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1 Abstract 

The era of “big data” promises more information for health practitioners, patients, researchers, 

and policy makers.  For big data resources to be more than larger haystacks in which to find 

precious needles, stakeholders will have to aim higher than increasing computing power and 

producing faster, nimbler machines. We will have to develop tools for visualizing information; 

generating insight; and creating actionable, on-demand knowledge for clinical decision 

making. This chapter has three objectives: 1) to review the data visualization tools that are 

currently available and their use in oncology; 2) to discuss implications for research, practice, 

and decision making in oncology; and 3) to illustrate the possibilities for generating insight 

and actionable evidence using targeted case studies. A few innovative applications of data 

visualization are available from the clinical and research settings.  We highlight some of these 

applications and discuss the implications for evidence generation and clinical practice.  In 

addition, we develop two case studies to illustrate the possibilities for generating insight from 

the strategic application of data visualization tools where the interoperability problem is 

solved.  Using linked cancer registry and Medicare claims data available from the National 

Cancer Institute, we illustrate how data visualization tools unlock insights from temporal event 

sequences represented in large, population-based datasets.  We show that the information 

gained from the application of visualization tools such as EventFlow can define questions, 

refine measures, and formulate testable hypotheses for the investigation of cancer-related 

clinical and process outcomes. 
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Data Visualization Tools for Investigating Health Services Utilization among 

Cancer Patients 

“The greatest value of a picture is when it forces us to notice what we never expected to 

see.” 

 —John Tukey, American Mathematician(1) 

 

1 Introduction 

1.1 Background 

One of the promises of an informatics-infused health care system is the ability to extract 

meaning from large volumes of data for the purposes of improving the quality of care delivery 

and for generating new knowledge. Schilsky and Miller illustrate this case aptly in the first 

section of this book, as they described a vision for how to leverage informatics data from 

oncology practices into focused feedback for quality improvement. Likewise, Penberthy, Winn, 

and Scott presented a vision in their chapter for how electronic health record (EHR) data could 

be used to complement electronic pathology reports and other types of cancer registry data to 

offer a more complete view of cancer incidence and progression in the general population.  

Unlocking the knowledge embedded within these massively distributed data streams in 

cancer, however, will require continual progress within the interdisciplinary scientific area of 

data visualization. Specialists in oncology informatics can benefit from advances in data 

visualization to make decision making more efficient, to improve systemic outcomes within 

hospitals and their communities, to engage patients more effectively in their own care, and to 

facilitate exploration of patterns and trends for hypothesis generation in research. Fortunately, 

advances in our understanding of how the human perceptual system works (see the chapter by 

Horowitz and Rensink), combined with advances in our understanding of how to construct more 
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efficient computer interfaces to support those processes, will put informaticists in good stead as 

we prepare for active participation in the “learning oncology system.” (2).    

1.2 Purpose of the Chapter 

This chapter investigates the possibilities for generating insight and evidence from the 

strategic application of data visualization tools. While the era of “big data” promises more 

information for practitioners, patients, researchers, and policy makers, there is limited guidance 

for analysts about how to leverage the availability of such data. A few key questions must be 

addressed in order to turn the data into evidence: “How well do we extract insights from the 

information that is currently available?” “Are we prepared to gain insight directly from the 

information that is available in massive data sets?” “How well do we leverage longitudinal 

information that is available?” For big data resources to be more than larger haystacks in which 

to find precious needles, stakeholders will have to aim higher than increasing computing power 

and producing faster, nimbler machines. We will have to develop tools for visualizing 

information; generating insight; and creating actionable, on-demand knowledge for clinical 

decision making. 

The White House press release (March 29, 2012) on the national Big Data Initiative 

identified two challenges, one of which we address directly in this chapter: 1) Develop 

algorithms for processing massive, but imperfect data and 2) Create effective human-computer 

interaction tools for visual reasoning. These well-crafted challenges position data visualization 

solidly on the national agenda. Three roles of data visualization address the White House 

challenges and clarify human participation:   

1) Cleaning the often error-laden data. Consider the case in which statistical analyses of 

6,300 emergency room admission records had failed to account for the eight patients who 

were entered into the EHR system as being 999 years old. Information specialists will 
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recognize this as a code for "age unknown," but the programs that calculated ages of 

admitted and discharged patients accepted this as a normal value, thereby distorting the 

results. A simple bar chart of the ages would have led any viewer to gasp with surprise. 

This example illustrates a proof of concept and there are an unlimited number of errors 

that may be missed by algorithms but spotted by experts, such as the patient who was 

admitted to the emergency room 14 times but discharged only twice. A quick glance at 

an appropriate visual display enables analysts to confirm the expected and detect the 

unexpected, especially errors. 

2) Supporting exploration and discovery. Analysts typically begin with questions about 

their data, leading them to choose a particular visualization, such as line charts, size and 

color-coded scattergrams, maps, networks, and more sophisticated strategies. These 

analysts may immediately spot surprises or errors, but typically they split a data set to see 

men or women in separate displays, then group by age or race, and maybe focus on 

patients diagnosed at a later stage of cancer. Insights can lead to bold decisions regarding 

cancer-directed treatment receipt, treatment initiation, treatment continuation, and 

management of comorbid conditions. 

3) Presenting results. In many cases, the results will be of interest to national leaders, 

health industry decision makers, and news media viewers. The more critical challenge 

with big data is to distill millions of health care data into a few cogent visualizations to 

guide proximal decision makers including clinicians, patients, and the patients’ 

caregivers. 

1.3 Human Systems Integration 

The perspectives and work presented in this chapter are guided by a collaborative 

working relationship between the University of Maryland School of Pharmacy’s Department of 
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Pharmaceutical Health Services Research and the Human Computer Interaction Laboratory 

(HCIL).  Work in the HCIL, in turn, represents an interdisciplinary approach to system 

development based on contributions from the College of Computer, Mathematical, and Natural 

Sciences and the College of Information Studies at University of Maryland College Park.  The 

purpose of this overall collaborative relationship is to bring a “human-systems integration” 

approach to the practice of informatics-supported medicine (3, 4).  That is, the purpose is to 

design systems – in the case of this chapter, data visualization tools – that use computing power 

to augment and enhance the highly trained expertise of cancer epidemiologists, oncology care 

teams, health services researchers, and biomedical scientists.  It builds on one of the core 

principles of the National Research Council’s 2009 report on “Computational Technology for 

Effective Health Care,” which was to design systems that provide improved cognitive support to 

care teams, administrators, patients, and their caregivers for the purpose of enhancing outcomes.  

Within the context of this chapter, the human system integration approach facilitates the 

development of tools designed for parsing data to generate insight and actionable knowledge, 

particularly when paired with well-articulated, clinically-motivated questions. As data 

availability grows, it becomes more important to develop methods and approaches for 

connecting humans with these data sources and systems.   

