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ABSTRACT 
Database searches are usually performed with query 
languages and form fill in templates, with results displayed in 
tabular lists. However, excitement is building around 
dynamic queries sliders and other graphical selectors for 
query specification, with results displayed by information 
visualization techniques. These filtering techniques have 
proven to be effective for many tasks in which visual 
presentations enable discovery of relationships, clusters, 
outliers, gaps, and other patterns. Scaling visual presentations 
from millions to billions of records will require collaborative 
research efforts in information visualization and database 
management to enable rapid aggregation, meaningful 
coordinated windows, and effective summary graphics. This 
paper describes current and proposed solutions (atomic, 
aggregated, and density plots) that facilitate sense-making for 
interactive visual exploration of billion record data sets. 
ACM Classification Keywords 
H.5. Information interfaces and presentation (e.g., HCI). 
H.2 DATABASE MANAGEMENT 

General Terms: Human Factors 

Author Keywords: Information visualization, database search, 
dynamic queries, user interface, aggregation, density plots, 
coordinated windows 

INTRODUCTION 
The appeal of information visualization is to gain a deeper 
understanding of a important phenomena that are represented 
in a database [7]. Of course measuring understanding, 
comprehension, or knowledge is difficult, but we can study 
human performance in the process of making known-item 
searches, information seeking inquiries, and insight discovery 
events [29, 30].  
The tools that support search, browsing, and visualization 
have dramatically improved in the past decade, so there is 
value for the database community to re-examine recent work 
and consider what future opportunities there are for 
integration of database technologies with interactive 
information visualization [39]. 
As one of my professors, Turing award-winner Richard 

Hamming, wrote: “The purpose of computing is insight, not 
numbers.”  I might paraphrase with “The purpose of 
visualization is insight, not pictures.”  Eye-catching 
animations, colorful 3D movies, and aesthetic presentations 
all have a role, but the heart of information visualization is 
the well-designed user control panel and interaction 
techniques that enable users to generate task-related 
comprehensible coordinated windows (selections in one 
window produce highlighting or new contents in related 
windows). The successful tools support a process of 
information-seeking that leads to important insights for 
individual users, organizational teams, and larger 
communities. Insights are most valuable if they contribute to 
solving significant problems in areas such as genomic, 
scientific, financial, social, economic, political data analysis. 
The term insights makes clear that we are discussing a human 
experience, made possible by well-designed tools that 
support discovery. This paper presents the potential for 
scalable visualizations that use atomic representations, 
aggregations, and density plots. The examples shown deal 
with million record databases, and sometimes small ones, but 
they have the potential for scaling up to a billion records.  

The challenge and opportunity for the database community is 
to develop compact data structures that support algorithms 
for rapid data filtering, aggregation, and display rendering. If 
these goals can be achieved while supporting cognitively 
comprehensible displays with predictable interaction 
controls, then greatly expanded user communities will be 
able to explore vast databases. Successful examples with 
million record databases give hope that academic researchers 
and industrial implementers can push forward to cope with 
billion record databases [9, 10, 22]. 

Most computer users are familiar with geographic 
visualizations, which are typically two-dimensional (2D), 
even when showing the surface of the earth. They are 
designed to help users answer questions of adjacency, paths 
to a destination, and locations of features, as described by  
east-west and north-south axes. Most computer users are also 
familiar with common scientific visualizations, which show 
three-dimensional (3D) phenomena often in animated 
presentations, sometimes user-controlled. These include 
simulations of storms, airflow over aircraft wings, molecular 
models, or medical imagery, which are mainly designed to 
help answer questions of location, such as where the storm 
intensity is greatest or cancerous lesions are predominant. 
Relationships such as up-down, left-right, inside-outside are 
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important to these users. An especially interesting form of 
scientific visualization is medical visualizations which 
typically show 2D images of the human body, although 3D 
xrays and CAT scans are increasingly used. 

Information visualizations are different from geographic and 
scientific visualizations since they have no inherent 2D or 3D 
structure, but are designed to deal with multi-dimensional 
and more importantly multi-variate data. The attributes for a 
film database could be as diverse as year of release (integer), 
genre (categorical), length (real), and leading actor and 
actress (nominal). Often information visualizations deal with 
even richer data types such as time series of weekly film 
sales, a tree structure of thematic topics, and a network 
structure among actors. The four data types (multi-variate, 
time series, tree, and network) are tied to tasks such as 
finding clusters, gaps, outliers, trends, and relationships. 

