and require independent fail-
ures. For that reason , these models are clearly misapplied
on data derived from testing techniques oriented toward
defect detection. Nevertheless, there are many application
of the latter kind reported in the literature. Other problems
with reliability models include the evaluation of underly-
ing model assumptions, the refinement of models for par-
ticular applications, the selection of approaches for using
models, and the application of models to specific projects.

Other popular and useful defect models are based on
relating error, fault, and failure profiles based on a variety
of classification schemes (Basili and Rombach, 1987; Basili
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and Weiss, 1984). Such models provide a good basis for
characterizing software projects and entire organizations
from a defect quality perspective. They also enable cause-
and-effect analyses as a first step toward improvement,
either in terms of better corrective (i.e., defect detection
and correction) or preventive (i.e., defect prevention a pri-
ori) measures in future projects. -

It has been recognized that better product models appli-
cable early in the life cycle are needed. Examples include
models of requirements (e.g., subjective measures to char-
acterize the importance or complexity of requirements),
designs (e.g., subjective measures to characterize the read-
ability of designs and objective measures to characterize
the complexity), and test plans (e.g., coverage and defect
classes). The problem with product measures applicable
before code has been developed is that the objects to be
measured are not described in any measurable form. They
are either not described at all (e.g., very often design deci-
sions contributing to design complexity are not docu-
mented Rombach, 1984, 1990) or described informally (e.g.,
requirements are described in English prose, not even en-
abling the identification of individual requirements to
judge their importance and complexity).

More recently, the importance of measurable process
models has been recognized (Basili and co-workers, 1992;
McGarry, 1985). Most attempts of measuring processes so
far have been limited to high level life cycle models or
implicit models of design, testing, reading, and mainte-
nance processes. The problem with the measurement of
implicit processes has been described (Rombach and Ulery,
1989). The process maturity work of Humphrey (1989) and
others at the SEI has triggered an increased awareness of
process, within both industry and academia. As a result,
companies have started to document their processes explic-
itly (yet informally). In academia, a number of research
groups have started to develop process representation for-
malisms (Kellner and Rombach, 1990; Osterweil, 1987;
Rombach, 1991).

Example Product Models and Measures

The are a variety of software products, requirements docu-
ments, specification documents, design documents, source
code, object code, test plans, user documentation, etc. For
each such product, there are a variety of models that char-
acterize some aspect of the product. These models offer
visibility and insights into the product from a variety of
perspectives. Product models can be broken down into sev-
eral categories. Two major categories are static and dy-
namic models. Static models are based on the static proper-
ties or structure of the product, whereas dynamic models
are based on the execution behavior of the product. Static
models include size and structural complexity. Dynamic
models include reliability, performance, and test coverage.
Each of the models provides an insight into some property
of the product.

Product models and measures can be used to evaluate
the process and product; to estimate the cost and quality of
the product; and as a feedback mechanism during software
development and evolution, to monitor of the stability and
quality of the product. They provide a quantitative view

of the software development process and product, can be
used to refine and engineer techniques and tools, can help
with technology transfer, and can be used to provide qual-
ity assurance probes into the product to provide visibility
to anyone who needs it. In their most refined form, they
can be used in contracts for award, acceptance, and budget
incentives. In the next sections, models and measures for
size, control and data structure complexity, reliability, and
test coverage will be discussed.

Size Models. Although size is the most common mea-
sure, it is the most difficult to articulate. That is because
it depends on so many different factors, e.g., the notation,
the formatting style of the notation, what aspects of the
product are considered part of its size (e.g., are comments
extraneous information or essential parts of the size of a
product), etc. For example, if one is interested in the size of
arequirements document, a great deal depends on whether
the document is written in English or some formal notation
and how requirements can be distinguished and enumer-
ated. If the requirements are written in English and it is
impossible to distinguish or enumerate independent re-
quirements, then how does one model size? It is possible
to count the pages of the document, which has been done,
but now one must consider type font, spacing, etc.

The problems associated with models of size fall into
two categories. The first is what is counted, ie, what models
for size are used. These problems are partly addressed by
the GQM in that the appropriate models to choose depend
on the goals. Deciding what is to be counted, e.g., enumer-
ated requirements and pages fall into this category. The
second problem is associated with whether or not there
are reasonable measures that can be associated with the
model. Being able to distinguish requirements, ie, having
a mechanism for enumerating requirements falls into this
category. This problem depends on the ability to formalize
the notation of the product in such a way that the measure
makes sense.

Because size measures depend on the product and its
model, some examples of size measures and the products
they can be used on follow.

S1. Number of pages of the document.

S2. Number of requirements.

S3. Number of functions in the specification.

S4. Number of subsystems.

S5. Number of modules.

S6. Number of function points.

S7. Number of procedures, functions or packages.
S8. Number of lines of code.

S9. Number of tokens.

None of these measures is good or bad in its own right. It
depends on how they are used, whether they satisfy the
concept to be analyzed. The number of pages of documenta-
tion can be associated with any document. It is a very gross
measure and highly dependent on the notation and page
format. However, if one is interested in comparing products
of similar notations and format is serves as a simple gross
measure of size.