The current health information technology systems are ill-suited to establish and 

maintain these connections and continuously inform patient and provider decision making. As 

noted by Dimitropoulos, health care systems should be data-driven, patient-centered, and 

continuously improving (5). For health care systems to effectively inform, influence, and 

interact with patients, it will require integrating systems that are not currently or widely blended 

such as hospital, outpatient, pharmacy, and dental systems. As research highlights the 

importance of holistic cancer care, the role of psychosocial cancer care, a link between 



Onukwugha,	Plaisant,	Shneiderman	 Page	8	

 

comorbidity (chronic disease) and cancer outcomes, as well as a link between dental health and 

chronic disease, we can no longer afford to deliver cancer care using fragmented care systems. 

Throughout this section, we emphasize the importance of leveraging big data and making full 

use of the longitudinal information available in these data to develop actionable evidence based 

on human interactions with these data based on review, analysis, synthesis, and discussion.  

1.4 Chapter Objectives  

This chapter section has three objectives: 1) to review the data visualization tools that are 

currently available and their use in oncology; 2) to discuss implications for research, practice, 

and decision making in the field of oncology; and 3) to illustrate the possibilities for generating 

insight and actionable evidence using targeted case studies. The case studies investigated here 

illustrate the possibilities for research and clinical decision making in situations where the 

interoperability problem is solved. 

2 Methods and Data Visualization Tools 

There are several different techniques and tools that may be applied to visualizing 

various types of data sets. This section reviews available techniques and discusses their 

strengths, weaknesses, and applications to cancer research and practice. The case studies in 

Section 4 focus on the use of two different prototypes of control panels (6) as visualization tools 

for generating insights from observational data sets including information about individuals 

diagnosed with cancer. 

2.1 Techniques   

One of the most common techniques for visualizing statistical data within the cancer 

epidemiological context is the use of Geographic Information Systems (GIS) to portray the 

distribution of a measured variable on top of an identifiable map, and one of the most common 

uses of GIS is to create choropleth maps. Brewer described choropleth mapping as a way to 
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visualize data relating to regional geographical locations and divisions such as state lines and zip 

codes (7). Choropleth maps provide policy makers and health officials with a situational 

awareness of the disease processes that may be at play within their jurisdictions. In some cases, a 

high incidence of certain types of cancer among a group of people within an identifiable 

geographical area may signal a public health emergency, known as a “cancer cluster,” and might 

therefor require immediate environmental investigation. In other cases, a high incidence of late 

stage disease within certain areas may imply that vulnerable populations are falling outside of 

the reach of recommended public health primary and secondary prevention measures. 

Choropleth mapping can also give cancer control planners insight into how certain policies, such 

as cigarette taxes or indoor smoking prohibitions, may be associated with decreases in 

preventable disease, such as decreases in lung and bronchus cancers. 

Symbols, colors, proportional symbols, icons, and textboxes are all commonly used 

elements within choropleth mapping. Basic cartographic symbols, such as solid lines depicting 

geopolitical boundaries or icons depicting identifiable landmarks, can provide a sense of 

consistency for analysts and an anchor for interpreting the underlying data patterns. Patterns or 

colors within the geographic units portray levels of the mapped data, which may represent an 

epidemiologic variable such as prevalence or mortality, or it may portray some type of 

demographic characteristic. Colors may be utilized to represent data and hierarchy based on hues 

or lightness (7), or they may also be used to stress extremes in data, drawing attention away 

from more average results colored in white (8). For example, darker hues generally suggest a 

higher frequency, percentage, or magnitude of the underlying variable in a choropleth map. 

Looking at the mortality maps presented at the National Cancer Institute’s (NCI’s) Surveillance, 

Epidemiology, and End Results (SEER) website, readers can see how darker hues depict higher 

incidences of cancer-related mortality across cancer sites. When considering color choices, 
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however, investigators must keep the medium of their visualization in mind as the color’s 

appearance and impact may vary between print, Internet, or presentations (8). 

An alternative to using colors or patterns within a choropleth map is to use proportional 

symbols. Proportional symbols are usually geometric shapes, such as circles or triangles, which 

vary in size according to the magnitude of the underlying variable. Symbols of a larger size 

generally depict a greater underlying quantity than symbols of a smaller proportion.  

Proportional symbols may also be used outside of the context of GIS display to juxtapose 

magnitudes in more of a categorical sense. Figure 1 illustrates how the Centers for Disease 

Control and Prevention (CDC) used proportional circles to portray the relationship between 

some infectious agents and some cancers. Icons (with appropriately crafted legends) and text 

boxes are often needed to complete the reader’s interpretation of the data and to facilitate 

general sense-making when working with interactive graphs. Because a user’s gaze generally 

orients to the center of a graphic, it is often useful to place icons and textboxes in a central 

location (9). 

<Insert Figure 1 About Here> 

For some purposes, choropleth maps and other data visualization tools may need to 

portray values from more than one variable.   To represent multiple variables, Brewer suggested 

using one or a combination of the following techniques: overlaying symbols, overlaying 

patterns, creating series, or combining variables (7). Colors, bands, and customizable icons are 

often used to represent categorical data, while numerical data is often shown with line plots, 

point plots, and bar charts. Other visualization techniques may also be applied to data to allow 

investigators to see trends more clearly such as pan and zoom; animation; filtering; brushing; 

and linking of different views of the same data, matrices (10), and rate smoothing (11). 
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Another technique that is commonly used in data visualization is data stream clustering; 

that is, using a clustering algorithm to reduce the dimensionality or noise associated with high 

frequency data streams. Chauhan, Kaur, and Alam explained how data clustering may be applied 

to identify and explore data patterns (12). Hierarchical algorithms are often employed, with 

either an agglomerative (i.e., bottom-up, starting with data points and building clusters) or 

divisive (i.e., top down, beginning with one overarching cluster and then dividing) approach, and 

clusters may either be density-based or grid-based. Density-based clustering techniques, such as 

Density Based Spatial Clustering of Applications with Noise (DBSCAN), Ordering Points to 

Identify the Clustering Structure (OPTICS), and Clustering Based on Density Distribution 

Function (DENCLUE), form clusters from density distributions directly on databases. On the 

other hand, grid-based techniques, such as Sting, Wave Cluster, and Clique, cluster statistical 

data on a uniform grid. Data classing, or use of class breaks, is another common method used for 

developing choropleth or GIS maps (7). Data are typically grouped by quantiles, standard 

deviation, size, equal intervals, or natural breaks (8). 

There are several other techniques that may be utilized for data visualization. Vellido et 

al. touched upon the use of directed graphs, which allow for the visualization of covariates and 

their relationships, and hierarchical visualizations, which provide detailed information about 

relationships between and for different hierarchical levels (13). Map projections are utilized to 

represent a given geographical area, taking into account the spherical curve of the earth (7). 

Neural networks, such as Self-Organizing Map (SOM), may be used for non-linear projects to 

“project high dimensional, time-varying information in 2D maps that correlate with diagnostic 

features” (13), while proximity networks form links between molecular information, pathways, 

and graphs. Community Health Map allows researchers to easily explore and visualize state and 
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county health patterns (14). GIS maps are important data visualization tools, as they allow 

participants’ behaviors or characteristics to be linked with particular geographic factors (15). 

