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ABSTRACT 

Semantic substrates are spatial templates for networks, where 
nodes are grouped into regions and laid out within each region 
according to one or more node attributes. Analysts’ ability to 
design their own substrates leads to a different approach than 
other more automatic approaches to layout nodes (force-directed, 
circular, etc.). While the semantic substrate approach provides 
more interpretable node locations, sometimes a set of nodes is 
compressed into a small space on the display, leading to node 
overlap. In this paper, we significantly improve this situation by 
introducing the node aggregation mechanism in the context of 
semantic substrates. We illustrate this functionality in a document 
citation network and provide pros and cons of the approach. We 
conclude with guidelines and future directions for this research. 
Throughout the paper, examples are illustrated with NVSS 3.0, 
the network visualization tool developed to explore the semantic 
substrate idea. 
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1 INTRODUCTION 

Networks from a diverse set of domains have lead to numerous 
visualizations [9] to support the tasks of domain experts that 
include detecting clusters, identifying interesting nodes, and 
finding interesting relationships between nodes through link 
patterns ([6], [7] provide a taxonomy of such tasks). Many of 
these visualizations focused on dealing with the presentation of 
node-link diagrams following several guidelines, such as 
minimizing link crossings and maximizing symmetry, commonly 
known as graph drawing aesthetics ([11], [14]). However, giving 
these guidelines the highest priority leads to arbitrary location of 
nodes on the display. To improve the comprehensibility through 
the goal of interpretable node location lead to the semantic 
substrate idea. The benefits of semantic substrates were illustrated 
in the legal precedent domain [6]. Furthermore, guidelines on how 
to design semantic substrates were reported by illustrating them in 
two case studies [19]. 
 Semantic substrates, first, group nodes into rectangular regions, 

and then lay them out within each region according to user-chosen 

node attributes. Link visibility is controlled by source and 
destination regions and attributes used to place nodes within 
regions.  
To reduce complexity in dense networks, we introduce node 

aggregation in semantic substrates. This powerful addition, when 
combined with the filtering and details-on-demand functions 
enables analysts to detect patterns, gaps, outliers, and clusters in 
large datasets.   
In our strategy, node aggregation is based on replacing all the 

nodes in a grid cell with a single metanode. Grid cells are the 
result of using the GridPlotXY placement method of NVSS ([19]), 
where x- and y-axes are used and they each represent the values of 
a node attribute. In this paper, we illustrate node aggregation in 
the context of the GridPlotXY placement method; however, it 
could be generalized to other placement methods.  Analysts can 
easily switch between  nodes and metanodes.  In the nodes mode, 
all nodes are displayed. In the metanodes mode, nodes in grid 
cells are aggregated into a single large metanode. The paper 
illustrates how these modes are useful in scaling up to explore 
much larger datasets than was possible in our earlier work. Our 
broadly applicable strategy depends only on aggregating nodes 
with similar attribute values, avoiding costly clustering 
algorithms. 
Section 2 reviews relevant work to node aggregation. Section 3 

illustrates the process of exploration of an example dataset in the 
context of node aggregation. Section 4 offers guidelines for node 
aggregation and gives examples based on section 3. Section 5 
details future work and section 6 concludes the paper. 

2 RELEVANT WORK 

As the number of nodes and links increase, meaningful network 
exploration becomes more challenging for analysts.  While larger 
displays are modestly helpful, several strategies have been 
employed to reduce the complexity of networks such as: node 
aggregation, focus+context techniques, link aggregation and 
routing, graph drawing aesthetics, and matrix-based 
representations.  
Among the node aggregation approaches, PivotGraph [1] and 