The number of requirements is an excellent measure of
any document representing the function of the system, e.g.,
the requirements document, the specification, the design,
and code. It provides a measure of the functionality that the
system represents and can be used to compare documents
of similar size functionality. For example two systems that
have the same number of requirements (and are of a similar
nature) yet have dramatically different fault rates or lines
of code associated with them provide some insight into the
development process used to produce the code. The prob-

lems associated with this measure are the ability to distin-

guish requirements, account for their interdependence, and
choose the level at which to count.

For example, in a compiler, enumerating requirements
as the number of declarations and statements that need to
be translated is one mechanism for enumerating require-
ments. However, the definition of the statements and their
interdependence in terms of the effect on the runtime envi-
ronment clearly changes the concept of size if one is compar-
ing the size of compilers for two languages that have very
different runtime environments. Clearly a great deal de-
pends on how the size measure is used. Ifit is used to show
thatlanguages with a similar number of requirements have
very different designs and implementations based on the
sizes of the implementation, then the measure of number of
statements is a reasonable measure of the number of re-
quirements. Ifitis used to justify that the compilers should
both be the same size, then the measurer is being misused.

The number of functions in the specification is similar to
the number of requirements, except it views functionality
from the point of view of the designer rather than that of the
user or customer. The number of subsystems is primarily a
measure of the design, as is the number of, modules. How-
ever, both these definitions require careful definitions of the
terms. As is seen in the literature, module can be used to
mean everything from a Fortran subroutine to an informa-
tion hiding subsystem.

The number of function points is a derived measure asso-
ciated with the amount of data being processed. The number
of procedures, functions or packages is a macromeasure of
code size or a micro measure of design. It can be used for
estimation of effort, because it is possible to categorize these
units by application or type and associate a data base of ef-
fort at a detailed level of specificity.

The number of lines of code is a measure of code. There
are a variety of measures that can be associated with the
generic concept of lines of code. One can count total lines
including comments, total lines excluding comments, exe-
cutable statements, etc. All of these are useful measures,
depending on why one isinterestedin counting lines of code.
For example, most cost models total lines of source code,
because there is an effort associated with producing every-
thing, including comments. On the other hand, if one is in-
terested in approximating functionality at the code level,
the executable statements is probably a better measure.
Once again, it depends on why one is measuring size.

The number of tokens is a micromeasure of the number
of units of information. For example, if one is counting the
number of tokensin a program, one might count the number
of operators and operands in the source code. If one is count-
ing the number of tokens in a requirements document writ-
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ten in English, one might count the number of nouns and
verbs. Inthe next section, a theory of program measurement
based on token count as suggested by Halstead (called soft-
ware science) is discussed.

Software Science Measures. An approach to size mea-
surement is to use the number of tokens as the basic syntac-
tic and semantic units of size. Such an approach was devel-
oped by Halstead (1977) in an attempt to study the
measurable properties of algorithms. In doing this he dis-
tinguished between the concept of an operator and an op-
erand. The theory was developed for programs written in
some programming language. Thus an operand was de-
fined as a variable and an operator was defined as an
arithmetic symbol, command name, (e.g., while and if), or
any other form of function or procedure name. The basic
measures are defined as follows.

ny =Number of unique or distinct operators in an imple-
mentation.

n; =Number of unique or distinet operands in an imple-
mentation.

N, =Total usage of all operators.
N, =Total usage of all operands.
fi7 =Number of occurrences of the jth most frequent

operator, j=1,2,...,nl
f2j =Number of occurrences of the jth most frequent
operand, j=1,2,...,n2

The vocabulary 7 of the algorithm or program is defined
as

n=nl+n2

The implementation length, a measure of the size of a
program, is

N=N1+N2

L2}
N=Y hi
J=1
12

and

Example: Euclid’s Algorithm

IF (A=0)
LAST:
RETURN END;
IF (B=0)
BEGIN GCD :=;
RETURN END;
HERE: G :=A/B;
R:=A-B*G;
IF (R=0)
GO TO LAST;

BEGIN GCD :=B;
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Operator Parameters: Greatest Common Divisor Algorithm

Operator j £y
; 1 9
= 2 6
() or BEGIN ... END 3 5
IF 4 3
= 5 '3
/ 6 1
- 7 1
8 1
GO TO HERE 9 1
GO TO LAST 10 1
n;=10 N,=31

Operand Parameters: Greatest Common Divisor Algorithm

Operand j fo
B 1 6
A 2 5
(0] 3 3
R 4 3
G 5 2
GCD 6 2
ny= 6 N. 2= 21

There are a variety of measures derived from the basic
measures nl1, n2, N1, N2. Implementation length N is ap-
proximated as a function of the unique operators and op-
erands based on a formula from information theory. This
function, called program length is

N~ =n,*log, (ny) + n; * log; (ny)

The program length represents the number of bits neces-
sary to represent all tokens that exist in the program at
least once. It can be considered as the number of bits neces-
sary to represent the symbol table of the program.

Another measure, program volume, represents the size
of an implementation,

V=N *log, (n)

It can be thought of as the number of bits necessary to
represent the entire program in its minimal form, ie, inde-
pendent of token name length.

The meaured potential volume,

VE=(2+n,* logy(2+n,*)

is an attempt to approximate the minimal number of to-
kens necessary to specify the algorithm. It represents the
minimal number of input and output parameters and oper-
ators needed for a specification. It is based on the program
volume equation with N defined as 2 operands, the function
name and the bracketing operator ( ) for the parameters,
plus n2*, representing the number of operands in the pro-
gram occurring only once each.