2.2 Software Systems 

Incorporating various combinations of the techniques above, many systems have been 

developed to visualize data. The Hierarchical Clustering Explorer (HCE) has a rank-by-feature 

framework that allows researchers to choose ranking criteria and visualize results in one-

dimensional (histograms) or two-dimensional (scatterplots) projections (16). A software system 

called Caregiver is a tool that assists with therapy-related decisions through visualizations of 

general patient overview, patient cohorts, and individual patients (10). InfoZoom is a system that 

ensures displays of data sets will always fit on the selected screen in the form of compressed 

tables (10, 17). VisPap incorporates both medical images and laboratory data into its scatter 

plots and parallel coordinate plots, and the Cube uses EHRs to interactively identify and analyze 

of patterns with two-dimensional parallel planes in a three-dimensional cube display (10, 17).  

Many systems have been developed to generate and/or base analyses on temporal 

abstractions. Moskovitch and Shahar  described the KarmaLegoSification (KLS) framework that 

allows for the analyses of multivariate time series through temporal abstraction, time intervals 

mining, and pattern classifications (18). The Medical Information Visualization Assistant 

(MIVA) provides a visualization of the numerical value progression of point plots over a period 

of time (10). Interactive Parallel Bar Charts (IPBC) is an interactive system that simultaneously 

analyzes time-series and its associated values from multiple patients as well as sessions (10, 17). 

Lifelines is a system that illustrates historical data and events from EHRS and allows for 

aggregation of sets of events (10). Lifelines2 allows researchers to specify queries with event 

operators and align records by events (10, 19). The Similan system can also align records, but 

uses a similarity measure to take into account “addition, removal transposition of events and 
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temporal differences” (10). Building upon these point-event data projects, EventFlow allows 

researchers and clinicians to interactively visualize and analyze patterns of medication use from 

health systems’ EHRs (19). 

Another type of system is KNAVE II, which utilizes knowledge-based temporal 

abstraction and allows researchers to interactively visualize and explore temporal abstractions 

and patterns for single or small sets of electronic health data (10, 17). Building upon KNAVE II, 

Klimov et al. developed the VISualization of Time-Oriented recordS (VISITORS) system used 

for the visualization of multiple patient records. It is able to search and aggregate numerical and 

categorical data from both raw and abstracted data (17).  

Several proposed systems are currently being developed. Goovaerts described a 

geostatistical simulation that uses Poisson kriging, p-field simulation, and local clustering to 

generate risk maps that are more realistic than those formed using solely smoothing methods 

(20). West, Borland, and Hammond developed two additional prototypes to explore and analyze 

large data sets through visualization: 1) the radial-coordinates visualization tool incorporates 

many techniques including colors, lines spreading, parallel and radial coordinates, histograms, 

and scatter plots, to allow investigators to visualize clusters, data distributions and individual 

data sets; and 2) the force-directed network visualization tool uses proportional symbols, links, 

and nodes to explore queries made from particular elements of EHRs (21). 

Harford, Edwards, Nandakumar, Ndom, Capocaccia, and Coleman described a “cancer 

atlas” system derived from India’s Internet-based registry that brings many of the techniques 

discussed at the beginning of this section into use within a global cancer control context (22). 

The system, referred to as GDB Compare, allows international users to make comparisons 

between countries on the global disease burden. As illustrated in Figure 2, the system allows 

international users to select filtering options on the left side of the screen for two coordinated 
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visualizations. The treemap at the top of the screen represents a type of hierarchical clustering 

technique while the map at the bottom represents a choropleth mapping technique based on 

countries as geographical units. The treemap clusters based on all causes of death, with the size 

of the rectangle corresponding to the number of deaths and the color hue signifying change over 

time. Darker hues signify a worsening changing for the cause while lighter hues suggest an 

improving condition. The overarching color palette for the treemap breaks causes into chronic 

conditions (blue), infectious disease (brown), and injury (green). The color spectrum used for the 

choropleth map at the bottom of the screen ranges from dark blue to dark red, with blue 

signifying low numbers of death and red signifying high numbers.   

<Insert Figure 2 About Here > 

2.3 Strengths and Weaknesses of Available Tools 

2.3.1 Strengths of Available Tools 

The methods described above have varying advantages. Similar to how different hues 

allow observers to easily distinguish variance, map series allow users to recognize patterns 

easier through contrasts between maps. Overlay allows observers to readily identify unreliable 

data in a particular region, while map projections provide appropriate views of the geographic 

distributions of diseases (7). The rate smoothing technique Kafadar described not only mitigates 

problems that come with utilizing multiple sources, but it also allows investigators to 

temporarily overlook certain patient characteristics to better visualize patterns (11). When 

considering the advantages of density-based clustering, DBSCAN does not require significant 

information to identify inputs, and OPTICS is able to automatically determine the necessary 

number of clusters from data sets. On the other hand, grid-based clustering allows for fast 

processing time (12). 
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Furthermore, temporal abstractions overcome challenges such as varied frequencies, gaps 

in data, and working with both time points and intervals (18).  EventFlow allows for easy-to-use 

interactive visualization, event overlapping, and pattern identification (19). InfoZoom enables 

researchers to identify hidden knowledge, and the Lifelines system provides ease of use and 

access, along with the ability to zoom in and out (10). The VISITORS system has several 

strengths. First, it captures data for multiple patients and allows for time and value analysis of 

clinical data. VISITORS also allows researchers to quickly and accurately answer clinical 

questions utilizing these temporal abstractions and clinical information (17). 

One of the strengths of the radial visualization system prototype designed by West et al. 

is its ability to utilize numerous techniques to clearly organize data and clusters without 

muddling the visualization (21). It is also able to display many different data distributions 

through multiple axes.  

2.3.2 Weaknesses of available tools 

It is also important to recognize the weaknesses that visualization methods may have. 

Utilizing colors becomes a disadvantage when considering individuals with color blindness or 

color distinguishing deficiencies. Brewer also explained that maps, in general, have several 

weaknesses such as misleading titles, technological difficulties with sharing maps, and skewed 

judgement of densities on map projections (7). Bhowmick, Griffin, MacEachren, Kluhsman, and 

Lengerich found that cancer researchers often face limited data, difficulty in merging data, time-

consuming steps, and overly complex software when employing GIS or other spatial analysis 

software (23). 

Additionally, West et al. explained that different patterns and interpretations may be 

concluded from alternate views of the same forced-directed network visualization (21). 

Likewise, James et al. pointed out that analyses and spatial outcomes may vary greatly, 
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depending on the different techniques investigators may choose to adopt (8). For example, there 

are several approaches to establishing cut points; applying Jenks algorithm (24) would cluster 

data based on their natural breaks, while standard deviations would result in clusters that may be 

more sparsely dispersed. Clustering techniques have several other disadvantages. It may not take 

into account the uncertainty associated with predicted risk (20), and different approaches to 

organizing clusters may result in varied interpretations (13). Density-based clustering systems 

are flawed as well. For example, DBSCAN may not be entirely sensitive to all inputs, making it 

difficult to recognize clusters that are closely related. On the other hand, grid-based clustering is 

not ideal for irregularly distributed data, as it may not be able to fully capture the cluster quality 

or time (12).  

