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Visual overviews of tables of numerical and categorical data
have been proposed for tables with a single value per cell. This arti-
cle addresses the problem of exploring tables with columns that
consist of cells that are distributions, for example, the distribu-
tions of movie ratings or trust ratings in recommender systems,
age distributions in demographic data, usage distributions in logs
of telephone calls, and so on. This article expands on heatmap
approaches and proposes a novel way of displaying and interact-
ing with distribution data. The usability study demonstrates the
benefits of the heatmap interface in providing an overview of the
data and facilitating the discovery of interesting clusters, patterns,
outliers and relationships between columns.

1. INTRODUCTION
Many data sets include distributions, such as age, weight, or

income distributions for numerous countries, counties, or cities.
An activity log shows distributions of activity level by hours in
a day or days in a month, whereas social media data can include
distributions of movie or trust ratings from users. The traditional
approach spreads the distribution information over multiple
columns, placing values or range of values in each column, for
example, age distributions using a separate column for each age
range (0–9, 10–19, etc.). This simple strategy is convenient but
makes it difficult to compare distributions as a whole. On the
other hand, reducing the distributions to single-number statis-
tics, such as median or average, is less informative than seeing
the distribution itself. Distributions have important properties
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such as uniformity, skewness, or bimodality, which can be used
to sort them. In addition, distributions can be clustered so that
similar distributions are together. There would be value in a new
technique that shows entire distributions in a single column.
We call this a “distribution column,” as each cell in this column
contains a distribution. This notion of distribution columns was
first introduced in ManyNets (Freire, Plaisant, Shneiderman, &
Golbeck, 2010). For example, Figure 1 (A and B) contains a
table of movies and the user ratings they received. Instead of dis-
playing only average movie ratings, the table includes a column
showing the ratings distribution.

Traditional table sorting, clustering, and interaction methods
do not deal with groups of columns that represent distribu-
tions, and therefore offer no easy way to check for correlations
between two distributions, (e.g., the age and height distribution
of children). Our motivation was to help colleagues analyze
trust and movie ratings from a recommender system using a
tabular interface. These users wanted to answer questions such
as, “Do raters use the whole rating scale or not?” or “Which
films receive both very low and very high ratings?” Professional
analysts are proficient users of table interfaces, but augmenting
them with distribution functionalities would provide powerful
tools to investigate such questions. There was no tool avail-
able for browsing or manipulating this data beside scrolling
through long tables. To deal with these issues, we extended our
visual analytics tool ManyNets. We added functionalities to it
to enable users to conveniently explore distributions by their
properties. To the best of our knowledge, this is the first visual
analytics tool to offer such capability.

This article describes the functionalities that augment table
interfaces to better handle distributions. In particular, we intro-
duce “distribution column overviews” that allow users to ana-
lyze multiple large distribution columns with limited screen
space. We focus on visual overviews that are customizable and
manipulable (see Figure 1). In Figure 1, the compact row-based
distribution column overview of (A) shows the entire column
without having to scroll through the table. We also added
the capability to sort the overview using distribution-specific
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78 A. SOPAN ET AL.

FIG. 1. On the left (i.e., A and B), a table where each row is a movie. Note. The columns are movie title, distributions of ratings received by movies, total rating
count and release year. (A) Rating distributions are presented as histograms inside table cells in column “user-film Incoming RATING.” (B) same table, with
distributions presented as heatmaps. Only part of the whole column can be shown and scrolling is required to see the rest. An aggregated histogram overview of
all ratings is visible at the top of the column, showing the global trend of ratings. On the right (C, D, and E) are examples where the the rating distributions are
shown in compact “row-based” overviews (with one or more table-rows mapping to a single pixel-row), which require no scrolling. C and D use heatmaps (similar
to those in B, sorted by two different table columns. C is sorted by movie title, whereas D is sorted by the highest values of the corresponding rating distributions;
we can see that most of the movies received a highest possible rating of 5 at least once. Heatmap representations can be replaced by other compact views of the
distribution, for example, (E) uses stacked box-plots, and sorted by the average value of the rating distributions (i.e., average movie rating) (color figure available
online).

properties such as skewness or bimodality and cluster it using
similarity-based algorithms. The distribution overviews are
linked to the original table, enabling analysts to perform stan-
dard table operations such as filter, sort, and select rows of
table. We investigated the design space of distribution column
overviews and report on designs we found useful. We present
examples from multiple application domains and a usability
study demonstrating the benefits while suggesting interface
improvements.

Our main contributions are as follows:

1. An interface to produce and manipulate customizable visual
overviews of distribution columns with features including
distribution-aware sorting, clustering, and filtering. These
overviews let users work with distributions as a single
column, sort by distribution properties (skewness, bimodal-
ity, etc.), cluster similar distributions, and identify outlier
distributions.

2. New methods to explore overviews of distributions coor-
dinated with tabular visualization. Integration with a table
lets users find correlations between distribution columns and
other columns, along with the standard table manipulation
features, such as sorting, filtering, and selecting rows.

3. Results from a usability study that demonstrate that after
a short training session users can interpret the distribution
column overviews correctly and can find clusters, outliers,
and trends.

2. RELATED WORK
Early work on tables tackled the problem of overviews but

did not consider distribution columns. In Table Lens (Rao &

Card, 1994), the default view is the overview of the whole table,
and a focus+context approach is used to expand some areas.
As the table grows larger, aggregation occurs at the cell level
and, as in our tool, users can choose the type of aggregation
used (e.g., average, min and max, etc.). Another early work—
InfoZoom (Spenke, 2001)—used an overview which is flipped,
with attributes located in the rows instead of columns. In this
overview mode, it is easy to browse and filter data; however,
this method sacrifices the traditional table’s basic property of
having all attributes of a record aligned together (Kobsa, 2001).

