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Several models of  data base systems have distinguished levels of  abstraction 
ranging f rom the high-level entity set model down to the low-level physical 
device level. This paper  presents a model for describing data encodings, an 
intermediate level which focuses on the relationship among data items as 
demonstrated by contiguity or  by pointer  connections. Multiple data en- 
codings for  a file are shown and t ransformation functions that describe the 
translation between data encodings are discussed. 

KEY W O R D S :  Data  encoding; data translation; data base systems; 
data description. 

1. I N T R O D U C T I O N  

Numerous attempts have been made to develop a theoretical foundation for 
describing data base systems. Recent work has suggested a multileveled 
approach which clearly separates the logical aspects from the physical 
aspects. 

The well-thought-out DIAM model t1~ provides a comprehensive four- 
level view of data base systems. The highest level, the entity set model, 
reflects the user's view of the data and is heavily influenced by Codd's 
work r on the relational model. The next level, the string model, describes 
the logical access path structure and draws heavily on graph-theoretic 
notions, ca,4~ More closely related to the implementation details is the encoding 
model, which focuses on the internal representation and encoding of storage 
structures. Finally, the physical device model deals with the placement of 
encoded data on the physical storage media. 
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Earley's work 15,hI distinguishes relational level, access path level, and 
an implementation level. He envisions programming languages at each level 
and the progression through stepwise refinement from abstract to concrete 
algorithms. (7) The lower-level languages enable the user to carefully specify 
more implementation details, with the goal of improving efficiency. 

Child's early work ~8) on set-theoretic models to describe the high-level 
logical view has been supplemented by work on extended set theory (9) to 
describe the implementation details. 

These multilevel approaches provide useful divisions for dealing with the 
complexity of a sophisticated data base system. Psychologists can be 
employed to assist in the selection of high-level models and languages, while 
experts in the operation of physical devices can focus their attention on the 
machine-oriented aspects. 

2. M A P P I N G  T H E  E N T I T Y  SET M O D E L  I N T O  
D A T A  E N C O D I  NGS 

This paper addresses the problem of describing the static relationships 
among data and provides the basis for mappings that describe the translation 
from one data encoding to another. The dynamics of insertion, deletion, and 
updating are beyond the scope of this work. 

We adopt the abstract perspective that the entity set model can be 
mapped into one or more data encodings. Each of these mappings is an 
implementation of the logical view of the data (see Fig. 1), that is, I: f_, ~ / ~ ,  
where I is the implementation, L is the space of logical data structures, and/~ 
is the space of data encodings. 

To clarify this basic notion, consider a one-way list. The implementation 
might be by a linked list strategy within the high-speed storage, by a linked 
list stretching over several disk blocks, by contiguous allocation within a 
block, by contiguous allocation plus links to overflow blocks, and so on. 
For a more complex case, consider the logical view put forth by Codd's 

LOGICAL DATA STRUCTURES 

(ENTITY SET MODEL) 

~Til(a ) d (if(d)) TRANSLATION 

--.~l~Ia(a) 

IMPLEMENTATIONS 

ENCODED DATA STRUCTURES 

(ENCODING MODEL) 

Fig. 1 
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relational model. A number of widely varying implementations can be 
envisioned for this logical view. 

While a number of formulations have been proposed for dealing with 
the logical view of data structures, there is a dearth of techniques for 
describing data encodings produced by a specific implementation. Although 
the present model does not completely describe the machine level details, 
it does serve as an intermediate descriptive model. 

3. T H E  M O D E L  

The basic components of a data encoding are blocks. A Mock is an 
addressable, contiguous segment of storage. A block is divided into elements, 
each of which is fieM or a block. A field is a contiguous segment of storage 
and is the smallest meaningful unit of a data encoding. There are two kinds 
of fields: datafields and pointer fields. The contents of a data field are data 
items; each data item is an encoding of some piece of information from the 
entity set model. The contents of a pointer field are pointers; each pointer 
addresses a block. For  example, [fl ,f2 ,f8 ,f4] represents four fields in a 
single block which are contiguous in the specified sequence, and 
[[fl ,f2], If3 ,f4]] represents a block consisting of two contiguous subblocks, 
each of which contains two fields. 

Definition I. We define how blocks may be constructed from fields. 
Let A be the null block. Let F be some set of fields. We now define Be, 
which is the set of blocks using the fields in F. BF does not include A. 

(i) If  f l  ..... fn for n ~> 1 are inF,  then [ft , . . . , f , ]  is in B~. This shows 
how fields can be combined to form a block. 