Many visualizations follow The Visual Information Seeking 
Mantra “Overview first, zoom and filter, then details on 
demand” [34], which remains effective advice, but an update 
may be necessary to accommodate a billion records. 
Overviews remain important to orient users about the extent 
of the database, distributions of values, gaps in the data, and 
outliers. Billion record overviews will have to use small 
atomic markers, larger aggregate markers, or cloud-like 
density plots. Zooming in on areas of interest and filtering 
out uninteresting markers helps narrow attention to relevant 
records. Then users can study individual records and groups 
to understand them better. With billion record databases 
zooming and filtering will need to be enhanced by use of 
aggregate markers that represent hundreds or thousands of 
atomic markers. 

An important contribution from the database community will 
be to develop scalable data structures and algorithms that 
support rapid update of visual displays for billion record 
databases. The successful visualization tools apply carefully 
designed data structures that run in the high speed store 
(RAM), so that even users of laptops with a few gigabytes of 
RAM can interactively explore million record databases. 
Billion record databases will require compression strategies 
or innovative hierarchical data management to move data 
from hard disks to RAM rapidly. While a user may wait 
several seconds for an aggregation or density plot to be 
performed, they will subsequently expect interactive 
performance (approximately 10 frame per second updates) 
when filtering, smooth zooming, and quick updates to 
coordinated windows. Precomputing of anticipated data 
needs can dramatically improve the user experience. In 
summary, the problems to be overcome include: 

- database performance during exploration 

- display performance to ensure 100msec updates 

- visual representations that are compact and information 
abundant 

- human perception of rich displays with specialized 
markers, aggregation icons, and density plots 

- cognitively comprehensible interaction controls and 
coordinated windows 

ATOMIC VISUALIZATIONS:  
ONE MARKER PER DATA RECORD 
The basic visualizations, such as histograms, time series 
plots, and two-dimensional scattergrams, show one marker 
for each data record. These visualizations become more 
useful when users control the display with innovative widgets 
such as dynamic queries sliders to select subsets from large 
databases [2, 3, 33] and zooming to see more details in a 
specific area [5].  

Having double-box dynamic queries sliders to set ranges for 
integer and real attributes enables users to filter out unwanted 
items and narrow the display to their interests. Dynamic 
queries can also be accomplished by item sliders 
(alphasliders) that allow rapid selection and sweeping 
through categorical or nominal variables. Check boxes and 
radio buttons allow AND and OR selections for the values of 
an attribute. As sliders are adjusted and buttons selected 
display updates should happen within 100 milliseconds to 
preserve the cause-effect experience that enhances the 
capacity for rapid exploration. With these strategies users 
avoid issuing zero-hit or mega-hit queries and quickly 
converge on a desired set of records. 
Dynamic queries are commonly applied to the basic 
visualization, but they also apply to the richer data types. 
Strategies for dealing with multi-variate data include: 
  - packing more dimensions into a scattergram by using size, 

color, shape, or rotation for markers 
  - using multiple 2D scattergrams, usually in a lower 

triangular matrix 
  - parallel coordinates to show dimensions simultaneously. 

Each point in n-space becomes a polyline connecting a 
point on each of the n-parallel axes [16] 

  - glyphs, Chernoff faces, and other iconic representations 
Popular information visualization strategies for dealing with 
tree-structured data include: 
  - node-link diagrams  
  - treemaps 
  - hyperbolic trees [23] 
  - nested indented text. 
Finally, strategies for dealing with network data include: 
  - node-link diagrams with many layout strategies 
- adjacency matrices [1, 11]. 

These basic and richer strategies are effective in showing 
databases with thousands or up to about a million points 
using a typical display with 1600 x 1200 pixels. For larger 
databases there may be overlap, until users zoom in on 
densely packed areas. This strategy is used in commercial 
tools and works well up to a few million records. 
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In the extreme case each database record is mapped to a 
single pixel, where color indicates the attribute value (Figure 
1) [17, 18, 19]. For example, if the records are ordered in 
useful ways such as by patient age (in upper left square, 
starting at the upper left and spiraling into the center). If the 
colors indicate days of hospitalization during the past year, 
then it is possible to discern a that younger patients have 
fewer hospitalization days (brown outside) and older patients 
(yellow in the center) have more. The other squares might 
show other variables, such as office visits, medications, etc. 