Using Vand V¥, one can represent the measure program
level, which is the level of an implementation,

L=v*/V

The larger the program volume, the lower level the imple-
mentation. Thus an algorithm written in a low level lan-
guage, requiring more volume, ie, repetition of the opera-
nds and a large number of operators, will have a lower
level implementation than an algorithm implemented in
a language that requires a smaller number of operators
and smaller number of repetitions of operands.

It is possible to approximate L with L, by the formula
(2* ny/ (n, * Np) and define a meaure for program difficulty
of implementing an algorithm in a particular languages
as D=VL. Programming effort E can then be defined as
the volume times the difficulty. E=V x D=V/L=V,/V* It
has been suggested that E might be thought of as repre-
senting the effort required to comprehend an implementa-
tion rather than to produce it. One can think of E as a
measure of program clarity.

Cyclomatic Complexity. Based on the concept that the
number of test cases is based on the number of linearly
independent circuits in a program, McCabe suggested that
the cyclomatic number might be a good approximation of
the complexity of a program from the point of view of test
effort. The cyclomatic number v(G) of a graph G with n
vertices and e edges, and p connected components is

v(G)=e—n+2*p

In a strongly connected graph G, the cyclomatic number
is equal to the maximum number of linearly independent
circuits. Thus if a program is viewed as a graph that repre-
sents its control structure, the cyclomatic complexity of a
program is equal to the cyclomatic number of the graph
representing its control flow.

Cyclomatic complexity has several properties:

1. v(@) >=1.

2. v(@)=maximum number of linearly independent
paths in G; it is the size of a basis set of the set of
paths through the program.

3. Inserting or deleting a functional statement to G
does not affect v(G).

4. G has only one path, if and only if v(G)=1.
5. Inserting a new edge in G increases v(G) by 1.
6. v(G) depends only on the decision structure of G.

It can be shown that the cyclomatic complexity of a pro-
gram equals the number of predicate nodes plus 1. This
provides an easy mechanism for calculating the cyclomatic
complexity of a program:

v(G)=number of decisions+1

The concept of cyclomatic complexity is tied to testability,
is intuitively satisfying in that it describes the complexity



of a program in terms of the cost of testing the number of
independent circuits in a program, and is easy to compute.

Segment-Global Usage Pairs. In an attempt to evaluate
the usage of global data for a program, Basili and Turner
(1975) used a measure, to study the quality of the use of
globals from the point of view that if a variable is declared
global, it should be used by most of the segments to which
it is available.

A segment-global usage pair (p,r) is an instance of a
global variable r being used by a segment p, i.e., r is either
modified or set by p. Each usage pair represents a unique
Ruse connection between a global and a segment. '

Let AUP, represent the count of the actual usage pairs,
i.e., r is actually used by p. Let PUP represent the count
of potential usage pairs, i.e., given the program’s globals
and their scopes, the scope of r contains p so that p could
potentially modify r. This represents the situation in which
every segment uses every global. Then the relative percent-
age usage pair (RUP) is

RUP=AUP/PUP

which represents a way of normalizing the usage pairs
relative to the program structure. The RUP measure is
an empirical estimate of the likelihood that an arbitrary
segment uses an arbitrary global.

The measure RUP lies between 0 and 1. If RUP is small
it means that even though a large number of variables
were defined as globally available, only a few of them were
really used by the segments to which they were available.
This implies there may be something wrong with the hier-
archical structure of the data in that there appears to be
less cause for making the variables global. If RUP is close
to 1, it means that those variables that were defined as
global were really used by those segments to which they
were made available. Thus the hierarchical structure of
the data is truly representative of their use. This measure’
depends on the programming language and what kind of
hierarchical data structuring it allows.

Data Bindings Measure. Myers (1978) has argued that
modules should be formed in a manner that reduces cou-
pling and increases strength. In an effort to measure the
data coupling between modules, Basili and Hutchens
(1983) used the concept of data bindings to capture the
coupling relationship between program segments.

A segment-global-segment data binding (p,7,q) is an
occurrence of the following:

1. Segment p modifies global variable r.
2. Variable r is accessed by segment q.
3. p and g are different.

The existence of a data binding (p,7,q) implies ¢ depends
on the performance of p because of 7. Binding (p,q,r) is not
the same as binding (g,r,p). Binding (p,r,q) represents a
unique communication path between p and q. The total
number of data bindings represent the degree of a certain
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kind of connectivity, i.e., between segment pairs via glob-
als, within a complete program.

Letting ADB (actual data bindings) represent the abso-
lute number of true data bindings in the program, i.e.,
the true connectivity, and PDB (possible data bindings)
represent the absolute number of potential data bindings
given the program’s global variables and their declared
scope, they defined RDB (relative percentage of data bind-
ings) as RDB=ADB/PDB, the normalized number of data
bindings within the program.

One problem with the data bindings measure is that
is does not take into account indirect bindings, through
parameters, and the calling program. Thus implementa-
tions of an abstract data type may show no explicit bind-
ings, even though the program elements are tightly bound.
An example of using data binding metrics for the purpose
of characterizing the reuse potential of Ada components is
given in Basili and co-workers, 1988.