(ii) I f  *1 ..... s for n > 1 are in F or in By,  [e~ .... , en] is in BF" This 
shows how blocks and fields may be combined to form a block. Note that a 
block that contains only a block is not valid. 

(iii) That is all that is in BF. 

Now, l e t / )v  = By w {A}. /)F is the set of  all blocks that can be con- 
structed from the fields in F plus the null block. 

I f  b = [~1 ,-.., ~,] is in /)F, we call ~i, 1 ~< i ~< n, the elements of b. 
We will want to talk about the number of elements in a block. 

Definition 2. If  b = [~ ..... ~1 is in / )v  for some F, then T b [~ = n. 

We will also need projection functions which select an element from a 
block. 

Definition 3. If  b = [ez .... , e , ]  is in /)F for some F and 1 ~ i ~ n ,  
then rri(b) = ~ .  
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Definition 4. We will use the symbol [1~=~ for a sequence in the same 
way that ~i=~ is used for a sum. Thus, [ll~=a ~i] is the same as [~ ,..., t,~]. 

To describe a particular data encoding E we must describe: 

1. D, the set of data fields. 

2. P, the set of pointer fields (sometimes empty). 

3. B, the set of blocks. B will be subset of/3Due �9 

4. g, a function from P into B, which describes the pointer relationships 
among the blocks. 

4. E X A M P L E S  OF D A T A  E N C O D I N G S  

At this point a clarifying example to contrast four possible implemen- 
tations is useful. Consider the representation of a file a consisting of records 
b~, where 1 ~ i ~ N, which in turn consist of a student number field d~0 
and three exam grade fields: d i l ,  d iz ,  and dia. 

(A) The first implementation shows the records to be arranged 
sequentially with contiguous fields within each record (see Fig. 2a): 

D = { d ~ l l  ~ i < ~ N ,  0 ~ j ~ < 3 )  

P = ~ ,  the empty set 

B = { a } t d { b ,  I1 ~< i~<N)  

a=[l]~=zbd,  i.e., [ a l , = N  and zr~(a)=bl 

For eachi, 1 ~<i~<N,  

bi = [dio, dil ,  di2 , d~3] 

i.e., [ bi 1, = 4 and for 0 ~ j ~ 3, 7rj+l(b~) = dis.  g is empty. 

(B) The second implementation shows each record as a one-way list. 
The records are sequentially arranged (see Fig. 2b): 

D : { d ~ j l l  ~ i ~ N ,  0 ~ j ~ < 3 }  
P : ( p i 3 1 1  ~ i ~ N ,  0 ~ < j ~ 3 }  
B = {a} u {b,jl 1 ~ i ~< N, 0 ~ j ~< 3) u {A} 

F o r l  ~ i <~ N ,  O <~ j <~ 3, and  O <~ k <~ 2, 

a = [H~=z bio], I a 1, : N ,  ~i(a) : bio 

bij = [dij , PiJ], I b~j I, = 2, ~'l(bi~) = di~ , rr~(bij) = Pit 

g(P~k) : bg~+~, g(P~z) : A 
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Ca) 

(b) 

(e) 

(d) 

Fig. 2 

(c) 
technique for the grades within each record (see Fig. 2c): 

D = { d i j l l  < ~ i ~ N ,  0 ~ < j ~ 3 }  

P = { P l k l l  < ~ i < ~ N ,  1 ~ k ~ < 3 }  

B={a}~2{bi[1 ~ i ~ N } U { c i k [ 1  ~ i ~ N ,  

a = [I1~=1 hi] 

F o r l  ~<i ~<N, 0 ~ j ~  3, and l  ~<k~<3, 

l a F~ = N ~ i (a )  = bi 
bi = [clio, Pil  , Pi2 , Pia] 

t bi f~ = 4, ~rl(bi) = dio, 

c i~  = [dM, I c i k  is = 1, 

g(Pik)  = cik 

(D) 
each record from the remaining three (see Fig. 2d): 

D={d~-j l l  ~ i < ~ N ,  0~<j~<3} 
P = { p ~ ] l  <~ i <~ N }  
B={a}u{b~ l  1 ~ i ~ N } w { c i [ 1  ~<i~<N} 