Jambalaya [5] show the closest characteristics to our work in 
semantic substrates. PivotGraph [1] “rolls-up” a graph to produce 
a summary view of nodes and links on a two-dimensional grid 
based on a node attribute on each of the axes, which is similar to 
node aggregation in one of the regions in NVSS. While 
PivotGraph allows analysts to change the node attribute on the 
axes and animates the transition, NVSS allows analysts to change 
the node attributes via its Substrate Designer interface. 
PivotGraph also uses size coding for metalinks (besides 
metanodes). Jambalaya [5] uses a graph metaphor to show 
connections between concepts via links. Concepts are similar to 
regions in NVSS. Concepts can contain sub-concepts, which 
resembles node aggregation (concepts to sub-concepts are similar 
to metanodes to nodes). Nodes can be placed manually or 
automatically by a structural property of nodes but not by a node LEAVE 0.5 INCH SPACE AT BOTTOM OF LEFT 
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attribute. Links can be color-coded according to their types, which 
is determined by their source and target classes. 
Several approaches use multiscale visualization ([24], [21], 

[12]). Such applications usually are able to handle very large 
graphs and provide analysts to group nodes to metanodes and 
ungroup them. In Grouse [21], nodes are grouped into metanodes 
using hierarchy information and the layout is based on topological 
features that are computed from the graph structure. Analysts are 
able to open and close metanodes on demand and layouts are 
computed as needed as the user explores the network, which 
enables fast response for very large networks. Tulip [12] enables 
analysts to manage clusters (group and ungroup nodes) as well, 
and although it supports node attributes, there is no layout 
strategies using node attributes. However, a plug-in capability 
allows defining new layout algorithms. Link visibility based on 
node attributes also has not been reported. SocialAction [2], 
designed primarily for social networks, uses a force-directed 
layout and visually surrounds clusters of nodes with a convex 
hull. The clusters are determined using hierarchical clustering, 
with interactive parameter control by analysts, on the network's 
structure and not the node's attributes.  Each cluster can be 
collapsed to a metanode where the links become metalinks. 
Metanode size and metalink thickness represent the number of 
nodes and links they represent. 
Several applications do not reduce nodes into metanodes but 

use visual clustering and provide filters to cope with the 
complexity. NicheWorks [3] clusters nodes by placing them close 
to each other and doesn’t reduce them to metanodes. It uses an 
initial layout (circular layout, hexagonal grid, and tree layout) and 
through incremental algorithms (e.g. steepest descent and 
simulated annealing) computes the final layout. NicheWorks was 
designed to visualize large graphs (up to 1,000,000 nodes) and 
and supports filtering based on node attributes. Osprey [13], a 
domain specific tool for biological researchers, also handles large 
datasets and provides node filters based on attributes. However, it 
doesn’t provide layouts based on node attributes and doesn’t 
reduce nodes into metanodes. 
The use of hyperbolic geometry in networks ([22], [23]) 

exemplifies focus+context techniques to cope with complexity. 
Although they provide greater detail for the focused areas, they 
may distort the overall view of the network, which leads to 
difficult navigation. These techniques do not aggregate nodes. 
 Another strategy to reduce complexity in networks involves 

links. Becker et al. [4] reduces the display of double directed links 
between two nodes to a color- and thickness- coded straight line. 
Another method is to draw part of the links. Flow Map Layouts 
[16] reduce the amount of links by combining common parts via 
edge-routing algorithms. Other techniques to organize links 
include aggregating them using node hierarchy information [10], 
which improves link display. 
 The application of graph drawing aesthetics [11], [14] could be 

considered as another strategy to reduce complexity of the 
network visualization. Principles, such as minimization of link 
crossings, organize the display to reduce the complexity. 
However, these techniques seem to place nodes arbitrarily and not 
according to node attributes. 
Matrix-based approaches (Ghoniem et al. [18], NodeTrix [17]) 

provide an alternate view to the node-link diagrams. They reduce 
display complexity by avoiding drawing nodes and links in 
traditional ways. In such representations, the spatial structure of 
the network is hidden. NodeTrix combines matrices with node-
link diagrams to give a sense of the spatial structure (not based on 
node attributes) and simplifies the display by keeping matrices for 
parts of the network. In addition, interactive operations, such as 
sorting matrix columns in terms of attributes and filtering, are 
provided. 