There are drawbacks to other systems as well. The Caregiver system does not follow 

patients’ development over time (10). Users need a degree of statistical knowledge to easily and 

successfully use the HCE system (16). Vellido et al. discerned that a disadvantage with the 

Growing Hierarchical Self-Organizing Map (GHSOM) is that investigators would not be able to 

visualize information from each hierarchal level at the same time (13). Other techniques, such as 

directed graphs and proximity networks, have not been well developed. Similarly, several 

visualization tools are still just developing prototypes (21) or theoretical systems (13, 23). 

Of the remaining systems previously discussed, Klimov et al. noted that KNAVE II is not 

an ideal system for large data sets (17). Because the TimeFinder system is based on time-

oriented data, it is not able to focus on a specific set of subjects. Contrarily, Spotfire, SimVis, 

and Lifelines lack the ability to incorporate or produce high level abstractions such as those 

focused on time (25). Lifelines2 and Similan are based on point events rather than time intervals; 

do not distinguish between data from tests, diagnoses, or treatments; and are not able to display 

individual record details (10). 
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3 Applications of data visualization in the cancer setting 

3.1 Basic Cancer Science 

Visualization has long been used to complement algorithmic analysis in the basic 

sciences underlying cancer research. This has been especially true in areas such as genomics in 

which the amount of raw data to explore for hypothesis generation is simply too large and 

cumbersome to portray through individual vectors of raw values. The expansive genomic data 

space lends itself to an exploration of relationships through data visualization. Figure 3, for 

example, depicts a visualization of whole-genome rearrangements using the Circos software 

package for visualizing data relationships in a circular layout. Circos was developed to give 

scientists the ability to explore relationships between objects, such as chromosomes and other 

genomic elements, their size, and orientation in relationship to each other (26). In Figure 3, the 

outer ring of the circular graph depicts chromosomes arranged in sequential order from end to 

end, while the inner ring displays copy-number data in green and interchromosomal 

translocations in purple for two different tumors. The Circos data visualization package can 

produce charts with high “data to ink” ratios (27), making the format a highly efficient 

mechanism to explore relationships in a big data context. 

<Insert Figure 3 About Here> 

3.2 Population Statistics 

Aside from using advanced techniques for research purposes, another compelling reason 

to create data visualization tools is to make the complex incidence and prevalence statistics 

associated the national surveillance of cancer trends accessible to journalists, policy makers, and 

the public (9). For example, the American Cancer Society (ACS) collaborates with the CDC and 

NCI to publish an annual compilation of “Cancer Facts and Figures” (28) as a report card on the 

nation’s collective progress against cancer. The report breaks out data from the cancer registries 
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and other surveillance mechanisms to enumerate trends over time, to explore prevalence and 

mortality as broken out by sociodemographic groupings, and to make distinctions in progress 

between variants of the disease. These visualizations have employed some of the standard 

variants of charts and graphs already familiar to most audiences – such as the elements 

associated with line charts, bar graphs, and pie charts – but more recently have employed new 

innovations such as the graphical depiction of quantities and numerical trends.   

A more recent innovation in communicating to the public, made feasible by diffusion of 

dynamic HTML/web technologies, is the use of publicly facing informatics tools to present 

interactive data displays for local customization and exploration. Figure 4 presents an image of 

the U.S. Cancer Statistics Interactive Atlas website hosted by the CDC. This data visualization 

tool allows analysts to interact with the control box on the left to filter data based on cancer 

event (e.g., incident rate, death rate); cancer site (e.g., lung and bronchus, colon and rectum); 

gender; race/ethnicity; year; and classifying statistic (e.g., quintiles). Results are portrayed on a 

choropleth map at the top center of the screen. A choropleth map uses shading or patterning to 

fill in geographic areas on a map (e.g., states or counties) according to levels of an analytic 

variable. In this case, the absence of coloring within states indicates an absence of reportable 

data. Lighter shading indicates a lower value on the outcome variable, while darker shades 

indicate higher values. Clicking on a state will indicate the ranking of its values within the 

context of all states’ values portrayed graphically within the box at the bottom of the page. The 

precise numeric values with accompanying confidence intervals are listed in a table on the right, 

while a player bar in the upper right allows the user to explore trends over time. 

< Insert Figure 4 about Here > 

More generally, GIS systems are used in the cancer setting to examine data quality (23) 

and to investigate the association of cancer with socioeconomic, genetic, or environmental 
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factors (7), as they may play a role in the development of cancer. For example, Finney-Rutten et 

al. (29) explored the use of isopleth maps to investigate the distribution of cultural norms and 

behaviors related to smoking cessation using nationally available data from NCI’s Health 

Information National Trends Survey (HINTS) (30). Unlike choropleth maps, which display data 

by filling in geographic units such states or counties with the same shade of color or patterning, 

isopleth maps portray gradual patterns of change across predefined borders. Weather maps and 

topographic maps are good examples of isopleth mapping techniques. The isopleth maps for the 

behaviorally oriented HINTS data illustrated for cancer control planners how beliefs and their 

concomitant actions can cluster in geographic communities. These maps illustrated how beliefs 

in the scientific linkage between smoking and cancer were weakest along the Appalachian ridge, 

which when juxtaposed against the SEER choropleth maps for cancer incidence and mortality 

corresponded to high cancer mortality rates from lung and bronchus cancer. 

Similarly, Chauhan et al. describe the use of DBSCAN, OPTICS, and DENCLUE to 

visualize cancer clusters using data from two large databases: GLOBOCAN from the 

International Agency for Research on Cancer and SEER from NCI (12). SimVis interactively 

classifies and clusters data from clinical trials and examinations, and visualizations such as 

caMATCH have been used to identify potential clinical trial patients (14, 15). Spurred by 

examples such as these, the White House initiated a government-wide effort to make health data 

from all of the national surveillance programs available to data scientists for the development of 

usable, transparent interfaces for community planning. On July 10, 2014, the U.S. Department of 

Health and Human Services included open access to large scale, health-related databases as an 

integral part of its Open Government Plan. Examples of open-access data sets, and the data 

visualization tools being created to access them, can be found at HealthData.gov. 



Onukwugha,	Plaisant,	Shneiderman	 Page	20	

 

To understand how these new data visualization tools are being utilized in the cancer 

space, Bhowmick et al. interviewed cancer researchers to identify what aspects of spatial 

analysis they often employ or consider most useful and suggest features useful for cancer data 

visualization (23). The authors observed that cancer control researchers proceed methodically 

through three phases: 1) a pre-analytic phase in exploring and repairing attributes of a given data 

set; 2) a conceptually exploratory stage, in which scientists explore the nature of preliminary 

associations; and 3) an analytic phase, in which population estimates are generated, spurious 

associations are appropriately controlled statistically, and specific conclusions are drawn. What 

is produced in the analysis phase is then readied for publication. From their interviews, the 

authors noted that tables and maps are used both in the early exploratory phases of cancer 

research as well as in the later publication process. 

