
International Journal of Computer and hTformation Sciences, VoI. 5, No. 2, 1976

Exploratory
Programmer
Ben Shneiderman 1

Experiments in
Behavior

Received February 1975; revised August 1975

The techniques of cognitive psychological experimentation can help resolve
specific issues in programming and explore the broader issues of programmer
behavior. This paper describes the methodological questions of such ex-
perimentation' and presents two exploratory experiments: a memorization
task and a comparison of the arithmetic and logical IF statements in FORTRAN.

KEY W O R D S : Programming; programmers; psychological experimenta-
tions; human factors; cognitive psychology; memorization; conditional
branching.

I . I N T R O D U C T I O N

The literature and research in programming focus heavily on machine-related
issues such as parsing ease, execution efficiency, and character sets, but deal
only superficially with human factor issues. The thesis of this paper is that
we can and must separate the machine-related issues from the human factor
issues and that we should apply the relevant techniques to each area. The
utility of such a breakdown should be obvious in light of the recent discussions
of modular design.

The isolation of human factor questions from implementation details
permits us to exercise our imagination in the creation of new languages and
allows us to pursue a more thorough study of the programming process by
the experimental techniques developed by cognitive psychologists. Although
programming is a more complex problem-solving task than most tasks
studied by cognitive psychologists, controlled psychological tests can be
extremely helpful in providing new insights.

Computer Science Department, Indiana University, Bloomington, Indiana.

123

�9 1976 Plenum Publ ishing Corporation, 227 West 17th Street, New York, N.Y. 10011. N-o part of this
publication may be reproduced, stored in a retrieval system, or t ransmitted, in any form or by any means,
electronic, mechanical, photocopying, microfilming, recording, or otherwise, without writ ten permission of
the publisher.

124 Shneiderman

The immediate goals of such experimentation would be to compare
specific programming language features such as control structures, argument
passing techniques, input/output facilities, and declaration statements. Other
immediate goals would be to develop reliable standards for stylistic issues
such as commenting, indentation, meaningful variable names, and the
complexity of modules.

Longer range goals include the development of an understanding of the
intellectual skills relevant to programming, the creation of problem and
program complexity measures, the production of programmer aptitude and
ability tests, and the improvement of programming education.

The first step in such a program or research must be the development of
the experimental methodology. Unfortunately, the history of experimentation
on programmer behavior is relatively short (see Ref. 1 for a discussion and
references). We should reiterate that we are, in this paper, interested in
controlled experimental comparisons, not protocol analysis of an individual
programmer's introspective comments and not case studies of programmers
in noncontrolled environments. Both of these methods are useful, but the
focus of this paper is on controlled experimental techniques.

1.1. Categorizat ion of Environments

The term programming refers to a wide variety of behaviors and environ-
ments. An experiment must focus precisely on a small number of variables
and attempt to eliminate bias by keeping all other variables constant. The
previous experience of subjects plays a crucial role since the variation in
performance of individuals is enormous. Because we were using university
undergraduates, graduates, and faculty, we separated our subjects according
to the number of programming courses they had taken:

Naive No programming courses

Novice Currently enrolled in a first course in programming

Intermediate Currently enrolled in a second or third course in
programming

Advanced Graduate students and faculty

This crude separation is not always sufficient since we found tremendous
variation within each group, but this scale is useful in roughly describing
subjects.

A second relevant issue is the size of the problem or program that is
being dealt with. Our initial work was largely with FORTRAN, and we found
the following scale useful in our discussions:

Exploratory Experiments in Programmer Behavior |25

Small

Medium

Large

Very large

Less than 100 program statements

Less than 1000 program statements

Less than 10,000 program statements

More than 10,000 program statements

Because of the limitations of our experimental environment, our first experi-
ments were limited to small and medium sized programs, but we eventually
hope to study larger programs. We hope that the work on short programs
will be generalizable to larger programs.

In addition to learning programming, we identified four relevant tasks
that needed study:

Comprehension Give subject a program and measure how well
he/she understands the program

Composition Give subject a problem and require a program
to be written

Debugging Give subject a problem with an incorrect pro-
gram for that problem and require the subject
to locate the bugs

Modification Give subject a correct program and require a
modification

These tasks are interrelated since comprehension is necessary for debugging,
composition is necessary during modification, etc. There can be wide variation
in the scope and difficulty of each of these tasks, but this classification is
helpful.

1.2. Measurement Techniques

The relevant measurement teclmiques vary with the task assigned.
Program comprehension can be measured by fill-in-the-blank or multiple-
choice questions that ask for

the value of a variable at a specific point in the program

the sequence of values assumed by a variable

the number of times a particular statement is executed

the sequence of statements executed

the output of the program

a brief description of the function of the program

the impact of an alternation

126 Shneiderman

Fill-in-the-blank questions are more difficult to grade, but multiple-choice
questions are often unrealistic.

Subjective measures such as asking the subject to estimate, on a 1 to 10
point scale, how well he/she understood the program are dubious but easy
to capture. Time to completion can be helpful, but may be misleading. Time
to criterion, that is, how long it took the subject to correctly answer a
question, is more appropriate.