 

Figure 1: Pixel-based representation of database with six 
attributes per record. Records are arranged in a square spiral 
showing relationships among variables.  

Similarly, it is possible to pack 1,000 time series each having 
1000 time points into a single display and allow zooming to 
study dense areas in detail. Another approach is to filter out 
some time series based on their attributes, for example only 
show the auction bid histories for items that are antique 
furniture or are sold by a certain seller. Moving from a 
million to a billion points seems possible but will take some 
programming to ensure rapid updates. 

For tree-structured data, node-link diagrams and hyperbolic 
trees can support a million nodes if zooming is allowed or 
special algorithms are used to limit drawing of lower level 
nodes till users have selected a branch. Treemaps can also 
accommodate million node hierarchies in a single display 
(Figure 2) [12]. 

Million node networks are more difficult to draw within a 
single display, but coarse representations allow users to see 
clusters, compare their sizes, and understand their 
connectivity. Then they can zoom in on areas of interest. 
Another approach to dealing with large trees is to collapse 
parts in an accordion-like way (also called rubber sheet or 
context+focus), enabling users to smoothly expand regions of 
interest to show more detail. These techniques have already 
supported exploration of half million node trees on laptop 
displays, but moving to larger structures while maintaining 
animated expansion will take further work [25]. 

 

Figure 2: Million node treemap showing the directory structure 
on a file server. Color encodes file time, area encodes file size. 

The success story of the past decade is that these tasks have 
been successfully implemented in research systems and in a 
growing array of commercial products, such as Spotfire and 
Tableau. These products handle at least a million records, 
provide dynamic query filtering and redisplay at interactive 
rates so as to support rapid exploration. Their further 
successes are to import varied data types (integer, real, string, 
date, time, money, etc.) from traditional relational databases 
or spreadsheets, provide user control (plus legends) over size, 
color, shape, and rotation, and allow rapid switching among 
representation strategies. These commercial tools also 
support many features such as multiple coordinated 
windows, data editing, history-keeping, export, report 
generation, collaboration support, etc. 

AGGREGATE VISUALIZATIONS: ONE MARKER PER 
THOUSAND DATA RECORDS 
A natural next step is to push forward from a million records 
to a billion records. Some researchers are pursuing this goal 
by moving from mega-pixel to giga-pixel displays.  
This is often accomplished by tiling 50+ flat-panel monitors 
to produce wall-sized displays with high resolution [45]. A 
single computer handles user interaction sending commands 
to multiple computers which drive the displays. This brute 
force approach to presenting a billion records has some 
attraction, but it is difficult to see the whole image and also 
identify individual pixels.  

The more attractive route to seeing a billion records is to find 
ways to squeeze the information into a million pixels and 
view it on a commonly available display. The previous 
section already alluded to two common strategies that 
involve user control: filtering to see only a subset of the 
database and coarse views followed by zooming. 

This section expands on these ideas by analyzing user needs 
and then suggesting novel ways to aggregate data in what we 
might call aggregate visualizations [38]. For some tasks, 
atomic visualizations are necessary, but for many tasks, the 
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aggregate displays are more useful and meaningful. Often 
clicking on an aggregation marker will cause an expansion in 
place, but more effectively it will display its components in a 
coordinated window. The coordinated window could have an 
entirely different presentation and could contain thousands of 
records. This hierarchical approach enables scalable solutions 
for billions of records [41]. 

The coordinated window approach is well-established in 
geographic information visualizations, which enable users to 
study an overview map, then select a region which is shown 
in detail in a coordinated window. This strategy fits well for 
database exploration where record attributes enable 
convenient aggregation. A document database can be 
explored by seeing an overview by year and topic (Figure 5). 
Then clicking on a grid cell produces a list of document titles 
in the upper right view. Clicking on a document title 
produces a full description of the document in the lower right 
view [35]. A similar strategy is being added to the 
commercial tool Spotfire that already supports visualizations 
with millions of markers. The new feature enables users to 
select markers to initiate “on-demand” database retrieval that 
displays in coordinated windows (Figure 6). 