3.3 Clinical Applications 

As EHR systems become more powerful and greater attention is given to optimizing the 

use of data for predictive, preemptive, personalized, and participative care (31), then the use of 

data visualizations within the EHR interface will become more important for allowing analysts 

to quickly assimilate large amounts of data for clinical purposes. Figure 5 shows a sample screen 

of a urology EHR system, summarizing the record of a patient with prostate cancer, and using a 

design similar to early research on Lifelines (32).   In this example, the attending clinical team is 

given the ability to view the rise and fall of Prostate Specific Antigen (PSA) levels before and 

after treatment. The approach typifies an area of human system integration research aimed at 

using informatics tools to create better visualizations of temporal patterns to track the course of 

treatment over time (33, 34), and to reduce discontinuities in care from missed prescriptions (19) 

or laboratory results (35). Visualization techniques can also be used at the individual patient 

level to improve the effectiveness and efficiency of medication reconciliation tasks (36). 
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< Insert Figure 5 about Here > 

When large collections of cancer patient records are available, looking for temporal 

patterns of treatment, side effects or outcomes become possible, and visualization can reveal 

possible linkage to population attributes such as age or gender (Figure 6). Systems such as 

EventFlow (see case study of Section 4) or VISITORS (17) may be used to quickly answer 

clinical questions. The program VisCareTrails has been to analyze cancer case studies using 

EHR data. The Cube extracts data from EHR, and VisPap utilizes medical images and laboratory 

data to interactively visualize patterns (10). Simpao and colleagues demonstrated how a visual 

analytics dashboard in a pediatric hospital’s EHR system can be used to optimize drug-drug 

interaction alerts. (37) 

< Insert Figure 6 about Here > 

Looking at systems that are currently in place to extract cancer data from EHR and 

pathology reports, Forman et al. discussed E-path, caBIG’s Cancer Text Information Extraction 

System (caTIES), and MediClass(15).  Information from these databases, in conjunction with 

data visualization tools described in Section 1 may then be used to explore and analyze cancer 

trends.  

Several approaches may not have been applied in the cancer setting yet, but have been 

effectively used to visualize data in other similarly complex situations. Augmented Interactive 

Starfield Display uses point plots to display blood glucose readings, while the web-based 

interactive visualization system (WBIVS) uses data from home monitoring systems to display 

lung transplant patients’ data. Used in intensive care settings, Midgaard “integrates the display 

of numerical data with graphical representations of medical treatment plans” (10).  

Moving forward, visualization systems and programs continue to be developed and 

incorporated into the cancer setting. 
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4 Case Studies 

Case studies provide an ideal framework for illustrating the insights that are possible 

with these tools. Via targeted case studies, we investigate the utility of two tools, EventFlow and 

Cohort Comparison (CoCo) that are ideal for investigating longitudinal event sequences. The 

case studies illustrate the purposeful integration of data visualization and observational data to 

address questions that are relevant for clinical practice. Using linked cancer registry and health 

care claims data, we investigate the timing of treatment initiation and health services utilization 

following the diagnosis of late-stage cancer.   

4.1 Introduction to EventFlow and CoCo 

EventFlow (Figure 7) allows analysts to understand the temporal features and prevalence 

of the patterns found in a cohort of patients. Figure 7 illustrates dummy data representing 29 

men diagnosed with cancer. We use a small sample for clarity of presentation. On the right the 

timeline shows details of individual records. Triangles represent events. The records have been 

aligned by the cancer diagnosis date (green event). Users would need to scroll to see all 29 

records. In the center, the overview aggregates groups of records with the same sequence of 

events into horizontal (gray) block stripes that include colored vertical bars representing each 

event. Within each horizontal block stripe, the height of the vertical bar is determined by the 

number of patients in the group and the horizontal gap between events is proportional to the 

average time between events. Reading from the left we can see that all records start with a 

cancer diagnosis. We can then see the different sequences of treatment with luteinizing 

hormone-releasing hormone (LHRH) (purple) and radiation therapy (brown). The most common 

first treatment is the LHRH. The second most common is radiation therapy and we can see that it 

occurs earlier on average than LHRH as the distance from green to brown is shorter than the 

distance from green to purple. 
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<Insert Figure 7 about here> 

The two views (overview and timeline) are coordinated so that when users select records 

in one view they are highlighted in the other view. The timeline shows the sequencing and 

timing of therapy for individual patients. EventFlow also includes two separate search interfaces 

including an advanced graphical user interface that makes it possible for analysts to specify 

complex temporal queries including temporal constraints and the absence of events (38) (e.g., 

men who did not receive LHRH within 6 months of diagnosis), or search and replace (25). The 

combination of those techniques (39) allows analysts to sharpen the focus of an analysis on 

records exhibiting particular event sequences of interest, e.g. considering skeletal complications, 

analysts could investigate the occurrence of pathological fracture followed by bone surgery then 

palliative radiation to the bone (RtB). 

The second tool, CoCo, (see Figure 8) facilitates the identification of salient differences 

between the temporal patterns found in two separate cohorts of men diagnosed with prostate 

cancer and identified from the SEER registry data linked with Medicare claims data. In Figure 8, 

we compare a cohort of 474 stage IV M0 prostate cancer records to a cohort of 2,470 stage IV 

M1b (bone metastatic) prostate cancer records in the 3 months following diagnosis. In pilot 

work, we proposed an initial taxonomy of metrics (such as differences in the prevalence of 

events, sequences or subsequences of consecutive events, co-occurrence of events, duration of 

gaps between events, event attributes, etc.—to be refined during the study) (40). For each 

metric, CoCo computes a series of statistical tests and presents the results using an interactive 

user interface. This is a novel approach that combines both statistical methods and a visual 

representation of the results and encourages rapid hypothesis generation. Users are provided 

with a set of metrics they can choose from (bottom left), and then review the results of the 
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visualization in the bottom right. Based on our early user tests we find that analysts can usefully 

incorporate insights from CoCo and EventFlow (41). 

<Insert Figure 8 about Here> 

4.2 Application #1: Algorithm Development Using Claims Data 

This case study illustrates an approach that combines the billing information found in 

claims data with key longitudinal information regarding the timing of health services utilization 

to isolate probable radiation to the bone.  Clinical providers and researchers need reliable 

measures in order to identify treatment receipt and its consequences. Claims data are used to 

identify treatment and associated consequences in large populations.  However, claims-based 

algorithms used to infer conditions and treatments are error-prone, unless validated, and better 

algorithms are needed. Research on the development of claims-based algorithms relies on the 

ability to unlock the rich but incomplete data found in the temporal sequences of events that are 

available in claims data.  However, research on algorithm development has been limited by the 

lack of a clearly-defined approach for unlocking the rich data in temporal patterns and sequences 

that are available in claims data. These patterns can be first order (e.g., interval between events) 

or second order (e.g., patterns of intervals over time for each patient and across patients) in 

nature. The first-order events are easily summarized and analyzed using standard statistical 

methods while the second-order events, as we found out when using standard statistical analysis 

software, cannot be summarized using standard statistical tools. Another challenge is selecting 

from competing alternatives to identify the temporal components that are most useful in the 

algorithms. 