We default to using heatmaps to represent distributions.
Another option would have been to use parallel coordinates
(Inselberg & Dimsdale, 1990), but they are generally less com-
pact and harder to read, especially for high numbers of dimen-
sions. Heatmaps are heavily used in bioinformatics to visualize
microarray data (e.g., Gentleman et al., 2004; Kincaid, 2004;
Vehlow Heinrich, Battke, Weiskopf, & Niesett, 2011). They
provide high-information density and facilitate the spotting of
blocks and outliers in the data. Spotting is much easier when
similar rows and columns are placed close to each other using
sorting and clustering. When there is a low number of columns
(attributes), or when attributes are highly heterogeneous, it may
only make sense to sort and cluster the rows; this is the approach
we currently follow. In contrast, because bioinformatics appli-
cations deal with many relatively homogeneous attributes, they
tend to consider the whole heatmap as a matrix, and reorga-
nize both records and attributes to facilitate block and outlier
detection. Heatmaps are also used outside of bioinformatics; for
instance, Henry Goodell, Elmqvist, and Fekete, (2007) analyzed
conference data using a matrix representation of a heatmap
based visualization, displaying changes in keyword frequencies,
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EXPLORING DATA DISTRIBUTIONS 79

citation patterns and conference impact over time, with matrix
cell color intensity representing values.

General visual analytics packages, such as Spotfire (http://
spotfive.tibco.com) provide heatmap views but do not take
advantage of distribution-aware sorting and do not provide fine-
grained control over the process of abstracting large numbers
of data rows into a limited space. Developing better overviews
for tables with distribution columns is a step in that direction.
A fairly general-purpose visualization system that also relies
on clustered heatmaps is the Hierarchical Clustering Explorer
(HCE; Seo & Gordish-Dressman, 2007). HCE also provides
several overviews of its multivariate data, separated from the
actual data table, and its different overviews are linked to their
original table by brushing and linking. We follow a similar
approach but also allow the table to be filtered and sorted using
the overview itself.

HCE relies heavily on its namesake sorting method (hier-
archical clustering), also known as agglomerative clustering
or dendrogram-based sorting, to place related rows together.
In a standard dendrogram, the order of child branches within
their parent branch is essentially random. It is possible to com-
pute an optimal leaf ordering (Bar-Joseph, Gifford, & Jaakkola
2001) that rearranges leaves in order to maximize the similar-
ity between all pairs of adjacent leaves, at the cost of a slight
increase in computation time. We have added this refinement
to our dendrogram ordering step. To achieve quicker cluster
generation (the cost of building a similarity matrix is O(n2)),
some systems use several passes; for example, WireVis (Chang
et al., 2007) sorts similar accounts together by using a fast
keyword-based binning approach as a preprocessing step, and
only then applying hierarchical clustering; similarly, in John
Tominski, and Schumann, (2008), self-organizing maps are
used to speed up the process. Regardless of the sorting method,
a definition of similarity between pairs of objects to be sorted is
always required. For example, similarity metrics are used when
building self-organizing maps or generating nearest-neighbor
traveling-salesman problem (NNTSP) routes (used in ZAME
for fast adjacency matrix reordering; Elmqvist, Do, Goodell,
Henry, Fekete, 2008). Matrix reordering methods, such as
matrix diagonalization or principal component analysis (PCA),
also rely on an implicit definition of similarity. In the case of
PCA, Elmqvist et al., (2008) found it to be more complex and
of lower general quality than simple NNTSP. Common explicit
similarity metrics include Pearson correlation and Euclidean
distance. Histogram similarity metrics are extensively used in
the field of image search (Stricker & Orengo, 1995), and can
be readily adapted to compare arbitrary ordinal distributions.
Sung-Hyuk (Cha & Srihari, 2002) compares different similar-
ity metrics and introduces the Minimum Difference of Pair
Assignments (MDPA) metric, with both nominal and ordinal
versions. There is no clear consensus as to which methods are
best. We use MDPA and Euclidean distances for global com-
parisons (comparisons between rows that were not internally

normalized), and Kolmogorov-Smirnov, Euclidean, MDPA, and
area metrics for all other cases.

In most of these tools, individual attributes are of a scalar
nature, and heatmaps only arise when many of them are placed
next to each other in a table; iHAT (Vehlow et al., 2011), a
bioinformatics visualization tool, is an exception, as it sup-
ports distribution-aware, row-based aggregation. Distributions
in iHAT must be externally binned and are termed “multivariate
samples.” Row aggregation is based on the chosen clustering,
as users can choose to aggregate similar rows based on their
“similarity depth.” At the shallowest depth, all rows are aggre-
gated into a single “consensus row,” whereas at the lowest
depth (no aggregation), each row is represented as an individ-
ual heatmap. Once aggregated, rows can be sorted according
to any metadata available in the table. iHAT is oriented toward
genomic data, which is generally nominal, although it also
supports ordinal data. Within a nominal multivariate-sample
section of a consensus row, hues are determined by dominant
values, whereas intensity and saturation are used to convey the
relative frequency of these values. iHAT does not provide out-
of-table overviews of distribution columns (although a higher
level abstraction can be considered to be an in-table overview)
and has no support for brushing and linking between different
views, as the interface is designed to be single view. Although
it supports sophisticated sorting, it must be based on existing
metadata, which, in the case of distribution aggregates such
as skewness or bimodality, would have to be generated using
external tools. Other systems offer overviews detached from the
table itself, or the original data table is not visible at all, and its
contents must be queried through the overview.