A final measurement technique for comprehension is the ability to
memorize. Because memorization of complex material is accomplished by
absorbing meaningful "chunks," subjects must comprehend before memo-
rizing. Memorization is not necessarily an aid to comprehension, but success
at recall is a measure of comprehension. (2,3)

Measurement of the composition task consists of assigning a problem
and requiring subjects to create a program that performs the required tasks.
An obvious way to do this is requiring the subject to write the program on
blank paper or appropriate coding sheets and then grading the final results.
Unfortunately, the grading process is subject to variation, and careful
attention must be given to establishing precise standards. Duplicate grading
by different graders can produce more accurate results.

If the test environment permits, subjects may be required to keypunch
their programs or enter them on an interactive time-sharing system. The
latter approach enables the experimenter to collect a complete history and
accurate timing data. The programs produced by the subjects can then be
executed, tested, and debugged. Grading can include such factors as number
of bugs, number of runs, time to completion, number of statements, execution
efficiency, etc.

The test environment for composition can be simplified if subjects are
required to write program fragments only. This approach enables the experi-
menter to focus on particular language features and greatly reduces the
amount of time necessary. Another simplification is to ask the subject to
select, instead of compose, the correct program from a group of two or more
possibilities.

Debugging can be studied experimentally by providing subjects with a
problem description and an error-laden program and requiring them to
locate the errors. Supplementary aids such as flowcharts, program output, or
traces may be given to assist the subject. Multiple-choice questions are
probably unrealistic since they strongly direct the subjects' thought processes.
Grading responses is, again, a difficult task: subjects often have insightful
answers that point up other failures in the program or eliminate the bug in
unorthodox ways. Modification is similar to debugging.

Exploratory Experiments in Programmer Behavior 127

1.3. Research Topics

Our research began with some simple experimental designs in which we
hoped to develop our methodology. We chose experiments that were easy to
conduct and had few variables. This paper reports on two experiments: a
memorization task based on related work by Simon (4,5) and a comparison of
the logical and arithmetic IF statements in FORTRAN. The first experiment was
designed to give some insight into the cognitive processes that occur during
the study of a program, while the second dealt with a specific language feature
in FORTRAN.

In more recent work, (6) we study the effect of modularity on compre-
hension and debugging and the utility of comments and meaningful variable
names. In another series of experiments, (7~ we probe the usefulness of
detailed standard flowcharts on comprehension, composition, debugging,
and modification.

These experients have given us new insights into the cognitive processes
in programming, and a cognitive model has been proposed to explain our
findings. (G) Our future work will be directed toward the verification of this
model and toward the specific goals mentioned earlier.

For an alternate discussion of research topics and methodology, see the
work of Weissman, (s,91 Gannon and Horning, (1~ and Miller. ~11,12~

2. E X P E R I M E N T S

2.1. Memorizat ion - - Experiment 1

This experiment compared the abilities of subjects to memorize two
sequences of FORTRAN statements. One was a proper executable program
whereas the other contained valid statements in scrambled order. The experi-
ment, involving subjects of varying experience, measured short-term memory
capacity in an attempt to study program structure and ease of memorization.
Our results indicate that program structure improves recall at a statistically
significant level, leading us to the conclusion that the structure of a program
facilitates comprehension and memorization. The test items were approxi-
mately 20 statements long, but we have not shown that this is the upper limit
of module size for human comprehension. This question will be the subject
of further experimentation.

2. I. 1. Method

Subjects and Design. The subjects were selected from four experience
groups. Group I contained 42 people who had had no previous experience

128 Shneiderman

with FORTRAN. These tests were given to them on the first day of their intro-
ductory FORTRAN class. Group II consisted of 10 people, and the test was
given at the end of their introductory FORTRAN course. Group III consisted of
18 subjects who had had an introductory FORTRAN course and were in the
process of taking more advanced computer science courses: assembly
language, data structures, or programming languages. Group IV consisted of
nine members: graduate students and faculty members of the computer
science department who were considered to have had extensive programming
experience.

Subgroups of each group were tested at various occasions for testing
convenience during the summer of 1974. All subjects received both the proper
executable and the scrambled program test item. They were asked to do one
test at a time and record the sequence.

Materials. Two FORTRAN program listings were used as test items:
Program A was a proper executable program (Fig. 1), and Program B was a
set of statements of a randomly shuffled FORTRAN program (Fig. 2).
Program A consisted of 20 lines of code, and Program B had 17 lines. (These
programs were taken from Organick and Meissner, (13) pp. 86-87.)

Procedure. Each group of subjects was run in subgroups for testing
convenience. Sometimes a subgroup consisted of only one subject. Subjects
at each sesseion were evenly divided on a random basis into two groups. The
first group did Program A first; the second group did Program B first.