3 EXAMPLE: TOBIG DATA 

This section shows how node aggregation helps analysts 
explore a document citation dataset. We designed the substrates in 
consultation with our collaborators. Our main collaborators are 
Prof. Noshir Contractor at Northwestern University and Assistant 
Prof. Steve Harper at James Madison University. The dataset has 
Tobacco researchers, the documents they wrote, and the keywords 
used in these documents. Our collaborators have been interested 
to find patterns and relationships to answer several questions 
including what topics emerged over time in this field; when, how, 
and by whom they emerged; what the expertise of authors is, and 
in which areas. 
Nodes represent authors, documents, and keywords. There are 

29 authors, 1,700 documents, and 2,567 keywords, totaling to 
4,296 nodes. Links in the dataset are directed and represent the 
following relationships according to their source and destination: 
Authors write documents, documents cite documents, and 
documents use keywords. There are attributes that depend on the 
“type” of nodes. Those attributes are present for the other types of 
nodes (as NVSS only accommodates nodes having the same set of 
attributes) and they are conveniently ignored where they are non-
applicable (which is a work-around and for NVSS to support 
different types of nodes could be considered as future work). The 
type attribute has values “Author,” “Document,” or “Keyword.” 
The name attribute is the name for authors, the title for 
documents, and the name for keywords. The year attribute is the 
first year of publication for authors, the year of publication for 
documents, and the year of the first document that it appeared for 
keywords. The attribute CR is only applicable to authors; it stands 
for “Citations Received” and it actually represents the author’s H-
score (an index to characterize the scientific output of a 
researcher, where the researcher has h papers that are cited h or 
more times, [20]). The attribute LCS is only applicable to 
documents; it stands for “Local Citation Score” and it represents 
the number of times the document was cited by other documents 
in this dataset. Count is only applicable to keywords and it 
represents the number of appearance of this keyword in 
documents. 
The semantic substrate in Figure 1 has three regions, each using 

a value of the type attribute. The location of the regions from top 
to bottom is in line with the directionality of the links: authors 
write documents and documents use keywords. Year is used along 
the x-axis of all regions consistently. CR, LCS, and Count are used 
along the y-axes with a consistent bin height, 5 for authors and 10 
for documents and keywords. Most nodes seem to have lower 
values and tend to overlap in small places. The dataset is dense in 
terms of the links as there are 1,770 author-to-document, 4,966 
document-to-document, and 9,649 document-to-keyword links 
(total = 16,385). The MODE section has modes of aggregation: 
“Nodes” and “Metanodes.” 
Node overlaps in lower values of LCS and Count suggests that 

it might be better to have another substrate that gives more space 
to the lower values. The y-axis of regions in Figure 2 is manually 
created in the Substrate Designer of NVSS to support 
conceptually distinct categories for each node type (For strategies 
to create uneven distributions see Aris et al. [8]). For example, 
authors with H-score between 5 and 9 are treated similarly, so are 
allotted the same horizontal band. 
When compared with Figure 1, Figure 2 has a better spread of 

nodes although there are still cells that have more nodes than the 
available space. Keywords having Count = 1 are such cells. In 
addition, the number of links exceeds the limit for a 
comprehensible display. Figure 3 (left) shows all 9,649 document-
to-keyword links. 



 

 

Figure 1 An initial semantic substrate is applied to the 

ToBIG dataset, where nodes represent authors, documents, 

or keywords, and links represent “Author writes Document”, 

“Document cites Document”, or “Document uses Keyword”. 

Nodes are grouped into regions using the type attribute with 

“Author”, “Document”, and “Keyword” values while they are 

placed using Year along the x-axis and CR, LCS, and Count 

along the y-axes. 