Line graphs, such as stock-market quotes or network traffic
statistics, are conceptually similar to distributions. Given a bin-
ning strategy for a distribution, line graphs can be treated as a
sequence of numerical values, one per bin. For adjacent numer-
ical columns, each row of cells from these columns also fits
this general description (each column will map to a bin). The
semantic differences between line graphs, binned distributions,
and adjacent columns mandate which types of operations make
sense. For instance, the standard deviation is not defined for
time-series, but it does make sense for an ordinal distribution.
However, in general, overviews for one are readily transferable
to another. Kincaid’s Line Graph Explorer (LGE; Kincaid &
Lam, 2006) uses a Table Lens-like interface to display line-
graph data with a fisheye effect to reveal details. Similar to
our approach, LGE uses color to provide a compact heatmap
overview of the data, and clustering to bring similar line graphs
closer together. LGE only allows the comparison of absolute
values (e.g., using Euclidean distances), making the discovery
of shape similarity improbable.

A typical question in table visualization is whether sev-
eral columns are related. One option is to use parallel column
overviews that share the same sorting. Another option, when
testing for pairwise column correlation, is to use grids of small
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80 A. SOPAN ET AL.

plots or “trellis plots.” Trellises are commonly used as sec-
ondary visualizations, though Polaris (Stolte Tang, & Hanrahan,
2002) uses them in a primary role. Again, trellises are tailored
for single-value columns, not distributions; for example, they
could not show the correlation between a distribution of chil-
dren’s ages in a set of regions and the distribution of their
heights. We believe that distribution columns often provide
additional flexibility when compared to flat (single-value-per-
cell) tables and that generating overviews of these distribution
columns facilitates analysis.

Another interesting example of related work is that of
TimeMatrix (Yi, Elmqvist, & Lee, 2010), where the temporal
strength of connections between network nodes can be dis-
played as miniature histograms within the cells of an adjacency
matrix. In a sense, these histograms can be considered distri-
butions; on the other hand, because they are embedded in fixed
locations that correspond to individual nodes, and not to gen-
eral record/attribute cells, the TimeMatrix visualization cannot
strictly be considered a table display. Miniature histograms
can also be used inside node headers to represent aggregated
node connectivity over time, in a very similar row to our own
distribution column overviews.

Although there is a large breadth of related work, we have
found no examples, outside of iHAT (and perhaps TimeMatrix),
of distributions being used as such within a tabular visualiza-
tion. The closest work is probably LGE, which addresses the
visual scalability of large collections of linegraphs. However,
LGE uses a focus+context approach and does not deal with the
issues of linking multiple partial overviews on the same data.
In addition, LGE is intended to display a single column of line
graphs next to (but not inside) a table with traditional single-
valued cells; line-graph columns are not intended to be freely
mixed with traditional columns.

3. DESIGN OF DISTRIBUTION OVERVIEWS
Because tables often have too many rows to fit on the screen,

scrolling up and down is needed. When the data within a col-
umn exhibit a certain trend, or several columns are correlated,
overviews of these columns can help users to identify and char-
acterize them. The coordination of the overview with the table
view is also very important for meaningful analysis.

We propose two types of distribution overviews (see
Figure 2): (a) Aggregated single-cell overviews merge all the
distributions on the column into a single distribution (e.g., by
summing all histogram bars and rescaling to fit). They require
only a single cell of the table to be displayed and find their nat-
ural place at the top of the column, (b) Row-based overviews
draw compact versions of all distributions at once, merging
them only as required to conserve limited space. Row-based
overviews require more display space and are therefore placed
in panels on the side of the main table, or in separate coordinated
windows. In addition, row-based overviews can be combined
into multicolumn overviews.

Distributions can be represented using several visual encod-
ings, such as histograms, heatmaps, and box-plots. Heatmaps
are by far the most popular encoding in high-density visualiza-
tion applications, whereas histograms and box-plots are both
frequently used in stand-alone representations. For unknown
distributions, histograms are generally preferred. We adopt the
usual convention, with bins placed along the horizontal axis,
whereas vertical bar-height represents bin counts. A histogram
in each cell of the column is useful in comparing values across
bins, whereas heatmaps facilitate the global comparison of
many distributions. Box-plots, on the other hand, are typi-
cally used to display and compare bell-shaped distributions.
Within each box-plot row, we represent the maximum, mini-
mum, average, and a standard deviation above and below the
average by color-fields (see Figure 1E for an example). All of
these encodings can be used to represent individual distribu-
tions within a table cell (or the single-cell aggregated overview
at the top of the column), but only heatmaps and box-plots make
sense for compact row-based overviews, as histograms become
unreadable when vertically compressed.

Within a column, distribution cells can be compared by gen-
eral shape or by actual quantitative values. To compare cells
by general shape, their representations must first be normal-
ized; that is, histogram bar heights or maximum-intensity values
must be made relative to each cell’s local maximum, so that
height and intensity will only be relevant as compared to other
heights and intensities within the same cell. We refer to this
scaling as local, as opposed to global scaling, where bar heights
and maximum-intensity values are assigned to the highest value
among all the distributions in the column. Users can toggle
all column and overview representations between local and
global.

Distribution data can be either nominal (bins represent unre-
lated categories) or ordinal (bin order is important, as in contin-
uous values discretized into bins); other data-types, such as ratio
or interval, can be readily mapped to an ordinal dimension, fol-
lowing the approach in Vehlow et al. (2011). We allow users to
choose among different transfer functions that map bin values to
heights or colors. In the case of histogram bar-heights, users can
choose between linear, square-root or logarithmic mappings.
In the case of heatmaps, we map each normalized data-value
0 ≤ vin < 1 to a vout value using vout = 1 − (1 − vin)m; tuning
m allows either high or low values to be more visually distin-
guishable. An alternative mapping which highlights the central
ranges, used, for instance, in Kincaid and Lam (2006), is based
on the sigmoid function: vout = 2/(1 + e−mvin ) − 1. When gen-
erating heatmaps for ordinal data, we have used sequential color
schemes, based on those found in ColorBrewer (Brewer, 2004).
Users can choose from preselected color schemes such as white-
to-blue, red-black-green, yellow-to-green, or white-to-red. For
nominal data, we use ColorBrewer “qualitative” schemes. There
is no scheme that remains visually distinguishable for large
numbers of categories; beyond size 12, we cycle the colors but
recommend that analysts bin the categories to avoid this.
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EXPLORING DATA DISTRIBUTIONS 81

FIG. 2. Aggregated single-cell overviews and row-based overviews for a distribution column. Note. We encode distributions as histograms, heatmaps and box-
plots. Multiple distributions can be merged to create single-cell overviews (top right), but important patterns can easily be lost in this process. Row-based stacked
overviews (bottom-right) address this problem by squeezing visual encodings of each of the distribution cells vertically, at the cost of higher visual complexity
(color figure available online).