XSMALL = 0,0
NSMALL = 0
XLARGE = 0,0
NLARGE = 0
READ (5~,82) TEST

82 FORMAT (8 F l O , O)
DO 10 I = 1~,40
READ(5982) X
IF(X ,GT,, TEST) 60 TO 5
XSMALL : XSMALL § X
NSMALL : NSMALL "*]
GO TO 1 0 "

5 C O N T I N U E
XLARGE = XLAF~GE § X
NLARGE = NLARGE *]

tO C O N T I N U E
WRITE (69814) NSMALL 9

816 FORMAT(IIO~ F15,39
STOP
END

Fig. 1. Program A.

XSMALL, NLARGE, XLARGE
I l O , F15,3)

Exploratory Experiments in Programmer Behavior t29

READ(5~SL) NEMP
PAY = RATE*HOURS
IF(HOURS .LE. 40.0) GO ITO

5 C O N T I N U E
82 FORMAT(8FIO,O)

PAY = PAY § 0.5 * RATE *
WRITE(6,85~ I~ PAY

~ND
N = N + i

I0 CONTINUE
W R I T ~ [6 , 8 1) ~!
STOP

81 F O R M A T (S I l O 1
N :--- 9
DO I 0 I = I , N E M P

85 FORMATIIIO, F I 5 . Z)
READ(5,82) RAIFE~ HOURS

Fig. 2. Program B.

(HOURS - 40o01

Computer-printed listings of each program, one per page, were handed out
at the beginning of each testing session. After each subject received
Program A or Program B, the following instructions were given orally:

1. This is a memory test consisting of two parts.

2. Do not turn the page over until you are told to do so. (The subjects
received the test face down.)

3. Print your name on the upper right-hand corner of the page and
write a 1 (or a 2 during the second part) next to your name.

4. You will have 3 rain to memorize the material and 4 min to rewrite
what you have memorized on a second sheet of paper.

5. To get full credit on the line you copied back, you must write the
line exactly as it appeared in the listing; e.g., 10 is not the same as
10.0.

The number next to the subject's name, requested in instruction 3, was used
for the purpose of identifying the order in which the test items were taken.
Immediately after the 3-min memorization period was up, each subject was
given 4 min to copy back what he/she memorized. Part two of the test, the
alternate test item, was given immediately after the 4-min period, and the
same instructions were followed. After the session was over, the test papers
were collected and graded. The papers were graded by the number of correct
lines. A line was considered correct if it was identical to the original and the
relative position was approximately right.

130 Shneiderman

Table I. Mean Number and Percentage
of Correct Lines

Number correc t

Experimental
group A

I 7.1 4.1

II 10.2 4.6

III 12.7 5.4

IV 17.3 6.4

2.1.2. Results

The results of this experiment are summarized in Table I. Regardless
of experience, subjects did equally poorly on Program B, but with Program A
the ability to memorize increased with programming experience. We predic-
ted that the order of the test items would influence the subjects' performance,
since

1. If the subject received Program A first, then he/she might try to spend
most of his/her time organizing Program B rather than memorizing
it.

2. If Program B were received first, he/she might not try to memorize
Program A in an organized fashion.

3. It might take a while for the subjects to gear their intellectual
activity to memorizing.

This experimental bias was observed, and it was dealt with by dividing the
subjects in each session into two equal subgroups. One subgroup received
Program A first, the other Program B first.

An analysis of variance indicated that our groups representing different
levels of programming experience were significantly different at the 0.001
level. The interaction between groups and type of program was also signi-
ficant at the 0.001 level.

2.1.3. Discussion

When a complex problem is encountered, subjects attempt to tackle it by
dividing it into parts. In the case of memorizing test items, human intellectual
powers are geared to conceptually "group" as much information as possible
which, in turn, eases the burden of memorizing. This phenomenon is known

Exploratory Experiments in Programmer Behavior 131

to psychologists as '"chunking." Chunking is a recoding process that human
beings seem to do without conscious effort. This process involves grouping or
organizing the input information into '"chunks," which are as easy to handle
as individual units. For example, to an experienced programmer, Program A
reads something like, '"Initialize four variables in the first four lines." The
fifth line sets a testing variable, then a group of instructions is executed 40
times. This group of instructions consists of inputing a test value and the
input value; two variables are set. At the end of 40 iterations, the results of
the comparisons are printed. Depending on the experience of the program-
mer, that group of instructions can further be recognized as a comparison
with the testing value, followed by one instruction that keeps a running sum
and another that keeps track of the number of occurrences.

The ability to reorganize the test item is more prominent in experienced
programmers. To the nonprogrammer, FORTRAN is totally foreign, and each
line, or even each token, is memorized independently. The existence of this
phenomenon is supported by our experiment, since the number and percen-
tage of correct lines for Program A increase substantially with the level of
experience, while the gain for Program B is only modest.

Studying Program A, we find a few similar statements, such as the first
four statements, which lessened the burden of memorization, even for non-
programmers. All subjects seem to have remembered these four statements
as a unit, a chunk. This explains, in part, why novice programmers did better
on Program A, since Program B did not contain a similar simplification.