Studies using claims data have documented increased mortality and costs associated with 

bone metastasis (BM) and BM-related complications (42-46). However, their utility is limited by 

the fact that the claims algorithms are not validated, are differential (47) (e.g., misclassification 
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of metastasis using claims data varies with patient characteristics that also associate with 

survival), inaccurate (48-50), and can lead to biased conclusions regarding survival (47). Cooper 

et al. (51) examined the use of Medicare claims data for identifying the stage of prostate cancer, 

and found that billing codes had a 78.2% and 72.8% positive predictive value (PPV) for regional 

and distant prostate cancer, respectively when compared to medical records. Hassett et al. (48) 

studied billing codes as indicators for recurrence of prostate cancer after definitive local therapy 

and reported a maximum  PPV of 19%. Results are not unique to prostate cancer. Chawla et al. 

(47) reported that claims data had a PPV of 65.8% for identifying a diagnosis of distant breast 

cancer compared to SEER registry data.  

Previous studies have identified patients with BM based on the presence of a diagnosis of 

“secondary malignant neoplasm of bone and bone marrow” (International Classification of 

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) 198.5) in claims data. These 

claims-based algorithms differ in their use of the ICD-9-CM codes. Several studies have defined 

BM patients as persons with two or more claims encounters including 198.5 anytime on or after 

the date of the first claim with a diagnosis of cancer (45, 46, 52). Other studies have defined BM 

patients as persons with at least one inpatient claim with the 198.5 code, at least one outpatient 

claim with the 198.5 code paired with a code for procedures used to diagnose/treat BM, or at 

least one outpatient physician evaluation and management claim with the 198.5 code (43, 44). 

Our published results (53) indicate that the approach to measuring BM can impact validity. 

Reliable identification of BM is critical for identification of the appropriate clinical 

subpopulation to study BM complications including RtB. Billing codes available in claims data 

do not provide information regarding the anatomic site that was treated with radiation therapy. 

In the absence of these codes, researchers use the BM ICD-9 diagnosis code to identify a BM 

diagnosis based on claims and then define RtB based on radiation claims occurring after the BM 
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claim (43-45). The validity of this approach depends on the validity of using BM ICD-9 

diagnosis codes to identify a BM diagnosis, a practice which is likely to be unreliable given 

prior results (48-50) regarding the low sensitivity and PPV of claims-based algorithms to 

identifying metastasis. In our work, we have found that the duration of radiation therapy can be 

useful for distinguishing between RtB and radiation to other sites for cancer treatment. As part 

of the Choosing Wisely campaign, the American Society for Radiation Oncology discouraged 

routine use of extended fractionation schemes (>10 fractions) for palliation of BM (54), since 

single fractionation schemes are more convenient for patients and provide comparable pain relief 

for uncomplicated BM, further indicating the potential utility of duration of radiation therapy for 

identifying RtB. We investigate the length of therapy and the presence of BM coding on the 

radiation claim using Eventflow and CoCo. 

In Figure 8, the selected metric is the most differentiating event and we could use this 

information to identify components of an algorithm for identifying radiation to the bone 

separately from radiation to the prostate gland. For example, we see that “Bmv2” (blue 

rectangle) representing a BM diagnosis code on the health care claim, is found in 40.9% of the 

M0 records, and 88.2% of the M1b (bone metastatic) records, with a difference of 47%. We also 

see a difference in the next two most differentiating events: Death and “Rad_b_a3.”. The former 

variable, Death, represents all-cause mortality while the latter variable, Rad_b_a3, represents 

health care claims for short-course (i.e., less than 4 weeks) radiation therapy. We expect that all-

cause death and short-course radiation therapy (likely RtB) will be more common in the incident 

M1b compared to the M0 group within 3 months following diagnosis of prostate cancer.  Via 

this case study using EventFlow output, we illustrate that the presence of a BM code on the 

radiation claim and the length of radiation therapy may be important for identifying radiation to 

the bone (separately from radiation to the prostate gland) using health care claims data. 
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4.3 Application #2: Patient Comorbidity and Health Services Utilization  

Among men diagnosed with prostate cancer, it is commonly stated that they are more 

likely to die from underlying comorbid conditions (e.g., heart failure) than they are to die from 

the prostate cancer. Much of the research on comorbidity has been conducted among men 

diagnosed with low or intermediate risk disease (55-58). Compared to men diagnosed with non-

metastatic cancer, men diagnosed with metastatic prostate cancer are more likely to die from the 

prostate cancer. It is important that these men receive cancer-directed therapy as soon as 

possible following diagnosis of late-stage disease. In this application, we investigate whether 

patient comorbidity status impacts the timing of receipt of cancer-directed therapy and use of 

other health services including hospital, skilled nursing facility, and hospice services. We focus 

on a particularly vulnerable group of cases: men diagnosed with incident bone metastatic disease 

as identified by the American Joint Committee on Cancer (AJCC) staging information available 

from the SEER registry. Categories that represented too few patients (i.e., N<11) were 

suppressed in the EventFlow graphic, per the requirements of the SEER-Medicare Data Use 

Agreement.  Specifically, we suppressed the category of CCI=0 in Figure 9 and suppressed the 

indicator for a hospice admission in Figure 10. 

The time to receipt of cancer-directed treatment is plotted in Figure 9 for four groups of 

men, defined based on their Charlson Comorbidity Index (CCI) score at the time of diagnosis 

with bone metastatic disease. The data represented in Figure 9 are based on a stratified random 

sample of 200 men diagnosed with stage IV M1b (incident bone metastasis) prostate cancer 

between 2005 and 2009 and with at least 1 year of follow-up information following prostate 

cancer diagnosis. Fifty men were randomly selected from each of the CCI subgroups. We 

grouped patients based on information in the Medicare claims data from the 12 months prior to 

the diagnosis of incident M1b prostate cancer. Patients were categorized into groups: missing, 0, 
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1, and >=2. Of note, the CCI score was categorized as “missing” when no claims were observed 

during the time 12 months prior to cancer diagnosis. 

<Insert Figure 9 about here> 

Given that the patients in this data set were diagnosed with incident M1b prostate cancer, 

the group with missing CCI score is of particular interest because there were no observed claims 

for receipt of health services for 12 months prior to the diagnosis of M1b disease and for use in 

calculating the CCI score. In our prior work (59), we found that these patients are less likely to 

visit an urologist for a follow-up visit following diagnosis. We found that patients with CCI 

score coded as “missing” should be studied as a separate group as opposed to combining the 

“missing” group with the group with CCI score = 0.  Our results here are consistent in that we 

find that the proportion of men who receive treatment is lowest (60%) among the group with 

CCI coded as “missing,” suggesting that the absence of engagement with the health care system 

prior to diagnosis persists following diagnosis, despite the diagnosis of severe disease (i.e., M1b 

prostate cancer). By comparison, the proportion of men who received treatment was 68% among 

men with CCI score greater than or equal 2, 76% in the men with CCI score = 1 and greater than 

76% in the men with CCI score = 0.   