To guarantee that all rows are visible without overlaps, there
should be at least one vertical view-row per data-row; other-
wise, aggregation will be needed. If the number of vertical
pixels is Yp and the number of rows is Yr, each vertical pixel
will have to represent, on average, Yr

Yp
rows. When Yp > Yr,

each data row will be present in several adjacent vertical pix-
els, posing no problem. When Yr > Yp, there are two main axes
in the design space: which rows should be aggregated, and what
values should be displayed for aggregated rows.

• To map data-rows to pixel-rows, we currently use
Bresenham’s line-drawing algorithm, where each data
row ri contributes to the “nearest” pixel row rp, as
calculated by interpolation. Although it would be
possible to split data-rows over several pixel-rows,
having rows with extreme values split over several
pixels would make overviews very sensible to the
exact scaling. This corresponds to a straightforward
visual mapping. Semantic mapping is also possi-
ble: Although we assign exactly Yr

Yp
± 1 rows per

pixel, iHAT can assign arbitrary “similar” data-rows
per view-row. TreeJuxtaposer (Munzner, Guimbretière,
Tasiran, Zhang, & Zhou, 2003), a tree-comparison tool
designed to allow visual comparison of massive hier-
archies, goes one step further: Important (currently-
selected) data-rows receive greater level-of-detail than
other rows.

• To represent several data-rows within a single pixel-
row, ManyNets lets users choose a descriptor for each
distribution bin. Users can choose between maximum,
minimum, and average bin-values (as the number of
rows per pixel-row is variable, it is not a good idea
to use simple bin-sums as values). Each of these will
result in very different overviews for large Yr

Yp
ratios,

allowing the discovery of different types of outliers
and trends.

4. MANIPULATION OF STANDALONE DISTRIBUTION
OVERVIEW

When building row-based overviews, the sorting of the rows
is critical to bring patterns into focus; in addition, in large tables,
row order governs which data rows will be mapped to a single-
view row. This means that relevant detail may be affected by
neighbors. We support three sources of row-sorting information:

• Using a distribution property, for example, bimodality,
skewness, average, median, standard deviation, kurto-
sis, and minimum and maximum values. The sorting
helps reveal patterns and outliers in the distribution
data.

• Using similarity: either from all rows to an individually
selected row or to generate a hierarchical clustering,
which is then linearized to generate a sorting order.
This feature is useful when users want to see possible
grouping and similarity among the distributions.

• Using the row-order of the table it is based upon. This
feature helps to identify if the distribution column has
correlation with some other table column.

Because all bins use the same scale, the overall shape of
the distribution also conveys important information. By look-
ing at the sorted overview, users can understand the reasons
for the similarity, which may not be obvious without visual-
ization. To search and browse shape-related information, appro-
priate similarity-based pattern-matching methods are required.
Similarity-based methods rely on the notion of distance (or its
complement, similarity) between two distributions. We compare
all the distributions to one another to compute their pairwise
distance. The choice of distance metric depends on whether
distributions are nominal or ordinal. In the case of ordinal dis-
tributions, the use of a cumulative distribution function (CDF)
interpretation allows comparisons between distributions with
widely varying numbers of elements. This interpretation is not
available for nominal distributions, where adjacent values are
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82 A. SOPAN ET AL.

unrelated. We implemented both nominal and ordinal distance
metrics:

• Euclidean—useful for nominal and ordinal distribu-
tions; uses the Euclidean distance when considering
each distribution as a vector (where each bin represents
a dimension).

• MDPA—ordinal version of the algorithm described in
Cha and Srihari (2002). Cannot be used for nominal
values.

• Area—ordinal only; computes the area between two
CDFs. Uses normalized distributions to make this
comparison.

• KS—ordinal only; uses Kolmogorov–Smirnov dis-
tance, that is, the maximal distance between CDFs.
Uses normalized distributions.

Normalization implies that the distributions will be com-
pared according to their overall shapes, instead of using the
actual counts of elements in each interval. All metrics that com-
pare CDFs perform normalization (because CDFs should add
up to 1). Normalization is related to local versus. global scal-
ing (see section 3) and should be used consistently with it.
Using Euclidean or MDPA metrics and displaying the results
as heatmaps of normalized histograms will generally result in
the clusters being undetectable. After initial experiments, we
updated the interface so that, whenever Euclidean or MDPA
metrics are chosen, the overview is switched over to global
(non-normalized) bin scaling; conversely, when Area or KS
metrics are in use, overviews will be displayed using local
(normalized) scaling.

Computing similarity to a single specific distribution
requires n − 1 distances to be calculated; clustering, on the
other hand, requires O(n2) time to build the full distance matrix.
We perform cluster-based sorting of the distributions using
complete-linkage agglomerative clustering, with a second pass
to rearrange the resulting dendrogram using the optimal leaf
ordering algorithm described in Bar-Joseph et al., (2001). The
resulting leaf order is then used as the sort order. It is also pos-
sible to sort using a nearest-neighbor heuristic TSP, similar to
that used in Elmqvist et al., (2008); this approach is faster, but
ordering in the last rows tends to suffer.