With Program B, chunking cannot be applied easily because the subjects
have no basis on which to chunk the information, regardless of experience.
The slightly better performance of experienced subjects on Program B can
be attributed to their familiarity with FORTRAN and their remembrance
of each FORTRAN statement as a unit, rather than each token, as nonpro-
grammers would do.

That the average number of correctly memorized statements for
Program B is five or six brings to mind the well-known paper by George
Miller, "The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information, ''(14~ which indicates that the
human short-term memory capacity is seven units plus or minus two. A
detailed psychological analysis of the dimensions of our problem of informa-
tion transfer is complex, but if one accepts a line of FORTRAN code as a unit
of information transfer, our result is well within the limit of Miller's seven
plus or minus two.

Returning to our results for Program A, we conclude that experienced
subjects have developed an ability to encode the program in chunks whose
size is larger than one statement. Experienced programmers can deal with
sophisticated control structures such as the DO-WHILE, IF-THEN-ELSE,

132 Shneiderman

etc., as a single unit and thus can comprehend and memorize substantially
longer sections of code. These conceptual control structures can be recognized
by experienced programmers even when they are implemented in the limited
syntactic forms provided by FORTRAN. Further research in this area could
lead to practical measures of the limits of intellectual manageability and
recommendations as to the optimum complexity of program modules for
differing experience levels. Because it recognizes that there exists a close
relationship between comprehension, memorization, and chunking, the
memory experiment provides a practical means for conducting this
research.

2.1.4. Replication

In response to several criticisms of the first memorization experiment,
we performed a simplified version in early 1975. Critics of our first experi-
ment suggested that there was a potential bias resulting from our use of
different programs having slightly different length.

A more complex, 74-line FORTRAN program was created in proper
executable and shuffled form. The subjects were 16 nonprogrammers and 16
experienced graduate students. Eight subjects in each group received the
proper executable program, and the remaining eight subjects in each group
received the shuffled program. Subjects were given 15 min to memorize and
5 min to write.

The nonprogrammer subjects averaged 13.1 correct lines in the proper
executable program and 10.1 correct lines in the shuffled program. This
difference was not statistically significant and supports the contention that
nonprogrammers could not chunk the proper executable program. The
experienced subjects memorized 24.8 lines of the proper executable program
but only 18.9 lines of the shuffled program. This difference was statistically
significant at the 0.025 level, thus supporting the chunking idea.

Although these statistics support our contention, we had hoped for
stronger results. Apparently the subjects focused on the multiplicity of
CONTINUE statements and other highly similar repetitive statements and
achieved high scores by writing these statements rather than attempting to
proceed sequentially. This enabled them to do relatively well on the shuffled
form of the program.

We look forward to testing the capacity of our subjects and to
determining what structures are more difficult to memorize. We hope to be
able to isolate the structural patterns that the subjects perceive and study
which programming languages provide the best facility for representing these
structures clearly.

It has been suggested that a retest after a day or a week (without showing

Exploratory Experiments in Programmer Behavior 133

the program again) would allow us to determine what aspects of the program
remained most prominent in the subject's mind.

The memorization technique might also enable comparative testing of
the usefulness of menmonic variables, programming language features, or
other stylistic features.

2.2. Condit ional Branching - - Exper iment 2

The two conditional branching techniques in FORTRAN are the arithmetic
IF statement and the logical IF statement. The logical IF statement is not
included in the ANSI Standard Basic FORTRAN, (15) but it is more frequently
used than the ANSI standard arithmetic IF statement. An examination of
contemporary FORTRAN textbooks reveals that, although the arithmetic IF
statement is frequently introduced before the logical IF statement, most
authors place more emphasis on the logical IF statement. McCraeken, in his
recent book, A Simplified Guide to FORTRAN Programming ~IG~ takes the
extreme position that "The arithmetic IF has little use in well-constructed
programs Heavy use of the arithmetic IF leads to intricate programs that
are very hard to read and understand," At many educational institutions, the
use of arithmetic IF statements is either not taught or discouraged. Is this
unfair treatment of the arithmetic IF statement justified ? Our experiment is
an attempt to provide experimental results and guidance for educators and
language designers.

2.2.1. Method

Subjects and Design. Forty-eight subjects were recruited in the summer
of 1974 for this study. Twenty-four of them (Group l) were students who
were in the process of taking an introductory FORTRAN class. Their instructor
covered both arithmetic and logical IF statements, with equal emphasis. The
remaining 24 subjects (Group II) were students who had completed an
introductory FORTRAN course and were in the process of taking a more
advanced computer-science course. Graduate students and faculty members
were included in Group II. Within each group, two types of test items were
given: arithmetic IF and logical IF. Within each type, three levels of difficulty
of the test items were given. The difficulty ratings were based on the subjective
judgement of the authors. The test items given to the subjects of Group I
during one of their regular classroom sessions. Subjects of Group II were
tested in four sessions for testing convenience.