Span. In looking for a measure of the complexity of un-
derstanding a program, Elshoff defined the concept of data
span as a basis for the amount of knowledge (number of
variables) one needs to be aware of at any point in a pro-
gram (Elshoff, 1977). Span is the number of statements
between two textual references to the same identifier. Thus
in the program segment

X=Y;Z:=Y;X:=YT

Span (X)=count of number of statements between the
first and last statements (assuming no intervening refer-
ences to X). Y has two spans. For n appearances of an
identifier in the source text, n—1 spans are measured. All
appearances are counted except those in declare state-
ments. If the span of a variable is greater than 100 state-
ments, it implies that one item of information must be
remembered for 100 statements until it is used again.

Using span, complexity can be defined as either the
number of spans at any point (using either the maximum,
average, or median of that number as the actual value) or
the number of statements a variable must be remembered,
on the average (e.g., average span over all variables). One
potential variation of this measure is to perform a live—d-
ead variable analysis and then define the complexity of a
program to be proportional to the number of variables alive
at any statement.

One way to scale this measure up for a complexity mea-
sure for a module M might be by using the following for-
mula:

number of statements

C(M)= 2 X
i=1
(n; * s(n))(number of statements)

where ri=the number of spans of size S(n;). In a study
performed by Elshoff, variable span has been shown to be
a reasonable measure of complexity. For commercial PL/
1 programs, he showed that a programmer must remember
approximately 16 items of information when reading a
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program. This argues for the difficulty of program under-
standing.

Example Process and Project Models and Measures

There are a variety of reasons for modeling resource. We
may wish to do an initial prediction of resources, i.e., based
upon a set of factors that can be estimated about a project,
we can try to predict total effort, cost, staffing, computer
use, etc.

We can develop descriptive models of the development
pattern, that is show how and when resources get allocated.
This provides insights into what is going on, shows how
different parameters change the resource allocation pat-
tern, helps us evaluate the effects of various techniques
and methods so we can better engineer software, and pro-
vides baselines from which to plan future developments.

We can use resource modeling to help predict the re-
sources to be used in the next phase based upon the current
phase. This is a more detailed application of the initial
prediction activity mentioned above. That is, given where
we are in the project, the model should tell us what should
happen next. If it does not, why not; is it a sign of trouble,
ete.?

Lastly we can use the model for validation of our under-
standing of the environment, i.e., does the model explain
our behavior and environment, do the factors (parameters)
agree with our environmental factors, and are they cali-
brated correctly?

A good model explains our behavior and the develop-
ment environment. Its parameters are calculable from
known or easy to estimate data, e.g., maximum staffing,
time to delivery, complexity of the software, number of
lines of code, number of modules, number of /O formats,
type of software, amount of old/new software (design, code,
specification). The parameters describe and can be cali-
brated for our environment, redundancy checks and risk
analysis factors are available and when the model does
not work, we can gain insight into why and what is different
about the environment than was expected or how to im-
prove the model or better calibrate it to the environment.

There are a variety of resource models that provide
descriptions of such resources as effort, staffing, cost, com-
puter use, and calendar time. These models can be catego-
rized with respect to type of formula used for total effort.
Models can be distinguished as single variable vs. multi-
variable, empirically based on theoretically based. Some
describe the dynamic allocation of resources while others
give a single overall figure. Some are defined at the macro
level, based on high level parameters while others are
defined at the micro level.

Early on Barry Boehm collected data to provide some
insights into where the effort resources were being spent.
He surveyed several projects and collected data within his
own organization, TRW. Based upon his data, the 40-20-
40rule-of-thumb came into practice, ie 40% of the resources
should be spent on analysis and design, 20% on code, and
40% on checkout and test. However, this is a misinterpreta-
tion of the data. The data represents phase data data,
rather than actual resource expenditures, ie, a better inter-
pretation of the data might be that 40% into the resources

the design completion milestone should be reached, and
60% into the resources, the code completion data should
be reached. This provides data for management as to when
various milestones are appropriate.

Table 1 provides similar data from IBM and the SEL
at NASA Goddard Space Flight Center as a basis for com-
parison. In this data, another category, other, is present.
Other represents resource effort that is not associated with
a particular phase of the life cycle, e.g., training, meetings,
ete.

Examining the first three columns, it should be noticed
that the data from the three environments are different,
ie the design effort varies from 40% to 35% to 20%, code
effort varies from 20% to 30% to 45%, and test effort varies
from 40% to 25% to 28%. Only two organizations report
effort in the other category. There are several explanations
for this. First, each of the organizations may allocate differ-
ent activities to the phases, e.g., in the SEL, the life cycle
starts with functional specification analysis and design,
which are what analysis and design mean. Second, each
organization may have a different point at which they
define their milestones, e.g., the SEL defines the analysis
and design phase to end at PDR (preliminary design re-
view). Clearly, the interpretation of the data is highly de-
pendent upon the environmental characteristics in which
it was collected. That makes it very difficult to compare
across environments.

It should also be noted that there are two sets of data
for the SEL environment. That is because two types of
data are collected, phase date data and activity. The phase
date data represents the total amount of effort expended
each week by each staff member within the dates estabi-
shed for the phase. The activity data is the total amount
of effort expended on each activity by each staff member
each week. These figures are not the same because staff
member perform activities in phases other than the named
phase they are in. For example, coding may begin on some
components before the design end milestone occurs. Also,
design may continue to occur after the design end mile-
stone because the design may not be complete or some
redesign may be necessary. Activity patterns do not neces-
sarily follow date patterns. Both sets of data are important.
The activity data provides insight into the actual effort
expended in each activity. The phase data provides insight
into how management should allocate milestones.