An alternate approach for making large databases 
comprehensible is to compress data with statistical 
summaries [28] or to convert to linguistic summaries [36]. 
These methods could be combined with visual 
representations to present arbitrarily large databases in 
compact ways  

Multivariate Databases 
Imagine seeing a crowd of a million people as they assemble 
for a political rally or music festival. You could fly above to 
see the entire crowd and understand where the center and 
periphery of the action are. However, trying to determine 
what fraction was male/female or the distribution of ages 
would be difficult. A histogram with age in years on the x-
axis with a vertical bar indicating percent of people in each 
age group would give a quick understanding and allow 
comparison of ages for a rock concert or a political rally. 

But age is only one attribute of individuals, so one histogram 
is needed for each attribute in a multi-variate database. 
Fortunately, histograms are effective for most data types, 
from binary (male/female, YES/NO) to categorical variables 
(drama/action/mystery/etc.), although nominal values need 
conversion into something that lends itself to visual 
representation. These services are common in many Online 
Analytic Processing (OLAP) systems such as Hyperion or 
CrystalReports, but richer visualizations would increase their 
value [37]. 

Given a database of n records with k attributes, understanding 
the distribution of each attribute including gaps and outliers 
is a great starting point for analysis [14], but then users will 
want to understand the k(k-1)/2 pairwise relationships among 
attributes. Even with a billion records there may only be 10-

100 attributes, so the number of pairs is manageable and 
independent of n. A starting point is to look at the linear 
correlation coefficient between all pairs to understand if one 
attribute is a simple transform of another, such as product 
prices in dollars and euros. Analysts will be eager to confirm 
their knowledge of strong positive linear relationships such 
as patient height and weight or negative relationships such as 
county data on unemployment rates and median household 
incomes. This strategy of ranking strength of features was 
implemented in the Hierarchical Clustering Explorer (HCE) 
[31, 32] (Figure 3). 

 

Figure 3: Rank by Feature Framework from Hierarchical 
Clustering Explorer [31, 32] uses red to highlight the strong 
positive linear correlations for 14 attributes of 3128 U. S. 
counties, the strongest being Population Density and Below18 
Population. The size of the lower triangular matrix (for this 
county database of 14 attributes it has 91 cells) is independent of 
number of records, but reveals much about the relationship 
among variables (http://www.cs.umd.edu/hcil/hce). 

Quadratic, sinusoidal, or exponential relationships are also of 
interest for each of the k(k-1)/2 pairs of attributes. The 
algorithms for carrying these out are scalable up to a billion 
records. 

Outliers, clusters, and gaps in two and higher dimensional 
visualizations are of great interest and can be highlighted for 
users to explore. There are a variety of outlier and cluster 
algorithms, but very few gap detection algorithms, yet these 
were very informative in our case studies with users [31]. 
Outlier detection algorithms can be scaled to a billion items 
but clustering and gap detection are problematic, so much 
work remains to be done and before even considering how to 
display the results. This idea was called scattergram 
diagnostics, or scagnostics, by the famed statistician John 
Tukey in a 1985 speech [40], but we believe that the 
Hierarchical Clustering Explorer is the first implementation 
of this idea. Proposals for further scagnostics were made by 
Wilkinson and his colleagues [43]. 
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Figure 4: Spacetree, a scalable solution for large trees, shows a 
partially expanded tree with aggregation markers that are user 
expandable (http://www.cs.umd.edu/hcil/spacetree). 

Time Series  
Time series databases can grow large in the number of time 
points or the number of time series. Environmental sensors 
may capture temperature, humidity, barometric pressure, etc. 
every minute for a year yielding 525,600 data points for each 
variable. With only a thousand sensors, there are well over a 
billion data points. Seeing even one time series would require 
aggregation to fit on a 1600-pixel wide display, but the 
methods are well understood [6, 15]. Seeing seasonal patterns 
will be easy, but sharp rises/falls over a few hours will be 
difficult. Understanding spatial relationships such as 
temperature shifts with altitude in mountainous areas or 
changes according to prevailing west-to-east winds will be 
more difficult and require a coordinated geographic view. 

Sometimes, the number of time series is large, such as if the 
thousand environmental sensor streams were broken into 
365,000 daily time series of 1440 time points each. Each time 
series fits on the display, but it is difficult to see any 
individual time series. Here aggregation by sensor or month 
would be useful, as would clustering into a smaller number 
of closely related meta-time-series. 