 
 
 

 

Figure 2 A different substrate is applied to the data in Figure 

1 upon seeing node overlap in lower y-values. Year on the 

x-axis consistently binned into 5-year periods, while a 

custom binning is applied for CR, LCS, and Count on the y-

axes different for each region. 

 

Figure 3 Due to their large number (9,649), the document-

to-keyword links are beyond the limit of comprehension 

(left). In the metanodes mode (right), where nodes in cells 

are aggregated to metanodes, the display becomes simpler 

and more comprehensible. Metanode size indicates the 

number of aggregated nodes. 

Under the MODE section on the control panel (Figure 2), 
analysts click “Metanodes” to aggregate nodes. The nodes in each 
cell are aggregated to a metanode. Links between metanodes 
become aggregated, as well. There is a link between a metanode 
and another node if there is a link between at least one of the 
children of the metanode and that other node. The node display 
becomes much simpler and the links become more 
comprehensible (Figure 3, right). 
 

Looking at Figure 3 (right), it seems that all or almost all possible 
links are present. Analysts can further investigate by applying 
filters (Figure 4). 



 

Figure 4 Restricting the links in Figure 3 (right) to the 90-94 

range and looking at the documents that are cited once in 

the dataset. Interestingly, none of them uses any of the 

most highly used keywords. 

By using both the LCS and the Five Years filters on the Document 
region, analysts restrict outgoing links to the most cited 
documents in the 90-94 year range. By looking at the document-
to-keyword links, analysts can quickly iterate through all the 6 
categories in the Document region to see the usage patterns of 
Keywords. Figure 4 shows the links from documents that have 
been cited once in the dataset. Interestingly, none of these 
documents have used any of the most highly used Keywords 
introduced in the same Five Years bin. Upon noticing this 
interesting fact, analysts can quickly browse the other 5 categories 
in the Document region within the same Five Years bin to see 
whether this was also true with the other groups. Since space is 
limited in this paper, we show only 2 categories (Figure 4 and 
Figure 5). Analysts find that most of the other categories use the 
most highly cited Keywords (specifically with Count = 0, 2, 3-9, 
10-29) except one other category, which is the 30-99 (Figure 5). 
The link from this category of documents to the most used 
keywords is missing! In other words, this interesting fact emerges: 
the most cited keyword introduced in the same 5-year period has 
not been used by any of the most cited documents! 
 

 

Figure 5 Iterating over the other categories in the 
Document region within the same Five Years bin (90-94) 
to see the citation patterns reveals even a more interesting 
fact than the one in Figure 4: The most highly used 
keywords are not used by any of the most cited documents 
within the same 5-year period! 

Clicking on the metanode representing the most highly used 
keywords gives a list on the control panel (Figure 6, the table on 
the right hand side). Putting the link filters only in the Keyword 
region around the most used keywords reveals that in all the 
upcoming 5-year periods, all categories of documents use at least 
one of these keywords (Figure 6, left hand side, notice how every 
metanode in the Document region is linked). 
 

 

Figure 6 Putting filters around the most highly used 

keywords and looking at the documents, we see that all 

documents after the 90-94 period (see left) use at least one 

of the highly used keywords (see keywords on the right). 

One question about this dataset is the relationship between authors 
and documents. What type of author writes the mostly cited 
documents? Considering that the documents cited 10 or more 
times are the top documents in this dataset, filters could restrict 
the incoming links to documents that have LCS >= 10 (Figure 7). 
 



 

Figure 7 Looking at the top documents in the 80-89 period. 

They are written only by the top author. 

It turns out that the top documents during 80-89 are written 
exactly by one category of authors (Figure 7). Switching to the 
nodes mode reveals that there is exactly one such author: Steve 
Hecht. He has the highest H-score (27) and began to write in 1980 
(this information is available through the Details tab in the control 
panel). He can be considered as the leader in the 80s period. 
Switching the view to the nodes mode reveals that he wrote a total 
of 64 top documents in the 80s (the number 64 appears next to the 
“Author to Document” links; not illustrated). Next, we look at the 
90-94 period (Figure 8, left). 
 