The other category in the SEL activity column is 27%.
This says that project staff spend 27% of their time per-
forming activities chargeable to the project but not directly

Table 1. Where Does the Software Effort Go?

Analysis and  Coding and  Checkout and

Design Auditing Test
Sage 39% 14% 47%
NTDS 30 20 50
Gemini 36 17 47
Saturn V 32 24 44
S/360 33 17 50
TRW Survey 46 20 34




associated with a project activity, ie, travel, education,
meetings, etc. Actually the figure for the SEL is estimated
as low compared to what that figure might be in other
organizations. It is worth noting that if one estimates solely
on the basis of activities, the estimation would be 27% low
in the SEL (Table 2).

Once an effort estimate is made, the next question is
how to assign people to the project so that the deadlines
for the various development activities will be met. Each
of the methods discussed so far uses an empirical approach
to identify the activities that are parts of the development
process of a typical project within their environment. Using
effort data from past projects, the percentage of effort ex-
pended on each activity is estimated is determined. These
percentages serve as a baseline and are intuitively ad-
justed to meet the expected demands of a new project.
For example, total cost may be allocated into five major
subareas: analysis cost, design cost, coding cost, testing
cost, and documentation cost. Each of these subareas is
subdivided again, depending upon the activities in the sub-
areas. In this way, each activity can be staffed according
to its individual budget. Allocation of time is determined
by history and good management intuition.

An alternative approach is to justify resource expendi-
tures based upon an underlying theory of how people solve
problems. We will refer to these types of approaches as
theoretical dynamic resource models. The original model
of this type is due to Larry Putnam.

The model is based upon a hardware development model
(due to Peter Norden) which noted that there are regular
patterns of staff buildup and phase-out independent of the
type of work being done. It is related to the way people
solve problems. Each activity could be plotted as a curve
which grows and then shrinks with regard to staff effort
across time. Norden isolated several activities associated
with hardware development: planning and specification,
design, prototyping, and release. Similar curves were de-
rived by Putnam for software cycles: planning, design and
implementation, testing and validation, extension, modifi-
cation and maintenance.

The basic theory behind this model is based upon the
ideas that software development is a problem-solving ef-
fort, design decision making is the exhaustion process, and
activities partition problem space into subspaces corres-
ponding to the various stages (cycles) in the life cycle.
Assumptions about the problem subset are that the num-
ber of problems to be solved is finite, the problem-solving
effort makes an impact on and defines an environment for
the unsolved problem set, a decision removes one unsolved

Table 2. Comparison of Resource Effort Data

SEL
TRW IBM Phase  Activity
Design 40 35 20 21
Code 20 30 45 28
Checkout/Test 40 25 28 23
Other 10 5 27
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problem from the set (the model assumes events are ran-
dom and independent) and the number of people is propor-
tional to the number of problems “ripe” for solution.
Based upon these assumptions, Putnam derives an ef-
fort curve, the integral form of the life cycle equation

y=K*(1-e™y

where

y=the cumulative manpower used through time t

K=the total manpower required by the cycle stated in
quantities related to the time period used as a base, e.g.,
staff-months/month

a=A parameter determined by the time period in which
y reaches its maximum value (shape parameter)

t=time in equal units counted from the start of the cycle

The life cycle equation (derivative form) is

y=2Kate™

where

y=the manpower required in time period ¢ stated in
quantities to the time period used as a base

K=total manpower required by the cycle stated in the
same units as y

The curve represents the staffing buildup (a Rayleigh
curve). Putnam argued that the sum of the individual cycle
curves results in a pure Rayleigh shape because software
development is implemented as a functionally homoge-
neous effort (single purpose).

The shape parameter a depends upon the point in time
at which y reaches its maximum, i.e.,

a=1 /2tdz

where £;is the time to reach peak effort. Putnam empiri-
cally showed that ¢; corresponds closely to the design time
(time to reach initial operational capability). Substituting
for a we can rewrite the life cycle equation as

yl =t__I{2 * te—ﬂ/w
d

Based upon his analysis, Putnam concludes that large soft-
ware development projects follow a life cycle pattern de-
scribable by the Rayleigh (manpower) equation:

y'=2Kate—at®

Software systems have 3 fundamental parameters: the
life cycle effort (K), development time (¢,), and difficulty
(D=K/t*). Productivity is related to the difficulty and state
of technology constant C,. Management cannot arbitrarily
increase productivity. Management cannot reduce devel-
opment time without increasing difficulty. The tradeoff
law shows the cost of trading time for people.

RESOURCE PLANNING

We have discussed only a sampling of the models that
exists in the literature. There are a variety of other models,
but most of them are of a similar to those discussed above.
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In order to estimate resource, the models should be an aid
to software development management and engineering.
Common sense should never be abandoned.

None of these models are not accurate enough to be
taken as the sole source. One approach to doing resource
estimation might be to apply more than one model and
examine the range of predictions offered, compare the re-
sults. If they agree, one can be more secure about the
estimate.

If they do not agree, examine why not, ask what model
assumptions were not satisfied and what makes this proj-
ect different. Make sure you are comfortable with the ex-
planation of the difference.