Tree Structures 
The ubiquity of hierarchies makes tree structures an 
important data type and the one with the most varied 
visualizations. Tree structures are conveniently organized for 
aggregation since first few levels of the tree are a natural 
representation of the full tree. For example, a major legal 
database has 100+ million documents classified into a 85,000 
node tree with 23 levels. However, frequent users are familiar 
with the first three levels of the tree that consist of less than a 

thousand nodes. Showing a node-link diagram of the 3-level 
tree is feasible with size or color coding to indicate how 
many documents are available in the sub-trees. 
A natural approach is to give user control over which nodes 
are exposed, which is the strategy in SpaceTree (Figure 4) 
[27]. Initially, the root and first level nodes are shown. Users 
can open lower levels on demand. The darkness of the 
triangles hanging from each node indicate the total number of 
nodes below, and the height indicates the number of levels. A 
similar solution was offered in DOITree [8]. 

Networks 
Drawing large networks (million nodes and more) is such a 
challenge that there is an annual Graph Drawing conference 
devoted to this problem. Recent breakthroughs have enabled 
million node visualizations to be drawn in a few seconds [20, 
21]. However, the dynamic queries that users have come to 
expect are more difficult to arrange on these visualizations, 
because redrawing with incremental changes is difficult in 
the force-directed approaches that are commonly used. 
Furthermore, scaling to a billion nodes will take some 
innovative thinking. An alternative is to draw coarse views of 
the network so users can see the main clusters, compare their 
sizes, and understand the connectedness among clusters 
(Figure 7) [44].  A related approach, used in SocialAction, is 
to compute community structures and then represent the 
communities by a single aggregate node (Figure 8) [26]. The 
current version handles 150,000 node networks, but scaling 
up to a billion nodes will require improved techniques. 

 
Figure 7: This coarsened network of 152 nodes represents a 
larger network with 46,480 nodes. The authors’s approach in 
GreenMax [44] has been tested in million node networks and 
the authors claim to be able to scale to larger networks. 

 
___________________ 

Figure 5 (next page, top): This Graphical Interface for Digital Libraries (GRIDL, www.cs.umd.edu/hcil/west-legal/gridl/) offers a 
scalable approach where each axis is an expandable hierarchy. Each grid cell shows up to 49 colored dots for documents, and shifts to 
an aggregation marker in the form of a bar chart to show the relative proportions of each document type. Clicking on a grid cell 
produces a listing of titles in the upper right window. Clicking on a title produces the catalog description in the bottom right window. 

Figure 6 (next page, bottom): Spotfire’s new On-Demand feature enables dynamic data retrieval from large databases when needed. 
In the scattergram, which shows games played vs home runs hit, each circle indicates a player (size is number of hits), which acts as an 
aggregate marker for their career data. Three players have been selected (Bonds, Ripken & Sosa) triggering a database access to 
display the lower time series showing their career time series of hits and salary. 
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Figure 8: Grouping nodes into community structures based on 
link relationships helps bring order to a small Facebook social 
network. In this small example, each community can be 
replaced by a single aggregate node, enabling scaling up to large 
databases (http://www.cs.umd.edu/hcil/socialaction). 

 

 

 

 Figure 9: A semantic substrate with the upper region for 1700 
Documents and the lower region for 2567 Keywords that are 
used for this topic (both shown as triangles). Documents are 
organized by year and Keywords by the year they were first 
used. Count indicates the number of times a keyword was used. 
Documents are linked to keywords they use. The overplotting of 
nodes and 9649 links means this diagram has little utility. 

 

By contrast the novel approach of using a semantic substrate 
to lay out the nodes in a 2D grid plot is scalable, since the 
contents of each grid cell can be represented by a metanode 
whose size is proportional to the number of nodes in that cell 
[4]. A semantic substrate consists of a set or rectangular 
regions in which nodes are places according to node attribute 
values. Each region is similar to a 2D scattergram and there 
for the multivariate data techniques described earlier can be 
applied.  

Links are drawn only on user request with a control panel 
that allows selective drawing of links to minimize clutter. 
This filtering approach can ensure that links are drawn only 
between nodes in a single region or only connecting a pair of 
regions. The NVSS implementation of semantic substrates 
(http://www.cs.umd.edu/hcil/nvss) used a gridded scatterplot 
strategy, much like GRIDL, which lends itself conveniently 
to replacing all the nodes in a grid cell with a single 
metanode (see transition from Figure 9 to Figure 10).  The 
reduction in nodes enables users to see distributions and 
greatly clarifies link visibility so users can follow links from 
source to destination more often.  