4.1. Sorting and Clustering: Methods and Examples
We illustrate available sorting options using data sets from

movie recommendation systems and phone call domains. Our
movie recommendation data included distribution columns
from two movie rating systems, FilmTrust (Golbeck & Hendler,
2006) and MovieLens (GroupLens Research Project). Movies
receive multiple ratings from reviewers; by analyzing how
movies are rated by various groups, users can determine their
appropriate target audience, for instance, an average-rated
movie may be very popular among a specific group of people.

This cannot be learned just by looking at the aggregated single
cell overview.

Sorting using distribution properties. This is mostly use-
ful for ordinal distributions, as many of these concepts are
not applicable for nominal distributions. Although movies with
many ratings have also received more high ratings in FilmTrust,
sorting the overview by bimodality reveals a small group
of outliers—movies that received highly mixed reviews (see
Figure 3). For further analysis, we select the relevant section of
the overview. We filter the table to show only those movies, and
examine their rating pattern in a separate detached overview.
This could also have been accomplished by adding ”movie
bimodality” as a sorting column to the main table, and then
sorting the whole table by bimodality. The most controversial
movie (highest value of bimodality) in the data set was ‘Double
Indemnity’, but there are several close contenders for this
title.

Sorting by similarity to a distribution. This feature helps
users find distributions similar to a given one. The example
depicted in Figure 4, contains movies categorized as “science-
fiction” in MovieLens. We select a popular movie, Lost World:
Jurassic Park (1997), in the main table and then sort the
overview by similarity, using the Kolmogorov-Smirnov sim-
ilarity metric, to identify other movies with similar ratings.
The details and overview both show that these movies have a
bell-shaped distribution of ratings.

Sorting by clustering. Trends are easier to spot if simi-
lar rows are grouped together and clustering the distributions
facilitates that. After being clustered, the overview immedi-
ately shows the similar distributions forming groups in the
overview. We decided to check for differences in rating pat-
terns between users with different occupations (MovieLens
includes self-reported occupations for all users). We separated
rating-distributions from students and educators (Figure 5).
On the left are the students, and we see a small cluster of
“highly critical” raters (i.e., with many low ratings of 1 or
2 out of 5). On the right side are the educators, and we
see no similar cluster, revealing a difference between the two
groups.

Sorting by clustering: Multicolumn overview. Multicolumn
overviews can help reveal correlation between columns, by dis-
playing overviews of multiple columns side by side. The sorting
order of the first column is carried over to the rest. Our exam-
ple uses FilmTrust, a system that is both a movie recommender
and a social network of movie raters. Besides rating movies,
users can give other users a “trust rating,” ranging from 1 to
10. From the point of view of users, the distribution of all
their outgoing movie ratings can be analyzed as a distribu-
tion column, and so can the distributions of trust ratings that
they have received—and sent. The analyst who had been work-
ing with this data set hypothesized that users that rate movies
very highly would also assign higher trust ratings to their col-
leagues. Using our system, no such correlation is visible (see
Figure 6). Although users often give high rating to movies, trust
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EXPLORING DATA DISTRIBUTIONS 83

FIG. 3. A: Movie ratings in the FilmTrust dataset, sorted by bimodality. Note. At the very bottom of the overview are the movies with the highest bimodality:
users either love them or hate them. These 27 highest bimodally rated movies are selected to create a separate heatmap overview as in B. In C: the portion of the
filtered table containing only these movies (color figure available online).

ratings tend to be more moderate. ManyNets allows sorting
by simultaneous similarity of more than a single column. For
instance, in multicolumn overview clustering everything at
once and then looking at the cluster is also possible in addi-
tion to order any of the two columns independently of the
other.

External sorting. When sorting an overview according to
the row-order in the table it is derived from, it will update its ren-
dering whenever the table sorting changes. We can first sort the
table rows using any standard table sorting method, such as sort-
ing by the value of a selected column, and then apply the same
sorting in the distribution overview. This is useful to observe
correlation between that selected column and the distribution
column that generated the overview.

The VAST 2008 Mini Challenge 3 data set (Grinstein et al.,
2008) consisted of simulated telephone calls over 10 consec-
utive days. We have aggregated the calls into 100 partially
overlapping time-slices, 10 per day; each of these 100 slices
is displayed as a row in the table, and contains distributions of,
for example, the IDs of the speakers, ranging from 0 to 399
(see Figure 7). Sorting the distribution of call destination IDs by
start time, shows two different regions (see heatmap overview
in Figure 7; alternative overviews are available in Figure 9). Up
to row 70 (the first 7 days) show a daily occurring pattern of
calls, where call destinations with small ID received many calls
as compared to other areas. However, from Day 8 to 10, rep-
resented by rows 71 to 99, shows a different pattern. Suddenly
several destinations with higher IDs, including persons 308 and
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84 A. SOPAN ET AL.

FIG. 4. Movies with rating distributions similar to that of Jurassic Park (marked with red oval). Note. The row for Jurassic Park is at the top of the overview. The
histogram at the left shows the bell-shaped distribution of ratings for this movie (color figure available online).

FIG. 5. Left: ratings from students; Right: ratings from educators. Note. In both cases the rating distributions are clustered using Euclidean distance as a distance
metric. A cluster of low ratings by students is marked with red oval (color figure available online).

397, who were not specially active before, started to receive
many calls. At the same time, the previously popular destina-
tions became silent. This abrupt shift is not easy to find without
a complete overview. A separate closer look at the ego network

of the newly active IDs would still be needed to reveal the cause
of the change, that is, the suspects had switched to different
phone numbers to escape monitoring, but the structures of their
ego networks remained unchanged.
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EXPLORING DATA DISTRIBUTIONS 85

FIG. 6. Multicolumn overview: The left column is the distribution of ratings given by users to movies, the right column is the distribution of trust rating given by
users to other users. Note. The first column is sorted by similarity; the second column uses the same order. At a glance, there appears to be no strong correlation
between these variables (color figure available online).