What is needed is a system that combines global and
local of models, allowing for different inputs at different
times, and providing an integration mechanism, that
allows us to better understand the parameters of both sets
of models. This way we can learn from our application of
the system so that we can improve our estimates over time.
That is, if we apply both global and local models when
possible, and based upon our analysis of the both models,
modify our understanding of their parameters and evolve
them with respect to the choice of baseline equation and
cost drivers to provide better accuracy for future projects,
we can do a better job of cost estimation and comparison
with other environments in the future.

In order to provide a basis for resource planning and
allocation and take advantage of prior history, Jeffrey and
Basili prosed a resource consumption model that charac-
terized types of resources and their use.

Resource are consumed during the software process.
Software process characteristics are superordinate to the
resources consumed on a project. A process characteriza-
tion includes such characteristics as project type, organiza-
tional development conventions, project manager prefer-
ences, target computer system, development computer
system, project schedules or milestones, and project deliv-
erables.

They classify a variety of different types of resources:
hardware, software, human, calendar time, support, e.g.,
supplies, materials, communications, facility costs, etc.
They categorize the viewing of resources by three different
dimensions: incurrence, availability, and use descriptors.
Incurrence is subdivided into estimated and actual. Avail-
ability is subdivided into desirable (resources of value),
accessible (resources able to be used), and utilized (re-
sources used). Desirable resources are those considered
ideal for any project, i.e., unconstrained by availability,
implying the ideal hardware, software and calendar time,
ideal people characteristics. Accessible resources are theo-
retically those available to the project available within the
organization, chosen from data base of corporate resources.
Utilized resources are those available and anticipated to
be used or actually used by the project, i.e., those driven
by project constraints (e.g., cost) and other corporate needs.
Use Descriptors are subdivided into the nature of the work
or activity (e.g., testing, design), the point in time (e.g.,
calendar dates needed), and the resources utilized (eg.,
hours, dollars, units).

Information about resources can be obtained from indi-
vidual and group knowledge, a knowledge base, a data

base of prior projects, or algorithmic models. Inputs to the
model can occur at project milestones, by manager initiated
points in time based upon divergence between estimated
and actual, or at system initiated points in time based
upon divergences recognized by the measurement system.

If we combine incurrence and availability dimensions,
we get the following categories: Estimated Desirable: those
resources considered ideal for the project at planning time,
Estimated Accessible: those resources available with the
organization that can used by the project, Estimated Uti-
lized: those resources anticipated to be used by the project,
Actual Utilized: those resources actually used by the proj-
ect, Actual Accessible: with hindsight the resources which
were available and should have been utilized, Actual Desir-
able: with hindsight the resources which should have been
made available and used.

The differences between each of the different resource
models provides a unique form of input to the organization.
The difference between estimated desirable and estimated
accessible provides input to the risk management plan.
The difference between estimated accessible and estimated
utilized provides input to the contingency plan. The differ-
ence between the estimated and actual utilized provides
input to the manager for real time adjustments to resource
allocation and can be used to provide measures of progress
and problems. The differences between actual utilized and
accessible is feedback needed for future project planning,
ie, what should we really have used to make this project
work. It represents an analysis and smoothing of the actual
utilized resources. The difference between actual accessi-
ble and actual desirable is the feedback to corporate plan-
ning, ie, what resources does the corporation have to ac-

‘quire in order to complete projects of the type developed

successfully.

When viewed from the point of view of the Improvement
Paradigm, resource planning involves the following activi-
ties: During planning, decisions are made about such
things as obtaining a further resource (updating the corpo-
rate resource data base), committing to development with-
out the expert, negotiating for full or partial decommitment
of the expert. During execution, review and re-estimation
are done to modify the plan by allocating contingency re-
souces, revise estimates of accessible resources, and revise
desirables. During post mortem analysis and the packag-
ing of experience, revisions are made to various experience
base models, including project and environment models,
and the desirable and accessible resources models. Lessons
learned are developed.

Validation of Measures

There have been a large number of studies of these mea-
sures, most of which show the correlations among lines
of code, v(G) and E. Some of these studies show limited
relationships between the measures and effort and faults.

Typical of the results is an early study on evaluating
and comparing several of the software measures in the
literature in which Basili, Selby and Phillips (1983) posed
the following questions:



¢ Do measures like cyclomatic complexity and the soft-
ware science measures relate to effort and quality?

* Does the correspondence increase with greater accu-
racy of data reporting?

¢ How do these measures compare with traditional size
measures such as number of source lines or execut-
able statements?

¢ How do these measures relate to one another?

They defined effort and quality based upon available
data in the SEL. Effort was defined as the number of
manhours programmers and managers spent from the be-
ginning of functional design to the end of acceptance test-
ing. Quality was defined as the number of program faults
reported during the development of the product.

The data used in the analysis was commercial software.
The application domain was satellite ground support sys-
tems consisting of 51,000 to 112,000 lines of FORTRAN
source code. Ten to 61% of source code was modified from
previous projects. The development effort ranged from
6,900 to 22,300 man hours. The analysis focused on data
from 7 projects, only newly developed modules, i.e., subrou-
tines, functions, main procedures and block data’s.

Measures studied included:

Source lines of code :
Source lines of code excluding comments.
Executable statements.

Software science measures.

N : Length in operators and operands.
V : Volume.

V* : Potential volume.

L : Program level.

E : Effort.

B : Bugs.

Cyclomatic complexity.

Cyclomatic complexity excluding compound decisions
(referred to as cyclo _cmplx _2).