 

Figure 8 Left: Looking at the top documents in the 90-94 

period. Another category of authors (5-9) joins the one that 

has H-score 27.  Right: Looking at the top documents in the 

95-99 period. Nodes are manually displaced for better link 

display. 

In the 90-94 period, Steve Hecht (CR = 27) continues to write 
top papers while another category of authors (those who have CR 
5-9) join him. The nodes mode shows the category has only one 
author, namely David Ashley (year = 1980, H-score = 6). Both 
authors have papers in both sections (10-29 and 30-99). 
Looking at the next 5-year period (Figure 8, right) reveals that 5 

new categories of authors start writing top documents. Steve 
Hecht (H-score = 27) continues to contribute while David Ashley 
(CR = 5-9) does not any more. 
 

Among these 5 new categories, only one of them started writing 
in the 80s. In fact, he is Richard Clayton (year = 1980, H-score = 
3). All the other 4 category of authors started writing in the same 
5-year period. (There are 10 authors in those 4 categories. In 
increasing H-score from 3 to 26, there are 2, 3, 4, and 1 author(s), 
respectively.) Nodes are manually displaced for better link display 
(Figure 8, right). 
In the next 5-year period (2000-2004, see Figure 9, left), Steve 

Hecht (H-score = 27) and the top 3 categories of authors that 
began writing in the previous 5-year period (95-99) continue to 
write top documents. This is with the realization that the measure 
for top documents does not have the same level of difficulty 
across the 5-year periods. Since 2000-2004 is more recent, it is 
harder to produce documents that are cited 10 or more times. In 
fact, there are only 16 such documents. Shifting the threshold for 
CR to include 3-9 reveals that the authors that have written top 
documents in the previous time periods are active and writing 
documents in the 3-9 range in addition to other newly contributing 
authors (not illustrated). 
 

 

Figure 9 Left: Looking at the top documents in the 2000-

2004 period. Nodes are manually displaced for better 

display. Right: Looking at the top documents in the 2005-

2007 period. 

Looking at the last period (2005-2007, Figure 9, right), we 
realize that only one category of authors write these. Switching to 
the nodes mode (not illustrated) shows that the category contains 
only one author (Neal Benowitz, year = 1995, H-score = 10) and 
there is only one document written (by him) in the 2005-2007 
period (written in 2005 and cited 13 times). Realizing that the 05-
07 bin represents a 3-year period as well as being the most recent 
period helps explain this. 
This exploration over the years gives a quick sense of what type 

and sometimes which authors wrote the top documents over time. 
For instance, Steve Hecht (with H-score = 27) has remained active 
over the years consistently contributing to the top documents 
(except the last 3 years). In fact, more is revealed when looking at 
the pattern of his documents (Figure 10, metanodes are size-coded 
based on the number of nodes they represent). He has written 
almost all types of documents (in terms of year and citation 
score), specifically 34 out of 35. Metanode size in the last 
category, which he did not contribute, indicates that this category 
has a small number of documents, anyway. The nodes mode 
shows that he has written 556 documents in total. It is interesting 
to see that he did not only write top documents but all types of 
documents including 203 documents that never got cited in the 
dataset. He has written documents with a fair distribution in terms 
of being cited (58, 46, 125, 101, 23 documents that have LCS 1, 2, 



3-9, 10-29, and 30-99, respectively). He has written a total of 124 
of the 152 top documents in the dataset. If he is considered 
successful, perhaps, one way to become successful is to be as 
prolific as he was and keep writing over the years without too 
much regard to whether a document is cited or not. Apparently, he 
continued to write even though many of his documents did not get 
cited. In addition, he was the pioneer of the 80s and produced 
about half of his top documents at that time (64 of 124). 
 

 

Figure 10 Documents that Steve Hecht (H-score=27) wrote. 