5. TABLE-OVERVIEW INTERACTION
Data sets are displayed as tables. Multiple tables can be dis-

played at once, and it is possible for some tables to be built out
of aggregations of rows of other tables. For example, given a
large collection of individual ratings of movies by users, we can
aggregate this into a movie-centric table (“What ratings has this
movie received?”) or a user-centric table (“What ratings has this
user made?”). In both of these examples, distribution columns
arise naturally. This section describes how our tables interacts
with their overviews.

5.1. Placement of Overviews
The top of each column presents a distribution overview of

its contents, using the single-cell histogram style seen to the
right of A or B in Figure 1. Whenever a cell on the table
view is selected, a larger version of the corresponding col-
umn overview is displayed in a details-on-demand sidepane
(see A in Figure 8). If several rows are selected, the distribu-
tion formed by merging together all currently selected cells in
the active column is also shown within this sidepane (B in the
same figure). Finally, it is possible to detach any of the side-
pane’s overviews and display it in a separate window; detached
overviews are no longer linked to table selections and can be
moved and resized freely. Therefore, overviews are used in four
roles: (a) at the top of each column; (b) at the sidepane, as a

larger version (with additional controls to configure the col-
umn’s representation); (c) as an overview that only includes
values from currently-selected rows; and (d) detached.

5.2. View Coordination
When rows are selected, all nondetached overviews imme-

diately echo the selection. Histogram bars highlight the relative
contribution to each bin of selected rows, whereas row-based
overviews highlight the selected rows themselves. When sev-
eral data rows are mapped to the same overview row, the
overview row will be selected as soon as one of its data rows
is selected. The converse is also true: If overview rows are
selected, all related data rows will be selected in the corre-
sponding table. Choosing values from histograms results in all
data rows with a nonzero value in the corresponding bin being
selected. Therefore, overview-selection can be used to answer
the question “What rows contribute to these values?” whereas
table-selection can answer, “What values are contributed by
these rows?” Therefore, whenever users select through the
overview, the corresponding table rows are also selected and
highlighted with different color, so they can go back to the table
view and observe detailed information of the selected entries.
For example, if a movie’s rating distribution is selected from
the overview, the table row for that movie is also highlighted,
which contains all the original information about the movie title,

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
M

ar
yl

an
d]

 a
t 0

7:
38

 0
4 

A
ug

us
t 2

01
4 



86 A. SOPAN ET AL.

FIG. 7. Overview of destination column of VAST 2008 Mini Challenge 3 time-sliced telephone call data; after the first 7 days of calls (red dashed line), represented
by 70 rows, several trends change (marked by red ovals). Note. Highly active low-ID destinations (leftmost oval) stop receiving calls, whereas previously inactive
high-ID destinations (rightmost three ovals) start taking in calls. See Figure 9 for alternative overviews of this data set (color figure available online).

release year, genre, and so on. Selected data rows can quickly
be filtered into a new table. The new table can contain either
only previously selected rows or only previously unselected
rows. This allows interesting subsets of the data to be isolated
and explored. Alternatively, keeping the mouse pointer over an
overview displays a pop-up that describes the data rows that
correspond to that position. Both selection and hovering can be
used to provide details-on-demand.

5.3. Sorting Tables
Row-based overviews can be sorted in more ways than the

table columns themselves: Clicking on any of the table’s head-
ers sorts the corresponding column according to its the values
(if it is not a distribution) or average values (if it is). Therefore,
we allow users to apply complex overview-driven sortings to
the main table by adding “sorting columns.” For instance, it is
possible to add a “skewness” column by sorting an overview by
skewness and then pressing the corresponding button (labeled
C in Figure 8). This will result in a new skewness column in
the main table, showing the skewness values for all the distri-
butions in the overview. If the overview is sorted by clustering,
the generated sorting columns will contain the sequential order
of rows in the overview. This way we can get the same ordering
of rows in the main table as is in the overview. So users can sort
the pixel rows in the overview by the table and vice versa.

Because the ordering of row-based overviews can be set
independently from that of the main table, ManyNets has a
“graphical label” (see callout in Figure 8) to encode, in the
length of miniature horizontal bars, the current position of each
row of the overview in the main table. Within these labels,
currently selected rows are assigned a dark-green/bright-green
color scheme, to distinguish them from unselected rows.

5.4. Configuration
Overviews can be configured in a settings panel in the details

pane; the settings themselves are hidden unless requested.
Figure 8 shows available settings for a heatmap overview. In this
case, controls for sorting options, bin height mapping (local or
global), and intensity mapping are visible. So if users choose
to generate heatmap overview, first they need to configure how
they want to sort the overview: sort by original table, sort by
distribution properties (such as skewness, bimodality, etc. ), sort
by similarity and cluster by similarity are the available options.
If they choose sort by similarity or clustering, they will be
provided with another list of available similarity metrics from
where they can choose how to calculate the similarity metrics
for the distributions. The intensity scale is to vary the color
intensity and contrast of the heatmaps. Tool-tips are available
for all the configuration options, and incompatible options are
highlighted with red borders.
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EXPLORING DATA DISTRIBUTIONS 87

FIG. 8. General view, with current column overview (A) and current selection overview (B). Note. The options for the current overview are displayed (or hidden)
by clicking on the options button (F). Button (C) adds a sorting column with the current sorting to the table. The overview can be detached by clicking button (D).
Finally, users can choose among recommended settings by clicking on the grid button (E); this brings up the dialog similar to that of Figure 9. The zoomed region
demonstrates graphical labels for overviews and selected-row highlighting in row-based distributions (color figure available online).

The parameter space for these settings can be overwhelm-
ing for first-time users; therefore, we have added a “show-
me”option (marked as E in Figure 8). This brings up a dialog,
displayed in Figure 9, with a set of alternative fully configured
overviews appropriate for the current data-type; clicking on any
of these options selects the corresponding settings. Because
generating cluster-sorted overviews of large amounts of data
can require a significant amount of time, small (100-row) ran-
dom samples are used to render the corresponding thumbnail
overviews.