Number of procedure and furnction calls.
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Revisions (versions) of the source in the program li-
brary.
Number of changes to the source code.

Figure 1 show the relationship of the measures to actual
effort. It should be noted that because the data come from
real projects, there is the potential for error in the reported
effort data. However because project data are reported in
two forms, a reliability check was performed and the data
are rated by ensurance of their accuracy, given as a per-
cent.

The data show that there is some relation between the
measures and the effort data across all projects. However
the relation improves with individual project data, vali-
dated data, and individual programmers data. Note that
the Spearman correlations (R values) are all significant at
p=0.001 level. Figure 2 shows the relationship between
the measures and the number of faults found in the mod-
ules. The number of program faults for a given module is
the number of system changes that listed the module as
affected by an error correction. To differentiate among the
various faults, faults were weighted by the effort expended.
Weighted faults (W_flts) is a measure of the amount of
effort spent isolating and fixing faults in module. Note that
the Spearman correlations are all significant at p=0.001,
except for those marked with an *, which were significant
at p=0.05. Note that when compared with faults, the rela-
tions are low overall with the number of revisions showing
the strongest relationship. However, as before, the rela-
tions improve with individual projects or programmers.

Figure 3 shows the relationships among the various
complexity measures. There were 1794 modules considered
in this study and the Spearman correlations are all signifi-
cant at p=0.001. Here one may notice that many of the
size and complexity measures correlate quite closely with
one another. This is especially true for the various lines
of code measures, cyclomatic complexity, and the software
science measures. Thus there is an indication that they
may be measuring the same thing. It should be noted,
however, that revisions and calls do not correlate as well

Calls plus jumps. with the other measures or with each other.
Dimension
All Projects Single Project Single
Programmer

Validity Ratio all all 80% 90% 92.5%
#Modules 731 29 20 31
E~ 49 .75 .80 .79
Cyclo_complx_2 A7 .79 .79 .68
Calls/jumps 49 81 .82 .70
Source lines 52 .67 73 .86
Execut. stmts 46 71 .78 75
v 45 .69 a7 72
Revisions .53 72 .80 .68

Figure 1. Measures’ relationships to actual effort.
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Dimension
All Projects Single Project Single Programmer

#Modules 652 132 21

faults w_flts faults w_{lts faults w_{lts
E~ .16 .19 .58 .52 .67 .65
Cyclo_cmplx_2 .19 .20 .55 49 48* 45%
Calls & jumps 24 25 57 .52 .60* .56%
Source lines .26 27 .65 .62 .66 .65
Execut. stmts .18 2 .54 51 58% 53*%
B 17 .19 .54 .50 .68 .66
Revisions .38 .38 .78 .69 .83 81
Effort .32 .33 .64 .62 .67 .62

Figure 2. Measures’ relationships to program faults.

Based on performing this study in a commercial envi-
ronment, the authors concluded that one could use com-
mercially obtained data to validate software measures but
that validity checks and accuracy ratings are useful. The
strongest effort correlations are derived with modules from
individual programmers or certain validated projects and
the majority of effort correlations increase with the more
reliable data.

In regard to the ability of the measures to predict effort
or quality, the authors concluded that none of the measures
seems to explain satisfactorily effort or development faults
and that neither software science’s E measure, cyclomatic
complexity, nor source lines relates convincingly better
with effort than the others. The number of revisions corre-
lates with development faults better than either software
science’s B measure, E measure, cyclomatic complexity or
source lines of code. It was also concluded that many of
the size and complexity measures relate well with each
other, which might mean they are measuring the same
thing.

Automatable Measures.

A variety of measures that can be taken on the product
have been examined. Most of these can be automated. A
measure can be considered automatable if there is no inter-
ference to the developer, it is computed algorithmically
from quantifiable sources, and it is reproducible on other

projects with the same algorithms. There are a variety of
measures, besides those measures discussed so far, that
are automatable.

The trouble with many automated measures is that they
are indirect measures, i.e., they measure some aspect of
the process or product that may not be directly measured.
The hope is that they represent or correlate with something
of deeper interest. For example, in the earlier study, there
was some relationship between effort and size, i.e., a mea-
sure of size provided some indication of the effort and as
size grew, so did effort. Furthermore, the version number
gave some indication of the number of defects in the same
way. Although version number itself can be easily calcu-
lated, it is not a direct measure of defects, in fact, in some
environments, it may not even correlate with defects. For
example, if in a particular environment, new versions are
created only after a series of changes have been made,
then one might not expect to see a relationship between
defects and version numbers.

An automatable measure is considered useful, if it is
sensitive to externally observable differences in the devel-
opment environment and the relative values correspond
to some intuitive notion about characteristic differences
in the environment. Thus version number, in the earlier
study might be considered useful in that is it sensitive to
observable differences, e.g., the number of defects found
in the product, and it corresponds to the fact that as the

Source Calls
Lines & Cyclo- Cyclo- SLOC
(SLOC) Revisions dJump Calls Cmpix_2 Cmpilx Exec.Stints Commts
E .83 37 .89 .62 .89 .88 95 .86
v .82 .35 .87 .57 .87 .87 96 .86
SLOC - Cmmts 93 49 .88 .68 .86 .85 91
Execut Stmts .85 .38 91 .61 92 91
Cyclo-Cmplx 81 .39 95 .55 .99
Cyclo-Cmplx_2 .82 .38 94 .56
Calls .66 41 75
Calls & Jumps .85 44
Revisions .50

Figure 3. Relationships among the measures.



number of defects increases, so does the version number.
However, this usefulness of an automated measure must
be checked for the environment in which it is being used.