Materials. The test items were given in two parts. Part 1 consisted of
three FORTRAN programs: LHARD (hard), LEASY (easy), and LMOD

134 Shneiderman

(moderately hard). Only logical IF statements were used in this part. Part 2
also consisted of three FORTRAN programs, but only arithmetic IF statements
were used. Part 2 consisted of programs A H A R D (hard), AEASY (easy),
and A M O D (moderately hard). Associated with each program were questions
that tested the subjects' understanding of the program. This was accomplished
by asking the subjects to follow the execution sequence and to reproduce the
output of the program. There were four fill-in type questions associated with
programs LEASY, AEASY, LMOD, and AMOD. Ten questions (six fill-in
type and four multiple choice) were associated with program LHARD.

Programs LEASY and AEASY consisted of nine lines each and were
similar. The questions associated with each of them were simple and similar,
and tested the subjects' ability to follow logical/arithmetic IFs in a simple
branching sequence.

Programs L M O D and A M O D were similar programs consisting of nine
and 10 lines, respectively. Each program contained an " IF- loop ." Program
L M O D checked the termination of the loop at the exit, and Program A M O D
checked at the entrance to the loop. The questions associated with each of
these two programs tested the subjects' ability to follow the execution
sequence and understand the role that the IF statement played in each
program. Subjects were required to reproduce the output generated by a
P R I N T statement at the termination of the loop. All programs and questions
were in computer output form. Space was provided for a subjective measure
of difficulty of each question and for timing data each program.

The test papers were collected at the end of each test session and graded
on the number of wrong answers that each subject made. Additional materials
used in the experiment included a general survey of the subjects' computer-
science background. A lesson was also given to some of the subjects of
Group I I a few weeks before the testing session to ensure their knowledge of
both arithmetic and logical IF statements.

Procedure. The survey on the computer-science background of the
subjects was distributed, and the subjects were asked to respond to the
questions. Hal f the subjects in each testing group received a test booklet
containing Part 1 first while the other half received Part 2 first. The following
instructions were on the front of the test booklets:

Please wait for the signal then you may start answering questions appearing
on the following pages. It is important that you work sequentially and do not
go back and change your answer. Use the spaces to the right of the questions
to give any comment that you care to make. Please indicate how difficult you
find each of the questions by marking the boxes to the left of each question.
Use the digits 1 through 10 to indicate difficulty: 10 is most difficult; 1 is
easiest.

Exploratory Experiments in Programmer Behavior t35

Students worked at their own pace and turned in the test booklets when they
were done. They were told to mark the clock time to the nearest minute at the
end of each section.

2.2.2. Results and Discussion

The test papers were graded on the basis of the number of errors the
subject made for each program. The averages are shown in Tables II and IIL
An analysis of variance was performed on the error data. As expected, the
experienced subjects did significantly better statistically at the 0.01 level than
did the inexperienced subjects. Although the difference between the logical
and arithmetic IF statement was not statistically significant, the two-way
interaction of the difference between the two groups and the two types of
test items was marginally significant. This gives mild support to the con-
jecture that logical IF statements tend to be easier for beginners, whereas,
for an experienced programmer, logical IF statements and arithmetic IF
statements are equally difficult.

The difficulty of the programs, in the authors' opinion, is in the fol-

Table |1. Average Number of Errors

Experience
group

Part 1, Part 2,
logical IF arithmetic IF

LHARD LMOD LEASY AHARD AMOD AEASY

I 1.71 2.13 0.83 3.38 1.63 1.25
II 1.05 1.45 0.62 1.50 1.I5 1.65

Table I11. Average Percentage of Errors

Part 1, Part 2,
logical IF arithmetic IF

Experience
group LHARD LMOD LEASY AHARD AMOD AEASY

I 17.7 53.3 20.8 37.6 40.8 31.3
I[10.5 36.3 15.5 16.7 28.7 16.3

136 Shneiderman

lowing order of increasing difficulty: LEASY and AEASY, LMOD and
AMOD, then LHARD and AHARD. The analysis of variance yields a
significant level of interaction (0.05) of groups by difficulty. However,
according to Table II, the majority of the subjects, regardless of the group,
made errors in questions associated with programs LMOD and AMOD (the
IF-loop problems). Their mistakes tended to be the usual "off-by-one" type
of error. To avoid this type of error, a "DO-loop" should be encouraged in
preference to an "IF-loop." A further possibility in parts LMOD and AMOD
is that subjects found it more difficult to understand loop termination tests
at the bottom of the loop.

Unfortunately, some of the subjects did not give the information for
timing of each program and/or hardness of each question. Out of the limited
timing information we have, only eight out of 19 subjects took more time to
finish Part 1 in Group I. Of the 16 responding in Group II, exactly half took
more time on Part 1. These results are inconclusive and do not support or
detract from our conclusions. The average time for those reporting is shown
in Table IV.