 

 
Figure 10: The same semantic substrate as Figure 9, but 
metanodes (circles) have replaced the nodes in each cell. 
Metanode sizes indicate the number of nodes they replace. 
With aggregate nodes and fewer links, plus filters on the 
outgoing links, the visualization allows relationships to be 
seen. One surprise for our domain expert partners was the 
absence of a link to the most frequent keywords (metanode in 
the 90-94 cell). Figures 9 and 10 were created using the 
Network Visualization with Semantic Substrates (NVSS) 
(http://www.cs.umd.edu/hcil/nvss). 
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DENSITY PLOT VISUALIZATIONS: COLOR CODED 
AREAS SHOW USERS WHERE TO EXPLORE 
When individual markers representing individual records fill 
a visualization, clustering strategies are useful to organize 
them into aggregate markers. A special form of aggregation 
is the density plot which uses a spatial substrate organizing 
principle, but shows concentrations of markers. This could be 
interpreted as a two-dimensional histogram (Figure 11). 

For multivariate data, two-dimensional projections with 
scattergrams are commonly used, but three-dimensional 
density plots have been developed.  
For time series data, density plots can show concentrations of 
time points. A good model is the work on cluster displays in 
parallel coordinate views (Figure 12) [13]. 
For tree structures presented in node-link diagrams a density 
plot seems viable. Figure 13 presents a mockup of what a 5-
level density plot might look like. This density plot can 
accommodate trees with arbitrarily large fan-out and depth. 
The sum of the densities at each level is 100%.  Each cell 
indicates percent of the nodes in the subtrees below. 

 
Figure 11: The scattergram from HCE (on the left) is heavily 
overplotted, but converting to a 40 by 40 grid plot (on the right), 
enables users to see the distribution density. Clicking on a grid 
cell brings up the records in that cell. 

 

  
Figure 12: Parallel coordinate shows 230,000 records in a fatal 
accident database on the left. The variable opacity bands show 
meaningful clusters on the right. 
 

Treemaps can also show density by aggregating subtree 
counts or attributes. Existing tools such as Treemap 4.0 
(http://www.cs.umd.edu/hcil/treemap) allow a color coded 
density plot that shows the number of nodes or aggregate 
values of node attributes. The user interface has a slider for 

level, so aggregations can be made dynamically for any level 
of the tree. Figure 14 shows a three-level summary of a 23 
level tree. Rendering only the first few levels of a tree makes 
this approach potentially scalable to a billion nodes. 
 

 
Figure 13: Tree density plot showing percentage of nodes in 
subtrees at each level. This mockup is designed to accommodate 
arbitrary fanout (medial split to left and right at each level) and 
arbitrary depth (level 5 summarizes lower levels). It shows that 
2 of the 16 subtrees at level 5 contain most of the remaining 
nodes. 
 

 
Figure 14: A treemap density plot showing a 3-level summary of 
gene expression data for a 23-level tree with 22,995 nodes. Red 
areas indicate high activity, green low activity. This treemap 
was generated using the gene ontology and gene expression data 
(http://www.cs.umd.edu/hcil/treemap). Red areas show high 
activity in the development subtree of the biological processes 
and signal transducer subtree of molecular function. 

 

CONCLUSION 
The benefits of visual exploration are increasingly well 
understood, raising expectations of users who want to 
explore ever larger databases. Gigapixel displays will be 
useful for some tasks, but innovative interface design is 
likely to have higher payoffs and wider usage. Current 
atomic visualizations build on pixel-based representations, 
filtering to show subsets, and zooming to focus on areas of 

10



interest. Meaningful aggregate visualizations show the 
greatest promise because they promote sense-making while 
keeping display complexity low. Aggregation markers, 
which can represent thousands of records, can be organized 
and presented so as to suggest where users should click. 
When they click, the aggregation markers can open in place 
or present their contents in a coordinated window that might 
have an entirely different representation. Density plots offer 
some fresh possibilities, especially for statistically minded 
users. It seems that databases systems will follow the path of 
operating systems. Most operating systems users have shifted 
from command line interfaces to graphical user interfaces, 
greatly expanding the audience for computing. Similarly, the 
narrow community of database query language users will 
expand greatly as effective visualization interfaces enable 
rapid and comprehensible access to large databases. If strong 
collaborations can be arranged between information 
visualization and database management researchers and 
implementers, then the use of billion record visualizations 
could become widespread. 
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