Examples of automatable measures include program
changes (Dunsmore and Gannnon, 1980), textual revision
in the source code representing one conceptual change,
and job steps (Basili and Reiter, 1979), the number of
computer accesses during development or maintenance.
More specifically, program changes are defined as textual
revisions in the source code of a module during the develop-
ment period, such that one program change should repre-
sent one conceptual change to the program. A program
change is defined as one or more changes to a single state-
ment, one or more statements inserted between existing
statements, or a change to a single statement followed by
the insertion of new statements. The following are not
counted as program changes: the deletion of one or more
existing statements, the insertion of standard output state-
ments or special compiler-provided debugging directives,
or the insertion of blank lines or comments, the revision of
comments and reformatting without alteration of existing
statements. Program changes have been shown to correlate
well with defects in a particular environment (Dunsmore
and Gannon, 1980). :

Job steps are defined as the number of computer ac-
cesses representing a single programmer-oriented activity
performed on the computer at the operating system com-
mand level. Examples include text editing, module compi-
lation, program compilation, link editing, and program exe-
cution. Job steps are basic to the development effort and
involve nontrivial expenditures of computer or human re-
sources and were shown to correlate with human effort in
a particular environment.

MEASUREMENT METHODOLOGY

A comprehensive Software Measurement Methodology
needs to be embedded into an improvement-oriented soft-
ware engineering paradigm aimed at achieving higher lev-
els of software quality in a controlled way. In such context,
measurement can be used in three stages:

¢ At the beginning of an improvement program: soft-
ware measurement provides a way to establish a base-
line for current quality of products and processes, and
to a plan for the tasks that enact the program.

¢ During the execution of a task within an improvement
program: software measurement provides the neces-
sary control over the execution of the task and possi-
ble corrective actions.

* After the execution of task within an improvement
program: software measurement provides a way to
evaluate whether the assigned goals have been
achieved or not.

Once again we see the necessity of associating measures
and goals in order to take full advantage of the power of
measurement. In the article on the Goal Question Metric
Approach we present a way to develop such association.
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The overall methodological framework, however, is pre-
sented in the article on the experience factory, which also
discusses the organizational issues. In synthesis, the meth-
odology we propose.is based on the Quality Improvement
Paradigm, which consists of six fundamental steps:

1. Characterize the current project (or project segment)
and its environment using metrics and models.

2. Set the quantifiable goals for successful performance
or improvement in the specific project (or project
segment).

3. Choose the appropriate process model and support-
ing methods and tools.

4. Execute the processes, construct the products, collect
and validate the measures, and analyze them in
order to provide real-time feedback for corrective ac-
tion.

5. Analyze the measurement data to evaluate the cur-
rent practices, determine problems, record findings,
and make recommendations for future project im-
provements.

6. Package the experience in the form of updated and
refined models (or other forms of structured knowl-
edge) and save it for future reuse.

Beside the Quality Improvement Paradigm there are a
variety of methodological frameworks for using measure-
ment in a quality improvement process (Basili, 1993). Plan/
Do/Check/Act, the well-known Deming Cycle, is a quality
improvement framework based upon a feedback cycle for
measuring and optimizing a single process model. Total
Quality Management (TQM) is a quality improvement
framework based on measurement of ¢customer satisfaction
and enhanced communication within the organization.
Lean Enterprise Management focuses on value added ac-
tivities and measures the performance of the organization
on those activities.

CONCLUSIONS

Lord Kelvin’s statement that “one does not understand
what one cannot measure” is at least as true for software
engineering as it is for any other engineering discipline.
Measurement has been recognized as an indispensible pre-
requisite to introducing engineering discipline to the devel-
opment, maintenance and use of software products. The
scope of measurement has matured from a set of measures
to a set of techniques and methods aimed at supporting a
large variety of software related goals via measurement.
It has been demonstrated in local environments that sound
measurement programs can lead to significant degrees of
engineering control and can be the basis for controlled
technology improvements. As an example, we refer the
reader to publications from the NASA/SEL environment
(Basili and co-workers, 1992; McGarry, 1985), where im-
pressive results regarding the low-variance prediction of
productivity and quality characteristics as well as the in-
troduction of formal reading techniques and Cleanroom
development processes are reported.
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Software and its development processes are complicated
because of their changing characteristics from project to
project as well as organization to organization. Software
development is not “production”. Therefore, software mea-
surement is not simply a question of listing standard mea-
sures. Instead, measures have to be chosen, customized
and used according to goals of interest. This article is based
on such a nonproduction view of software development.
We have tried to capture the historical development of the
evolving discipline of software engineering measurement,
characterize the current state of the art and practice, and
point out future directions.

One of the major lessons learned from the history of
software measurement is that the usefulness of software
measures cannot be judged out of content. Only a goal of
measurement determines the appropriateness of mea-
sures. As a result, academic and practical measurement
activites have shifted towards measurement methodolo-
gies (see GOAL/QUESTION/METRIC PARADIGM), concerns of in-
troducing measurement into real environments, and the
feedback mechanisms (via explicit models) to enable learn-
ing within projects as well as across project boundaries
(see EXPERIENCE FACTORY).
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