The third implementation is by the use of the pointer array 

1 ~ < k ~ < 3 }  

r = Pik 

The fourth implementation simply splits the first data field in 
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For  1 ~< i ~ N ,  and 1 ~ k ~ 3, 

a = [[[~u=z b d, I a 1, = N, Try(a) = bi 

b, = [d,o, Pal, I bi [, = 2, ~ ( b 3  = d~o, =,(b,) = p~ 

g(Pi)  = ci 

A final example describes the D B T G  Repor t  concept  of  a set 
implemented by chain with next and prior  pointers. The set S consists of  an 
owner record with three data  fields, r, s, and t, and N member  records each 
with two data  fields, u and v (see Fig. 3): 

"rrl(a ) = r, ~'2(a) = s, 

For  1 ~ i ~< N, 

bi = [ui , vi , h i ,  Pi], 

7rl(bi)  = ui ,  

tbi+l,  g(ni) : -  ~a, 

I hi-1 ' 

: t ; ; ,  

D = { r , s , t )  u { u i , v i [ i < ~  1 ~ N }  

P : {ni , pi  [ O ~ i ~ N }  

B : {a) vo {b~ [1 <~ i <~ N)  

a :  [r,s ,t ,  no,Po], l a l , :  5 

7rz(a ) = t, rq(a) = n0, 

I b ~ 1 , = 4  

~ ( b 3  = v~, ~ (b~)  = . , .  

O ~ i < N  
i = N  

l < i ~ N  
i = l  
i = O  

) 
Fig.  3 

7rs(a) : Po 

7r4(bi) ---- Pi 



Toward a Theory of Encoded Data Structures and Data Translation 39 

5. P R E S C R I P T I V E  M O D E L  

The descriptive model presented thus far is useful as a formal tool for 
communication among implementers and serves as a basis for a component 
of the total data description task. Such data description facilities are needed 
by those attempting to improve data structure implementations, c11,1~) create 
data base systems simulators, (13,a4~ and construct data translation 
systems.{15,22 

The data translation paradigm is to develop a description of source 
and target data encodings and a procedural translation facility to describe 
the mapping. We elaborate on the data encoding model by adding transfor- 
mation functions which describe translations from one data encoding to 
another. 

Keep in mind that the prescriptive model describes the relationship 
between a source and a target data encoding; it is not a program for doing 
the translation. 

In the following definitions, E is some particular data encoding. 

Definition 5. If  d is a piece of information from some data that E 
encodes, encodeE(d) is the data item in E that encodes d. Recall that data 
items are the contents of a data field. 

Definition 6. I f f  is a data field in E, meaninge(f) is the meaning of the 
contents of f That is, encodeE(meaningE(f)) is the data item that is the 
content of the data field f 

Definition 7. I f f i s  a data field in a data encoding E'  such that E'  encodes 
the same data as E, transE'E(f) = encodeE(meaningE,(f)) = the translation 
into E of the contents o f f  

Definition 8. I fb  is a block in E, refE(b) is a pointer to b. I fp  is a pointer 
to b, ferE(p) = b. 

Definition 9. I f f  is a data field in E, valE(f) is the data item contained 
i n f  I f p  is a pointer field in E, valE(p) is the pointer contained in p. If  b is 
a block in E, va lE(b)= b. Note: If  p is a pointer field in E, g ( p ) =  
fetE(valE(p)). If  b is a block in E and pz and P2 both point to b, 
valE(p0 = val~(p~) = refE(b). 

Definition 10. If  ~1 ..... ~, are data items, pointers, or blocks in E, then 
consE(*l .... , ~,) is a block b in E such that valE(zr~(b))----*i. That is, 
b = If1 .... , f , ] ,  where for 1 ~ i ~< n, valE(f,-) = , i .  

We will now show how data encodings (A)-(D) above are related. In 
what follows, we will use superscripts to show what data encoding is being 



40 Shneiderman and Shapiro 

used. We will show how to derive (B) f rom (A), (C) from (B), (D) from (C), 
and (A) from (D). 