Metanodes are size-coded by the number of nodes they 

represent. 

The exploration in the ToBIG dataset illustrates how node 
aggregation simplifies discovery and helps analysts find 
interesting facts, such as the most used keywords were not used 
by the most cited documents immediately. Node aggregation also 
helps analysts get an overview, for example, what type of authors 
have written documents and what the characteristics of those 
authors are with the option of detail on demand (author names in 
the categories explored, how many there were, how many papers 
they wrote, etc.). Analysts can gain an in-depth understanding of 
one aspect of the dataset (Steve Hecht’s profile in terms of writing 
papers), which has the potential to produce questions and/or 
hypotheses (Can we consider Steve Hecht as successful? 
Assuming so, perhaps the key to a success similar to his is to start 
early, write consistently, and accept the fact that not all documents 
will be highly cited.). 

4 DESIGN CHOICES 

There could be several possible ways to do node aggregation in 
the context of semantic substrates. We considered th following 
alternatives: 
(1) Aggregate to several metanodes in each cell. Aggregating 

nodes to several metanodes in each cell could have the advantage 
of providing more detail to analysts with the aim to accommodate 
as much as detail as possible (i.e. maximum use of available 
space). However, several issues with this approach convinced us 
that this alternative is less favorable. One issue is the question of 
how many metanodes should it be aggregated to and how to select 
the nodes each metanode represents. This issue becomes rather 
complex quickly, which might be worthy of further exploration; 
however, we believe that conveying the meaning of the specific 
aggregation would be difficult.  The confined space of a cell is 
likely to make the links within the cell hard to comprehend, which 
is only incrementally advantageous over the non-aggregated form. 
Hence, we decided to limit our scope to one metanode per cell. 
(2) Support a “mixed” mode, where nodes in a cell are 

aggregated to a metanode only when they do not fit the 

available cell space.  We implemented this approach and had 
several exploration phases, where we quickly discovered that the 
fact that some cells are aggregated and some aren’t was too 
disorienting for analysts. In addition, this mixed mode does not 
support analysis tasks well, as tasks tend to fit either when all 
nodes are aggregated or non-aggregated; especially they do not 
usually involve the component of “if the nodes do not fit the 
available cell.” Hence, we did not further explore this direction 
where this mode is supported. 

5 GUIDELINES 

The following sections discuss how to apply node aggregation 
in the context of semantic substrates. 

5.1 Simplified exploration through node aggregation 

Node aggregation helps to attain a more comprehensible display 
and also facilitates understanding by simplifying the display. 
When analysts select meaningful attribute values to group nodes, 
aggregated nodes become meaningful overviews of the groupings 
the user made. The simplicity makes the exploration effective and 
efficient. Facts stand out, especially surprising ones. The lack of 
use of the most used keyword within the same 5-year period in 
Figure 5 and the fact that Steve Hecht wrote all types of 
documents (Figure 10) are examples. 
One substrate is better than another in answering a specific 

question or exploring from certain perspectives of the dataset. 
Regarding the dataset in this paper, we were interested in the 
activity (for authors: writing papers, for documents: being cited, 
and for keywords: being used) and time aspects of nodes (authors, 
documents, and keywords) as well as the relationship between 
them. The attributes used in the substrates (CR, LCS, Count, and 
Five Years) supported the exploration from the perspectives 
above. 

5.2 Binning attribute values into ranges 

The dataset in section 3 looked from the perspective of 5-year 
periods and CR, LCS, and Count binned in a certain way. This is a 
good arrangement when analysts know and want to see the data in 
this way. In other words, it makes sense to look at the data in 
those specific 5-year periods and in the CR, LCS, and Count 
ranges that were used. For example, in terms of analysts’ 
understanding, the local citation score (LCS) of a document does 
not make much difference within the range 5-9; hence, the range 
of 5-9 is given a specific slot and separated from other ranges. 