6. USABILITY STUDY
We believe that ManyNets is unique in supporting distri-

bution data in a single cell and providing a very rich set of
interaction techniques to manipulate and analyze distribution
data. For example Microsoft Excel and Tableau (http://www.
tableausoftware.com) can represent single column or groups of
columns as heatmap, but these columns cannot be manipulated
as a group. On the other hand, Spotfire provides clustering of
distributions but it lacks features like distribution aware sorting,
multicolumn overview, global vs local comparison of values,
sorting by similarity, rich integration with table, etc. Hence, we
have chosen an objective-based approach [Friedman and Wyatt,
1997]. In such an approach, certain reasonable objectives are
defined for a new system, and the evaluation strives to demon-
strate that these objectives have been achieved. Our goal in this

study was to investigate if users could use the interface to obtain
visualizations that allowed them to answer representative ques-
tions effectively and efficiently. We also wanted to observe the
strategies that users chose, and the problems they encountered,
gathering feedback and suggestions for further improvement.

6.1. Procedure
The data set included 3,018 records of census data of popula-

tion age-distributions in U.S. counties (see Figure 10). Because
analysts have very little availability, are hard to recruit for a
user study, and the data used in the study are simple enough
to be understood by students, the participants were 10 grad-
uate students from various departments of the University of
Maryland. None of them was a member of the development
team.

Training consisted of reading a printed manual, watching
a demonstration and interacting with the tool according to
a predefined script (including examples of analyzing movie
ratings distributions from the MovieLens data set), and finally
answering two training questions. When the participants could
answer the training questions correctly, they were considered
ready to perform the first three study tasks. After the third
task, additional training was provided on similarity-based
sorting, and the remaining tasks where completed. Overall,
each test took about 1.5 hr, of which about 30 min consisted
of training. Participants were encouraged to think aloud while
performing the tasks. Observers recorded tasks-completion
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88 A. SOPAN ET AL.

FIG. 9. Grid interface to visually select a fully configured overview. Note. One of the overviews was used to generate Figure 7 (color figure available online).

times and errors, if any. Because the participants needed time
to understand the tasks, we gave them time to read the task
description before starting the timer. Upon completion of
the tasks we debriefed the participants, to learn about their
feedback regarding the effectiveness of the tool, ease of using
it, whether they found any task to be particularly difficult, and
their suggestions for improving the tool.

Each task had two stages:

• Interacting properly with the interface to obtain the
appropriate visualization of the age-distribution col-
umn.

• Once the appropriate visualization was obtained, the
participants had to interpret the information presented
in the visualization to draw the correct conclusions and
properly answer the questions.

For each task, the observers recorded task performance and
time for each of the two stages. If the participants obtained the
wrong visualization, they were given hints (for an example, see
task 6) and were encouraged to try again.

6.2. Tasks
Seven tasks were used (see Table 1) for this study, starting

with Tasks 1 to 3 followed by Tasks 4 to 7 in random order. The
tasks were designed to test the usability of the main features of
the interface (as noted in parentheses in Table 1).

6.3. Results and Discussion
The participants were able to select the suitable features

and to effectively interact with the tool in order to obtain the
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EXPLORING DATA DISTRIBUTIONS 89

FIG. 10. A sample U.S. county-wise population table, where each row represents a county and the columns are, from left to right: U.S. county names, age
distribution (distribution of population of different age groups), state, and total (total population counts). Note. The table is sorted by the Total column (color figure
available online).

correct visualizations. Only two participants needed an addi-
tional attempt to produce the multicolumn overview (Task 3).
This was due to mistakenly clicking the “add/sort column” but-
ton (which is used to add an additional column to the main table
sorted in the same order as the overview, not to add additional
column to the multicolumn overview) instead of choosing the
correct type of the overview (multicolumn). This suggested that
we should have better labels for the buttons, to clearly differenti-
ate between these two options. One participant forgot to change
the intensity scaling scheme from Local to Global while per-
forming Task 6. This suggests that the scaling scheme should be
automatically changed to Global when choosing the Euclidean
similarity metric and to Local while choosing the other similar-
ity metrics. Some participants were confused by the graphical
label on the left of the row-based overviews. It was meant to
relate the position of rows in the overview with their position
in the main table, but this had not been explained in the train-
ing because we had tried to focus the study on the overview
interpretation. Moreover, participants requested access to more
details about each row (beyond mouseover information), which
is also provided in the main table. All of the participants were
able to obtain the expected insights from the visualizations and
provided accurate and full answers to the questions.

The M ± SD of the interaction and interpretation times of
Tasks 1 to 7 are presented in the Table 1. For all tasks, partici-
pants were able to produce produce the required visualizations
(M ± SD = 40 ± 24 s) and interpret the information so as to
correctly answer the questions (M ± SD = 18 ± 9 s). However,
there is a large difference in both interaction and interpreta-
tion times among the tasks; for example, the time for Task
3 was much longer than for the other tasks. Task 3 (multicolumn
overview) was much more complex and required manipulating

two columns and more interaction steps than the other tasks.
In contrast, the interpretation times of Tasks 1 and 6 were much
shorter than for the other tasks. Task 1 was indeed much sim-
pler and required only the identification of the highest bin count
in the aggregated histogram. The interpretation of Task 6 also
required pointing out a row which had much higher intensity
than the other rows. Users thinking aloud explored multiple
ways of approaching the tasks, but most of them eventually
found the right way. Users familiar with standard keyboard
shortcuts were able to accomplish the interactive tasks much
faster than others. For example, one of the participants was
already familiar with netbeans platform (that we used to develop
our tool), and its window manipulation features and took much
less time to interact with the interface. This might explain the
high standard deviations of the interaction times across tasks.
During the debriefing, typical comments included, “The tool
is useful and straightforward, easy to use after demonstration
and it was not hard to learn,” “The sorting options give differ-
ent ways to visualize these types of data,” “It allows handling
a lot of information, includes a lot of options,” “The heatmap
provides a nice improvement over distribution data presenta-
tion. When using the heatmap overview with the different types
of sorting, it is easier to see patterns, and the differences are
more obvious,” “It shows the big picture and also the outliers.”
Two participants also asked to analyze the data from their own
research with our tool: “I can use it in the information retrieval
domain. In this way I can present distributions of thousands
of documents and compare them by the frequency of different
terms” and “I believe this tool can be very useful in the edu-
cation domain (Educational Measurement and Statistics), for
example, comparing distributions of exam grades, binned by
different questions”.
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FIG. 11. Task 2: Sorting according to skewness of the age distributions of all U.S. counties (color figure available online).