( A ) - + ( B ) .  N B = N  A = N. For 1 ~<i ~ < N  and 0 ~ j  ~<3, 
meaning~(d~) = meaninga(d~). We have 

bi~ = A 

bi~" = cons(transAB(rr;+l(~ri(aa))), ref(b•+0) 

a s = cons(llN=z biB0) 

(B) --~ (C). N c ~- N B = N. For  1 ~ i ~ N and 0 ~ j ~ 3, 

meaningc(d c) = meaning~(d~) 

a c = cons([IiN ] cons(trans,c(Tq(zri(a~))), 

refc(consc(transBc(~z(gB(Tr~(~ri(aB))))), 

refc(cOnsc(transBc(Tq(g"(Tr2(gB(~-2(zr~(aB))))))), 

refc(consc(transBc(Th(gB(zr2(gB(zr2(gB(zr2(~i(a~))))))))))))))))) 

(C)--+(D).  N D = N  c = N .  F o r l  ~ i ~ N a n d 0  ~ j ~ 3 ,  

meaningD(d~) = meaningc(d c) 

aD = cOnSD(I[iN=] cons(transcD(rq(~ri(aC))), 

refD(consD(transcD(Th(gC(~r~(Tri(aC))))), 

transcD(rrz(gC(~ra(lh(aC))))), 

transcD(~z(gC(~4(~ri(aC))))))))) 

(O) --~ (A). N A = N D = N. For 1 ~ i ~ N and 0 ~ j ~ 3, 

meaningA(d A) = meaningD(d D) 

a A = cons(tI~=~ cons(transDA(~i(Iri(aO))), 

transDA(~rz(gD(Tr~(Tri(aD))))), 

transDg(~r2(gD(~r~(Tri(aO))))), 

transDA(~a(gD(~r~(~r~(aD))))))) 
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Strong Equivalence 

Two encodings are strongly equivalent if they have the same block 
structure, pointer structure, and the value of each of the data fields in one 
encoding is equal to the value of the corresponding data fields in the other 
encoding. Thus two copies of a record on the same or a different disk pack 
are strongly equivalent. 

Weak Equivalences 

Two encodings are weakly equivalent if they have the same block 
structure and pointer structure but the values of the data fields differ in 
value. Thus, two DBTG record occurrences of  the same DBTG record type 
are weakly equivalent. If the fields had identical values, the records would be 
strongly equivalent. 

6. E N H A N C E M E N T S  T O  T H E  D E S C R I P T I V E  M O D E L  

This basic descriptive notation can be enhanced in numerous ways. 
To evaluate the efficiency of a particular encoding, a cost function can be 
associated with each pointer, C: P - +  T, where C is the cost function, 
P is the set of pointers, and T is the cost, typically in units of time or money. 
The cost of traversing a pointer within a block is generally less than inter- 
block traversals. The contiguous fields within a block are assumed to be 
available at zero cost. A probability of  request may be associated with each 
field to further refine the evaluative model. 

The storage space required can be determined by a simple count of the 
number of fields. We write r b Ii to indicate the number of fields in a block. 

~Z 

l f !1  = 1 i f f i s  inF,  and i fb  = [~1 ""*~], then [b 1i = Z~=I[ ~ 1i. 
To attach more meaning to the fields, that is, to provide an interpretation 

for the abstract encoded data structure, a value function can be invoked. 
For  example, to show that data fields all0 "'" d~v0 are in ascending order, 
we write 

val(d~o) ~ val(d~+l,O) , 1 ~ i ~ N 

Finally, we may consider inclusion of undefined fields. An undefined 
field is different from a null pointer field. Undefined fields are useful in 
describing space in a block that has been reserved for future entries. This 
allows for descriptions of partially filled tables or available space lists which 
contain pointer fields and undefined fields. Garbage collection, compaction, 
and reorganization become special kinds of translations. 
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7. C O N C L U S I O N  

The material in this paper provides the basis for developing a model of  
encoded data structures. The fundamental motive has been to characterize 
the contiguous and pointer-based relationship among fields in a storage 
facility. The model avoids issues related to physical devices and the details 
of  pointer implementation, such as whether pointers indicate absolute or 
relative storage addresses or disk region addresses. 

Other data description models pursue a more reductionist approach: 
Starting from high-level logical data constructs, they show how these 
constructs might be represented in the storage space. Our constructive 
approach to data description starts with a more precise low-level view and 
seeks to carefully model the data as they appear in the storage space. This 
more formal approach distinguishes between data fields and their contents, 
the data items. 

The model serves as a useful basis for describing part  of  the data - trans- 
lation task. The source and target data encodings can be described and then 
the prescriptive model can be used to show the relationship between them. 

We have not attempted to present a language or operators for data 
translation, but a prescriptive model which formally demonstrates a mapping 
between two data descriptions. This formal model is necessary if we are to 
prove the correctness of a translation and to show that no information has 
been lost. 

Further investigations are proceeding to describe hierarchically organized 
collections, implicit pointer techniques such as hash coding, and specific 
transformations such as the permutation of elements in a block or the 
replacement of  a block by a pointer. 
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