Similarly, there is (or at least could be) a difference when LCS is 
3 and 4; hence, the different slots were allotted. 
There is a trade-off in how to bin values into ranges. The more 

bins, the more detailed information revealed, and the more effort 
needed in managing it (remembering and comparing them to each 
other). On the other hand, too few bins lead to a crude, and 
therefore, too shallow an understanding. A balanced view is 
desired and can be attained by iterative substrate design (see also 
Aris et al. [19]). In the example dataset, a 6-part binning for the 
documents and a 7-part binning for the authors is used. Figure 1 
shows one of the earlier substrates on the same dataset. The latter 
binning arrangement arose after perusing the distribution of the 
data through a few iterations. A certain amount of time may be 
necessary to achieve a satisfactory result. We believe this depends 
on many factors, such as the complexity of the dataset, how much 
analysts know about the dataset, and how experienced they are in 
terms of having explored the dataset. 
Certain tasks are better with certain substrates (and binning) 

than others. In the example in this paper, the latter substrate 
performed well in terms of providing insights and understanding 
to the data. The 6-7 bins on both axes made it optimal to go over 
the different slots and get overviews quickly as well as compare 
them to one another. If deeper or other types of questions arise, 
substrates could be iteratively modified to look for deeper insights 
and more precise facts. 

5.3 Details-on-demand 

Being able to switch between the metanodes and nodes modes 
allowed looking at details-on-demand. This way, analysts get 
more information only when needed, which leads to a cleaner, and 
therefore, a more comprehensible and efficient process of 
exploration. 
Details-on-demand have several benefits: They (1) enrich 

understanding due to the additional information, (2) help to check 
assumptions, and/or (3) prevent incorrect inferences and 
sometimes compensate for when the representation of the 
overview is misleading. 
 Examples for the above points are as follows:  
(1) In Figure 8 (right), switching to the nodes mode revealed 

that there are 10 authors in the 2000-2004 period and what their 
distribution is in terms of H-score. Another example is the 
statistics about Steve Hecht: that he wrote 556 documents, 124 of 
which were top documents (out of 152 top documents) and that in 
1980s, he wrote about half of those (64 top documents). 
(2) In Figure 9 (left), it is assumed that it is harder to write top-

documents in the 2000-2004 period, as it is a recent period. 
Switching to the nodes mode shows that this assumption is correct 
as there are only 12 top documents while in earlier 5-year periods 
their number is at least 22. 
(3) In Figure 9 (right), looking at the nodes mode reveals that 

there is only one top document in the 2005-2007 period, which is 
written by only one author. This prevents treating this last period 
the same as (or close to) the previous ones as there is substantial 
difference. 

5.4 Performance & Scalability 

NVSS provides smooth interaction up to 1000-2000 nodes on a 
3GHz Dell 8400 with 3GB RAM. Larger networks that reduce to 
this size in the metanodes mode could be smoothly explored. The 
transition time from and to metanodes mode is 2 seconds for the 
example dataset in this paper. For another dataset with 10,000 
nodes and 17,836 links, the transition time from nodes to 
metanodes is approximately 2 seconds. The transition time from 
metanodes to nodes is 7-8 seconds. We also tried NVSS with a 
dataset containing 29,555 nodes and 352,807 links. The transition 
time from nodes to metanodes is 70 seconds and the transition 

from metanodes to nodes is 155 seconds. In general, the transition 
times depend on the network size (number of nodes and links), the 
substrate applied (how nodes are distributed among regions and 
cells), and perhaps slightly on the structure of the network. 