FIG. 12. Task 3: Multicolumn overview sorted by states. Note. The AgeDistribution column and the categorical State column are displayed side by side. Each
state is presented by different color. At the top, we can observe that the counties from Utah stand out from the rest; their population is younger than that of other
states (color figure available online).
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FIG. 13. Task 5: Cluster age-distribution column to compare shapes of distributions, using the Kolmogorov-Smirnov metric (color figure available online).

Suggestions for improvement included, “Sometimes I wish
things could be circled/annotated. For example the clusters,”
“When comparing side by side you should make it on the same
window so you don’t have to match the size separately each
time,” “It would be better if I could see how many windows
are open and if I could select the windows from the tool bar
and switch between them easily.” Participants also requested
access to more details about each row (beyond mouseover
information).

In summary, the study demonstrated that after a short training
period, participants were able to answer representative ques-
tions using the tool, at high level of accuracy and within a
reasonable period. Using the overview interface, participants
were able to effectively and efficiently produce overviews of
the distribution data and to use the sorting options to discover
distinctive patterns, clusters, and outliers, pointing out global
trends and relationships between columns.

7. CONCLUSION AND FUTURE WORK
We have addressed the problem of creating overviews

of tables that contain distribution columns. Distribution

columns arise naturally in a number of scenarios that involve
aggregation. ManyNets is general enough for use in cases of
distribution-like data, such as independent, adjacent columns or
line graphs. It can be readily ported to any tabular interface,
such as Table Lens, and the effort to add additional metrics
or visualizations should be small due to good code modular-
ity. Having distributions spread over multiple columns does not
let the users operate on them as a group, whereas the ManyNets
interface handles distribution data as a single column and makes
it possible to manipulate them all together considering their
distribution specific properties. Visual overviews enable users
to see patterns, similarities, and outliers. Moreover, the coor-
dination with the table provides understanding of correlation
between columns and the option to filter and select subset of
data easily.

This work analyzes several aspects of distribution overviews,
including generation, sorting, and clustering. Similarity-based
ordering in general and clustering in particular are specially
important, because statistical properties (e.g., average, variance,
bimodality) are not useful in nominal distributions, and often
not even in ordinal distributions. Placement of overviews is also
a concern; we identify three likely candidates: at the top of
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EXPLORING DATA DISTRIBUTIONS 93

FIG. 14. Task 6: Cluster age-distributions to compare bin-count values of distributions, using the Euclidean distance similarity metric (color figure available
online).

each column, in a details-on-demand sidepane, and in a detach-
able pane or dialog. We address the problem of choosing the
best options for a given overview by providing users with a
context-sensitive grid display of recommended settings.

We illustrate our approach using examples drawn from the
domains of recommender systems, VAST 2008 MiniChallenge
3 phone call data, and U.S. Census data. We have found several
interesting trends and outliers. In the case of MovieLens, we
characterize differences in film ratings between students and
educators. In the case of FilmTrust, we disprove the hypoth-
esis that high-rating users will also assign high trust ratings
and quickly locate films with high bimodality. The key shift in
call patterns from the VAST data set is clearly visible in our
overview. The mere calculation of the statistical metrics (e.g.,
standard deviation, skewness, etc.) of the distributions and sort-
ing them according to those metrics cannot provide the users
sufficient understanding on the overall distributions. Presenting
them as a visual overview can help users see the patterns and
the shifts. The usability study also confirms that the participants
not only were able to spot the clusters and the outliers, but also
could understand, among all the distributions in a column, why

and where the similarity and the differences are. For example in
Task 7 they could spot easily that several counties from Florida
have more younger population than people of other age range by
looking at the clustered distribution overview. For Task 4 they
could find similar patterns and interpret why they were simi-
lar. Only sorting the distribution data and presenting them as
a sorted list would provide the similarity measure but would
not generate the understanding about why they are similar; our
overview facilitates this understanding.

The results of the usability study suggest that the distribu-
tion overview interface is learnable in a short period and its
functionality is beneficial to provide overviews of the distribu-
tion data, which facilitates discoveries of distinctive patterns,
clusters, and outliers. In addition, our interface supports explo-
ration of global trends and relationships between columns. The
usability study also provided valuable interface improvement
suggestions. We improved ManyNets by changing the button
labels to make them unambiguous. We made it possible that
global and local scaling would change automatically depending
on the selected similarity metric; for example, choosing MDPA
would make the scaling global and choosing Area metric would
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94 A. SOPAN ET AL.

FIG. 15. Task 7: Side-by-side comparison of distributions from two sets of counties after clustering, here age distribution of Florida (FL) and Utah (UT); both
overviews have been clustered using the Kolmogorov-Smirnov similarity metric (color figure available online).

make it local. Even though details about the rows are in the main
table view, participants suggested more details in the tooltip.
Participants also wanted to annotate interesting regions in the
overview, annotate the clusters, and save the image to share with
others.

Future work includes exploring faster clustering algorithms,
as our algorithms are still slow when used on large datasets
(O(n2) complexity and worse). The most appropriate clustering
algorithm from a visualization point of view (a trade-off
between quality and interactive speeds) remains an open
question.
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