The EventFlow graphic in Figure 9 plots time to receipt of any of the following: 

orchiectomy, radical prostatectomy, radiation therapy, LHRH agonist, anti-androgen, 

chemotherapy, and radiopharmaceutical.  Figure 9 provides information that is immediately 

useful for understanding treatment receipt in this sample of men diagnosed with incident M1b 

prostate cancer. Reading along the y-axis, the height of the light gray panels is informative (or, 

alternatively, the height of the negative space) for providing information on the proportion of 

men (not) receiving treatment in a given subgroup. Within each stratum, the height of the light 

gray panel provides information on the proportion receiving cancer-directed treatment, which 
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can then be compared across strata. The height of the white (i.e., negative) space provides 

information on the proportion who did not receive cancer-directed treatment within the 

timeframe of the follow-up. From Figure 9, we can see that the height of the gray panel is largest 

among those with CCI score = 0, i.e., the healthiest subgroup. The height of the gray panel is 

smallest among those with CCI = “missing” (those with no health claims for calculating the CCI 

score during the 12 months prior to their cancer diagnosis). EventFlow also provides information 

regarding the timing of treatment receipt, via the length of the light gray panel. Comparing 

across the CCI strata, we see that the time to treatment initiation is shortest among those with 

CCI score = 0 and longest among those with CCI score = “missing”.  

The ordering of the light gray and white space is also informative since EventFlow plots 

the most common events first. Thus, within a given stratum, if treatment receipt is more 

common than no treatment, the light gray panel will be ordered first (reading top to bottom 

along the y axis), followed by the white space. If ‘no treatment’ is more common, the negative 

space will appear first. In Figure 9, we immediately see that the light gray panel (representing 

treatment receipt) occurs first among the individuals with few or no comorbidities (CCI=1 or 

CCI=0), indicating that the probability of treatment receipt is higher among the healthier 

subgroups. 

Together, the results from Figure 9 regarding the probability of treatment receipt and 

timing of treatment initiation suggest that: 

1. The group of men with CCI=2+ are the most vulnerable group among those with non-

missing CCI scores. Compared to individuals with CCI=0, they are less likely to receive 

treatment and more likely to receive it in a delayed fashion. The results indicate that 

comorbidity impacts disease management among those with late-stage prostate cancer, in 

this case, in terms of their likelihood of receiving critical cancer-directed therapies. 
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2. The group of men with CCI=missing is also a vulnerable group, and more vulnerable 

than the group with the highest comorbidity burden. They are least likely to receive 

treatment and, when they do receive treatment, exhibit the longest delay in initiating 

treatment. 

Figure 10 provides information regarding time from prostate cancer diagnosis to first 

hospitalization, skilled nursing facility (SNF) stay or hospice, stratified by pre-diagnosis CCI 

score (0, 1, >=2, or missing). The figure is based on 200 men diagnosed with stage IV M1b 

(incident bone metastasis) prostate cancer between 2005 and 2009 and with at least 1 year of 

follow-up information following prostate cancer diagnosis. Fifty men were selected from each of 

the CCI subgroups. The events of interest included time to: all-cause hospitalization, SNF 

admission, and hospice admission. The absence of a shaded light gray area (i.e., negative space) 

indicates that none of the events of interest were observed during the 1 year follow-up period 

post-diagnosis of incident bone metastatic prostate cancer. 

<Insert Figure 10 about here> 

The figure reflecting the proportion and timing of hospitalizations and SNF admissions 

(Figure 10) indicates that: 

1. Hospitalizations (green) are more common than SNF admissions (blue) in the year 

post-diagnosis in this stratified random sample of 200 men.  

2. SNF admissions are most likely in the group with CCI score=2+. 

3. Hospitalizations are more common in the group with CCI=missing and CCI=2+. The 

group of patients with a hospitalization is ordered first, followed by the group of 

patients with no hospitalization events.  
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4. Hospitalizations are less common in the group with CCI=0 and CCI=1. The group of 

patients with no hospitalization events appears first, followed by the group with 

hospitalization events. 

Note that we have not examined characteristics of the hospitalizations.  These 

characteristics (urgent vs. routine admission, length of stay, disease severity index at admission, 

clinical diagnosis at admission) can be incorporated in Eventflow as attributes in order to 

provide additional information regarding the hospitalization. As illustrated in these targeted case 

studies, visualization provides an efficient and intuitive approach to conduct exploratory data 

analysis of timing and sequencing of events. When supported by a population-based sample of 

men, these insights from EventFlow can be used to develop formal testable hypotheses (e.g., a 

higher comorbidity index score is associated with a lower probability of treatment receipt) and 

determine what variables to include (e.g., an indicator for treatment receipt, time to treatment 

receipt).  The information provided regarding event sequences for patient groups can assist with 

refining measures, answering questions, and formulating hypotheses for the investigation of 

cancer-related clinical outcomes. 

5 Conclusion 

The easier production of high quality static graphics, animated weather maps, video 

presentations and interactive websites has lowered the barriers to entry into the data 

visualization product market. However, we are just at the early stages of broadening visual 

literacy and training a new generation of researchers and decision makers. If data visualization 

tools that integrate powerful statistical techniques are made commonly available, the benefits 

could be as potent as the use of graphical user interfaces. 
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Glossary 

Algorithm. A step-by-step procedure for solving a problem or accomplishing some end 

especially by a computer.  Source: http://www.merriam-webster.com/dictionary/algorithm  

Choropleth Map.   A thematic map that uses graded differences in shading or color or the 

placing of symbols inside pre-defined, aggregated units (or areas) on a map in order to 

indicate differences in the average values of some measure in those areas.  Sources: 

http://www.ncgia.ucsb.edu/cctp/units/unit47/html/mas_form.html  and 

http://www.thefreedictionary.com/choropleth+map  

Distant disease.  The tumor has spread beyond the original site, traveled to other parts of the 

body and begun to grow in the new location(s).  Source: 

http://training.seer.cancer.gov/ss2k/staging/categories/distant.html  

Localized disease. The tumor has extended beyond the original site but has not spread to 

other organs and begun to grow in the new location(s). Source: 

http://training.seer.cancer.gov/ss2k/staging/categories/regional.html  

Prostate-specific antigen. A protease that is secreted by the epithelial cells of the prostate 

gland.  Source: http://www.merriam-webster.com/dictionary/prostate-specific%20antigen  

Treemap. Treemap, coined by Dr. Ben Shneiderman, is the name for a space-constrained 

visualization of hierarchical structures that splits the screen into rectangles in alternating 

horizontal and vertical directions as you traverse the screen from top to bottom. Source: 

http://www.cs.umd.edu/hcil/treemap-history/  
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6 Acronyms and Abbreviations 

ACS American Cancer Society 

ACA Affordable Care Act 

AJCC American Joint Committee on Cancer 

AMIA The American Medical Informatics Association 

BM Bone metastasis 

CCI Charlson Comorbidity Index 

CDC Centers for Disease Control and Prevention 

CMS Centers for Medicare and Medicaid Services 

EHR Electronic Health Record 

EMR Electronic Medical Record 

FDA Food and Drug Administration 

GIS Geographic Information Systems 

HCIL Human Computer Interaction Laboratory 

HINTS  Health Information National Trends Survey 

HIT Health Information Technology 

HITECH Health Information Technology for Economic and Clinical Health Act 

HTML HyperText Markup Language 

IOM Institute of Medicine 

ICD-9-CM International Classification of Diseases, Ninth Revision, Clinical Modification 

LHRH  Luteinizing hormone-releasing hormone 

NCD Noncommunicable diseases 

NCI National Cancer Institute 
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NIH National Institutes of Health 

NRC National Research Council 

ONC The Office of the National Coordinator for Health Information Technology 

PCAST  President’s Council of Advisors on Science and Technology 

PPV Positive predictive value 

PSA Prostate-specific antigen 

RtB Radiation to the bone 

SNF Skilled Nursing Facility 

SHARP  Strategic Health IT Advanced Research Projects 

SEER  Surveillance Epidemiology and End Results system 

WHO World Health Organization 
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Figure legends: 
 
Figure 1. Using visualization to inform the public (http://canceratlas.cancer.org/risk-factors/ ), this particular graphic utilizes proportional 
symbols to illustrate the relative proportion of cancer cases accounted for by infections. 
 