The difficulty rating of each question is a subjective measure. Of the
11 subjects in Group I who responded, only two rated Part 1 as more difficult
than Part 2; of the 17 subjects in Group II who responded, seven rated Part 1
as more difficult than Part 2. The fact that the majority of the novice pro-
grammers considered the questions with logical IF statements to be easier,
but almost a half of the experienced programmers rated the problem with
arithmetic IF statements to be easier, further supports the claim that the
logical IF statement is easier for novice programmers and that the logical IF
statement and arithmetic IF statement are equally difficult for the experienced
programmers.

We conjecture that the experienced programmers recode the syntactic
form in their minds and deal with a higher-level semantic notion of what the
program actually does. The novices are constrained to deal with the raw
syntactic inputs and have greater difficulty with the complex details of the
arithmetic IF statements. This effect should be even more dramatic with
longer and more complicated programs.

Table IV. Average T ime

Experience Part 1, Part 2,
group logical IF arithmetic IF

I 9.60 11.35

II 11.88 10.50

Exploratory Experiments in Programmer Behavior 137

3. F U R T H E R RESEARCH

The experimental controls in this experiment could be substantially
improved if the same program, coded using the arithmetic or the logical IF,
were presented to independent subgroups, rather than having each subject
act as his/her own control. Longer and more complex programs would shed
further light on the usefulness of the two branching constructs for novice and
experienced programmers. The influence of the logical and arithmetic IF
statements on the tasks of program composition, debugging, and modifica-
tion will also be studied.

In future experiments timing data must be collected in a way that does
not interfere with the subject's test-taking. We are unsure as to the usefulness
of subjective measures, but we will pursue this approach as well.

4. I N T E R P R E T A T I O N

These experiments have enabled us to improve our methodology and
have demonstrated the need for further study of the cognitive processes that
occur when subjects examine computer programs. Both experiments suggested
to us that experienced programmers recode the syntactic forms into an
internal structure that represents the semantic structure of the program. This
analysis is informally supported by the fact that in the memory experiment
experienced subjects would reproduce a semantically correct program with
syntactic mistakes. These mistakes were such items as altered statement
labels or sequencing changes that did not affect the output of the program.

We hypothesize that the internal recoding process also accounts for the
small difference found by experienced subjects in the ease of comprehension
of the arithmetic and logical IF statements.

Further study of the recoding process might lead to an understanding of
what the chunks consist of and to suggestions for improved language designs,
stylistic guidelines, and recommendations for design strategies. The influence
of comment cards, indentation, meaningful variable names, etc., must all be
interpreted with respect to their effect on this recoding process.

A C K N O W L E D G M E N T

I would like to express my sincere thanks to Richard Mayer for en-
lightening discussions concerning the data analysis and to James Carlisle for
his detailed review, which substantially improved the manuscript. The
suggestions of the referees were helpful in broadening the scope of this paper
and placing the experiments in the proper context.

82S/5/2-4

138 Shneiderman

Finally, this work could not be done without the diligence of the graduate
students who carried out the experiments. Mao-Hsian Ho did the basic
memory and conditional experiments while Ken Yasukawa replicated the
memory experiment. This paper is based on an earlier report written with
Mao-Hsian Ho.

A P P E N D I X 1. L O G I C A L IF P R O G R A M

L H A R D

PROGRAM A(INPUT,OUTPUTI LINE 1
READ GO,I ,J tK LINE 2
T~(I.GT.J)GO TO 20 LINE 3
IF(J.GT.KIO0 TO 10 LINE 4
ILrK LINE 5
GO TO 40 LINE G

ID ILzJ LINE 7
GO TO 40 LINE 8

20 IF{ I.GT.KIO0 TO 30 LINE 9
IL:K LINE 1b
GO TO 40 LINE II

30 I L z I LINE 12
40 PRINT 5 0 , I L L INE 1 3
5~ FORMATI3X,I31 L~NE lg
GO FORMATI313] LINE 15

END LINE IG

LEASY

PROGRAM C|TNPUT,OUTPUTI LINE I
IA=9 LINE 2
IBm34 LINE 3
I F I I B .GT. IA) GO TO 10 LINE 4
PRINT,IB LINE 5
GO TO 20 LINE 6

10 PRINT,. IA LINE 7
20 STOP LINE 8

END LINE 9

L M O D

PROGRAM E{INPUT,OUTPUT) LINE I
IJm5 LINE 2
IXm4 LINE 3

10 IJ~IJ-i LINE 4
IXrIX+I LINE 5
IFtId .GE. O) GO TO 10 LINE 6
PRINT, IX LINE 7
STOP LINE 8
END LINE 9

Exploratory Experiments in Programmer Behavior 139

A P P E N D I X 2. A R I T H M E T I C IF PROGRAM

A H A R D

PROGRAM s
READ 80,I,J,K
IF(I-Jl4D,lO,lO

I0 IF (J-K;3D,20,2O
20 I S=K

GO I 0 70
30 ISrJ

GO TO 70
~0 IF~ I-K~GO,50,5O
5D ISnK

GO TO TO
50 ISrI
70 PRINT 90,IS
80 FORMAT(313)
90 FORM4T~3X,T3)

END

AEASY

I0
20
30

PROGRAM D(INPUT,OUTPUII

I~=27
IL=21
!F(IM-IL}IO,20,30
PRINTt IH
STOP
PRINT, IL
STOP
END

AMOD

LINE
LINE
LINE
LINE
LINE
LTNE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE

!