6 FUTURE WORK 

One possible future work would be to assist analysts in binning 
attribute values into bins. One way to do this would be to 
implement a visual module that shows the distribution of the 
attribute values and suggests binning intervals to sustain a 
balanced distribution of nodes and links. It would be beneficial to 
provide analysts to adjust the suggested bin intervals to facilitate 
the bin creation for many custom bin intervals analysts would like 
to have. A sophisticated interface would be capable of providing 
several alternatives by conveying to the user the trade-offs in each 
alternative. This way analysts could make informed decisions (for 
a similar idea in forecasting time-series interfaces, see [26]).  
Exploration of the data usually involves filtering and narrowing 

down to an interesting subset. Node aggregation provides 
overviews for improved understanding. Assuming that two links 
are pointing (A and B) to an aggregated node, via filtering there 
are situations that only A is visible. However, the aggregated node 
remains the same. It has the meaning “some nodes that the 
aggregated node represents are linked.” A way that gives 
information about the nodes that are linked would be helpful. One 
way to do this is to have two types of aggregated nodes, one that 
represents the linked nodes and the other the rest. This way, 
analysts can set the size coding in the Substrate Designer to 
represent any attributes that they want to be reflected onto the 
visualization. 
Semantic substrates involve regions and subsets of regions 

through filtering. The support for a dynamic selected set of nodes 
will enable analysts to do cascaded types of exploration. In other 
words, if analysts could select nodes linked to (or linked from) 
after a certain filtering and can use those selected nodes to arrive 
at other nodes through links, this will enable analysts to arrive at 
more complex meaningful subsets of the data. For example, in 
Figure 8 (left), if we could select the documents and then see the 
set of keywords these documents use, we would have performed a 
cascaded exploration. The exploration could continue by finding 
the authors that used those keywords. As such cascaded 
explorations get longer, it becomes harder to keep track of the 
meaning of the selected subset. A visual representation that 
reminds analysts of the meaning is likely to be needed. A history 
mechanism will enable analysts to undo steps in their cascaded 
exploration and choose other paths [24]. Being able to compare 
different paths may add additional benefits. Being able to define 
more than one dynamic selected set of nodes may expand the 
types of explorations analysts could do. 
Another type of improvement would be the capability to 

compare two (or more) link patterns arrived through exploration. 
Currently, this can be achieved by having two instances of the 
visualization side by side. With additional features, there may be 
benefits to incorporate more than one exploration view in the 
same application. 
Link display in the metanodes mode could be improved by size, 

color, or texture-coding to indicate the number of links they 
represent. In certain tasks, link tasks may be reduced to 
identifying source and target nodes through some mechanism. In 
such cases, link rendering can be eliminated for simpler display to 
facilitate comprehension. 
Further future work includes supporting more than one type of 

node (e.g. bimodal networks), allowing multiple valued attributes, 
improved performance for scalability, and additional filters for 
nodes and links, and perhaps widgets for various visual 
interactions. Different-shaped and overlapping regions might help 



in some datasets. Evaluation of semantic substrates in several 
domains by case studies could also be extended [15]. 

7 CONCLUSION 

With node aggregation in the context of semantic substrates, we 
believe that analysts will be able to explore larger datasets faster 
and more effectively. This paper demonstrated this via an 
exploration on an example dataset. 
The ability to switch between the aggregated view and the non-

aggregated view allows analysts to access details as needed. This 
helps to accelerate the process of exploration by eliminating 
elements and details that are not of interest. As a result, analysts 
can better concentrate on the simpler version of the information 
while seeking facts about the data that they are looking for. 
By looking at the current node aggregation feature in NVSS, 

this paper also conceptualized several aspects of exploration 
related to node aggregation, such as binning the attribute values, 
choosing attributes for the substrate for effective exploration, and 
detail on demand. It also revealed future work that would 
potentially enhance the quality of the exploration process. These 
include representing connected nodes to filtered links in aggregate 
form, ability to define a set of nodes through filtered links to 
support cascaded exploration, visual coding for aggregated links 
to represent the actual connections, and further future work 
including an enlarged scope of network data applicable to 
semantic substrates. 
We believe that node aggregation enhances the benefits of 

using semantic substrates (which increase user control that lead to 
better understanding) by enabling simpler, and therefore, a more 
efficient and effective exploration of networks. 
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