Figure 2. GBD Compare, based on the Global Burden of Disease. At the top, a treemap shows all the causes of deaths. The size of the box 
is proportional to the number of deaths, and the color indicates the change over time (light for improving, dark for worsening). Neoplasms 
are selected, and the map below shows where the disease is most prevalent. http://viz.healthmetricsandevaluation.org/gbd-compare/  
 
Figure 3. Visualization of whole-genome rearrangement.  Two different tumors are being compared using Circos plots (26) of whole-
genome sequence data, showing gene duplications and chromosome rearrangements. The outer ring depicts chromosomes arranged end to 
end. The inner ring displays copy-number data in green and inter-chromosomal translocations in purple.  Source:(60) . 
 
Figure 4. U.S. Cancer Statistics Interactive Atlas of the CDC.  http://nccd.cdc.gov/DCPC_INCA/ . 
 
Figure 5. Visualization of a patient electronic health record for clinical urology care from IntrinsiQ. 
 
Figure 6. A visualization of prostate cancer patient records. At the center, the overview of three main stages of the disease are color coded 
green, yellow, and red. On the side, the distributions of static patient attributes are shown allowing for the selection of subsets of the 
population and providing insight into differences between groups(61). 
 
Figure 7. Illustration of temporal patterns in health care claims data using EventFlow. 
 
Figure 8. A screenshot of an early prototype of CoCo, comparing two prostate cancer cohorts: AJCC stage M0 and AJCC stage M1b. 
 
Figure 9. Time from prostate cancer diagnosis to first treatment in the year following cancer diagnosis, stratified by pre-diagnosis 
Charlson Comorbidity Index score (1, >=2, or missing) (CCI = zero was suppressed due to a small sample size, per the Data Use 
Agreement). 
 
Figure 10. Time from prostate cancer diagnosis to first hospitalization (green) or skilled nursing facility stay (blue), stratified by pre-
diagnosis Charlson Comorbidity Index score (0, 1, >=2, or missing) (The indicator for a hospice admission was suppressed due to the 
small sample size, per the Data Use Agreement).  
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Figure 1. Using visualization to inform the public (http://canceratlas.cancer.org/risk-factors/) this particular graphic utilizes proportional symbols 
to illustrate the relative proportion of cancer cases accounted for by infections.    
Permission info:  Figure grabbed on August 12, 2015 from http://canceratlas.cancer.org/risk-factors/.  Webpage provides contact information as 
an email: canceratlas@cancer.org 
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Figure 2. GBD Compare, based on the Global Burden of Disease. At the top a treemap shows all the causes of deaths. The size of the box is proportional to the 
number of deaths, and the color indicates the change over time (light for improving, dark for worsening). Neoplasms are selected, and the map below shows 
where the disease is most prevalent. http://viz.healthmetricsandevaluation.org/gbd-compare/ 
Permission info:  Figure grabbed on August 12, 2015 from http://viz.healthmetricsandevaluation.org/gbd-compare/ with neoplasm selected. Webpage provides 
contact information as an email: http://viz.healthmetricsandevaluation.org/gbd-compare/.   May also contact our personal contact: Rhonda Stewart 
stewartr@uw.edu  (University of Washington’s Institute for Health Metrics and Evaluation) 
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Figure 3. Visualization of whole-genome rearrangement. Two different tumors are being compared using Circos plots (Krzywinski, 2009) of whole-genome 
sequence data, showing gene duplications and chromosome rearrangements. The outer ring depicts chromosomes arranged end to end. The inner ring displays 
copy-number data in green and interchromosomal translocations in purple. From: Imielinski, M. 2012 
Permission information: this figure is taken from Imielinski, M. et al.  Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel 
Sequencing, Cell 150, 1107–1120 (2012)  http://www.sciencedirect.com/science/article/pii/S0092867412010616.  
Cell journal is an Elsevier publication: see http://www.cell.com/permissions  
If needed 1st author is : Marcin B. Imielinski Phone:(617) 726-2967  mImielinski@partners.org   
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Figure 4. U.S. Cancer Statistics Interactive Atlas of the CDC.  http://nccd.cdc.gov/DCPC_INCA/ 
 
Permission info:  the figure was grabbed on August 12, 2015 from the URL http://nccd.cdc.gov/DCPC_INCA/  
This is a government website i.e. CDC 

Contact info provided in the site is: Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329 USA 
800-CDC-INFO | (800-232-4636) | TTY: (888) 232-6348, and a form is provided to ask questions at: Contact CDC-INFO 
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Figure 5. Visualization of a patient electronic health record for clinical urology care from IntrinsiQ  
Permission information: This image was found on the HealthTronics (UroChartEHR) website in 2014 but the company seems to 
have changed.  I can see the same figure at http://www.intrinsiq.com/IntrinsiQSoftware/UroChart  (+ click on “key advantages”).   
 
Contact info for IntrinsiQ is 877-570-8721 or emailinfo@intrinsiq.com 
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Figure 6. A visualization of prostate cancer patient records. At the center, the overview of three main stages of the disease are color coded green, yellow, and red. 
On the side the distributions of static patient attributes are shown allowing for the selection of subsets of the population and providing insight into differences 
between groups (Bernard, 2014) 
 
Permission information: This image was grabbed from the following webpage: http://www.cs.umd.edu/hcil/parisehrvis/papers/prostate_cancer.pdf 
This is a workshop paper and the © remains with the authors. 
The 1st author of the paper and personal contact is Jurgen Bernard juergen.bernard@igd.fraunhofer.de 
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Figure 7. Illustration of temporal patterns in health care claims data using EventFlow. 
Permission info N/A:  work of the authors 
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Figure 8. A screenshot of an early prototype of CoCo, comparing two prostate cancer cohorts: AJCC stage M0 and AJCC 
stage M1b. 
 
Permission info N/A:  work of the authors 
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Figure 9. Time from prostate cancer diagnosis to first treatment in the year following cancer diagnosis, stratified by pre-diagnosis 
Charlson Comorbidity Index score (1, >=2, or missing) (CCI = zero was suppressed due to a small sample size, per the Data Use 
Agreement). 
Permission info N/A:  work of the authors 
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Figure 10. Time from prostate cancer diagnosis to first hospitalization (green) or skilled nursing facility stay (blue), stratified by pre-
diagnosis Charlson Comorbidity Index score (0, 1, >=2, or missing) (The indicator for a hospice admission was suppressed due to the 
small sample size, per the Data Use Agreement). 
Permission info N/A:  work of the authors 
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