2
3
4
5
G
7
8
9

IO
ii
lZ
13
lq
iS
IG

l
2
7
4
5
6
7

B
9

PpOGRAM FIINpUT.OUTPUT} LINE 1
IL=7 LINE 2
ITrO LINE B

S IF(IT-7) 10,20,30 LINE
I0 II=TT+I LINE 5

ILCIL-I LINE 6
30 GO TO 5 L INE 7
20 PRINT, IT,IL LINE 9

STOP L INE 9
END L INE lO

A P P E N D I X 3. Q U E S T I O N S

L H A R D

1. F OR I = 2, J = 5, A N D K = 3, W H A T IS THE O U T P U T ?

2. F O R I = 3, J = 7, A N D K = 7, W H A T IS THE O U T P U T ?

140 Shneiderman

3. 1N ONE R U N OF P R O G R A M , H O W M A N Y TIMES DOES
L I N E 13 GET E X E C U T E D ?

4. W H A T IS T H E MOST N U M B E R OF TIMES T H A T THIS
P R O G R A M MAKES A N ' IF ' TEST ?

5. W H A T IS T H E LEAST N U M B E R OF TIMES T H A T THIS
P R O G R A M MAKES A N ' IF ' TEST ?

6. CAN Y O U DESCRIBE W H A T THIS P R O G R A M DOES?

7. IF T H R E E I N P U T VALUES ARE EQUAL, W H I C H VALUE
DOES THIS P R O G R A M P R I N T OUT ?

A. I
B. J
C. K
D. N O N E OF T H E ABOVE

8. IF I = K A N D I ALSO IS G R E A T E R T H A N aT, W H I C H VALUE
DOES IT P R I N T O U T ?

A. I
B. J
C. K
D. N O N E OF T H E ABOVE

9. IF ALL .GT.'S WERE C H A N G E D TO .GE. IN THIS P R O G R A M

A. T H E O R I G I N A L PURPOSE OF THIS P R O G R A M
DOES N O T G E T ALTERED.

B. T H E N E W P R O G R A M DOES T H E OPPOSITE OF
W H A T T H E O R I G I N A L P R O G R A M DOES.

C. T H E N E W P R O G R A M OUTPUTS GARBAGE.

D. N O N E OF T H E ABOVE.

E. DO NOT KNOW.

10. H O W COULD ONE M O D I F Y THIS P R O G R A M SO T H A T IT
PRINTS OUT T H E M I N I M U M OF T H R E E I N P U T NUMBERS ?

A. REPLACE ALL .GT.'S W I T H .LT.'S.

B. I N T E R C H A N G E I, Y; aT, K; A N D I, K I N LINES 3, 4,
A N D 9, RESPECTIVELY.

C. I N A D D I T I O N TO B ABOVE, REPLACE K W I T H I,
J W I T H K, K W I T H I, A N D I W I T H K I N LINES 5, 7,
10, A N D 12, RESPECTIVELY.

D. NO M O D I F I C A T I O N S NEEDED.

E. N O N E OF T H E ABOVE.

F. DO N O T KNOW.

Exploratory Experiments in Programmer Behavior 14t

LEASY

1.

2.

W H A T IS T H E O U T P U T OF THIS P R O G R A M ?

PLEASE W R I T E D O W N T H E SEQUENCE OF LINE N U M -
BERS T H A T ARE EXECUTED.

3. IF .GT. IN L I N E 4 WERE C H A N G E D TO .LT., W H A T W O U L D
BE T H E O U T P U T ?

4. A F T E R T H E C H A N G E TO .LT., IA = 34 A N D IB = 9, W H A T
IS T H E O U T P U T OF T H E N E W P R O G R A M ?

L M O D

1. W H A T IS T H E O U T P U T OF THIS P R O G R A M ?

2. PLEASE W R I T E D O W N T H E SEQUENCE OF LINE N U M -
BERS T H A T ARE EXECUTED.

3. IF .GE. I N L I N E 6 WERE C H A N G E D TO .LT., W H A T W O U L D
BE T H E NEW E X E C U T I O N SEQUENCE ?

4. W H A T W O U L D BE T H E N E W O U T P U T ?

A H A R D

1. F O R I = 2, J = 5, A N D K = 3, W H A T IS THE O U T P U T ?

2. F O R I = 3, J = 7, A N D K = 7, W H A T IS T H E O U T P U T ?

3. I N ONE R U N OF P R O G R A M , H O W M A N Y TIMES DOES
L I N E 13 G E T E X E C U T E D ?

4. W H A T IS T H E MOST N U M B E R OF TIMES T H A T THIS
P R O G R A M MAKES A N ' IF ' TEST?

5. W H A T IS T H E LEAST N U M B E R OF TIMES T H A T THIS
P R O G R A M MAKES A N ' IF ' TEST ?

6. CAN Y O U DESCRIBE W H A T THIS P R O G R A M DOES?
PLEASE CIRCLE T H E BEST A N S W E R F O R T H E F O L L O W I N G
QUESTIONS:

7. IF T H R E E I N P U T VALUES ARE EQUAL, W H I C H VALUE
DOES THIS P R O G R A M P R I N T OUT ?

A. I
B. d
C. K
D. N O N E OF T H E ABOVE

142 Shneiderman

8. IF I = K AND I ALSO IS GREATER TH A N aT, WHAT IS THE
OUTPUT ?

A. I
B. J
C. K
D. NONE OF THE ABOVE

9. HOW COULD ONE MODIFY THIS P RO G RA M SO TH A T IT
PRINTS OUT THE MINIMUM OF THREE INPUT NUMBERS ?

A. I N T E R C H A N G E / , J, aT, K, A N D / , K IN LINES 3, 4,
AND 9, RESPECTIVELY.

B. IN ADDITION TO B ABOVE, REPLACE K W I T H / , J
WITH K, K W I T H jr, A N D / W I T H K I N LINES 5, 7, 10,
AND 12, RESPECTIVELY.

C. NO MODIFICATIONS NEEDED.

D. NONE OF THE ABOVE.

E . DO NOT KNOW.

A E A S Y

1. W HAT IS THE OUTPUT OF THIS P R O G R A M ?

2. PLEASE WRITE DOWN T H E SEQUENCE OF LINE NUM-
BERS T H A T ARE EXECUTED.

3. IF THE MINUS SIGN IN LINE 4 WERE C H A N G E D TO A
PLUS, W HAT WOULD BE THE OUTPUT?

4. AFTER THE C H A N G E TO PLUS, IF I M = 21 AND I L ~- 27,
WHAT IS THE OUTPUT OF THE NEW P R O G R A M ?

A M O D

1. W HAT IS THE OUTPUT OF THIS P R O G R A M ?

2. HOW MANY TIMES DOES LINE 6 GET EXECUTED ?

3. IF T H E ' - - ' IN LINE 4 WERE C H A N G E D TO ' + , ' WHAT
WOULD BE THE NEW EXECUTION SEQUENCE?

4. W HAT WOULD BE THE NEW OUTPUT?

REFERENCES

1. B. Shneiderman, "Experimental Testing in Programming Languages, Stylistic Con-
siderations and Design Techniques," in Proceedings of the National Computer Con-
ference (AFIPS Press, Montvale, New Jersey, 1975).

Exploratory Experiments in Programmer Behavior t43

2. J. D. Bransford and J. J. Franks, The abstraction of linguistic ideas, Cognitive Psychol.
2, 331-350 (1971).

3. R. J. Barclay, The role of comprehension in remembering sentences, Cognitive PsychoL
4, 229-254 (1973).

4. W. G. Chase and H. A. Simon, Perception in chess, Cognitive Psychol. 4, 55-81 (1973).
5. H. A. Simon and K. Gilrnartin, A simulation of memory for chess positions, Cognitive

Psyehol. 5, 29-46 (1973).
6. B. Shneiderman and R. Mayer, "Towards a Cognitive Model of Programmer Be-

havior," Technical Report No. 37, Department of Computer Science, Indiana Univers-
ity, Bloomington, Indiana (1975).

7. B. Shneiderrnan, R. Mayer, D. McKay, and P. Heller, "Experimental Investigations
of the Utility of Flowcharts in Programming," Technical Report No. 36, Department
of Computer Science, Indiana University, Bloomington, Indiana (1975).

8. L. Weissman, "Psychological Complexity of Computer Programs: An Initial Ex-
periment," Technical Report CSRG-26, Computer Systems Research Group, University
of Toronto, Toronto, Canada (1973).

9. L. Weissman, "A Methodology for Studying the Psychological Complexity of Com-
puter Programs," Ph.D. thesis, University of Toronto, (1974); available as Technical
Report, Computer Science Research Group, CSRG-37.

10. J. D. Gannon and J. J. Homing, The impact of language design on the production of
reliable software, IEEE Trans. Software Eng. 1(2) (1975).

11. L. Miller, "Programming by Non-programmers," IBM Research Report RC 4280
(1973).

12. M. Miller, "Naive Programmer Problems with Specification of Transfer-of-Control,"
in Proceedings of the National Computer Conference (AFIPS Press, Montvale, New
Jersey, 1975).

13. E. I. Organick and L. P. Meissner, FORTRANIV, 2rid ed. (Addison-Wesley, Reading,
Massachusetts, 1974).

14. G. A. Miller, The magical number seven, plus or minus two: some limits on our
capacity for processing information, Psyehol. Rev. 63, 81-97 (1956).

15. U.S.A. Standard Basic FORTRAN, ANSI Standard X3.10 (American National Stan-
dards Institute, New York, 1966).

16. D. D. McCracken, A Simplified Guide to FORTRAN Programming (John Wiley &
Sons, New York, 1974).

