
Identifying Aggregates in Hypertext
Structures

Rodrigo A. Botafogo’ and Ben Shneiderman2

Human-Computer Interaction Laboratory &
Department of Computer Science
University of M@land
College Park, MD 20742

ABSTRACT

Hypertext systems are being used in many applications because of their flexible structure
and the great browsing freedom they give to diverse communities of users. However, this
same freedom and flexibility is the cause of one of its main problem: the “lost in
hyperspace” problem. One reason for the complexity of hypertext databases is the large
number of nodes and links that compose them. To simplify this structure we propose

that nodes and links be clustmxl forming more abstract structures. An abstraction is the
concealment of all but relevant properties from an objector concept.

One type of abstraction is called an aggregate. An aggregate is a set of distinct concepts
that taken together form a more abstract concept. For example, two legs, a trunk, two
arms and a head can be aggregate together in a single higher level object called a “body.”
In this paper we will study the hypertext structure, i.e., the way nodes are linked to each
other in order to find aggregates in hypertext databases. Two graph theoretical algorithms
will be used: biconnected components and strongly connected components.

KEYWORDS

Hypertext, structural analysis, graph theory, abstraction, aggregation, generalization.

INTRODUCTION

Hypertext systems are used in many applications because of their flexible structure and
the great browsing freedom they give to users. However, this same freedom and
flexibility is the cause of one of its main problem: the “lost in hyperspace” problem.
Previous attempts to solve this problem have concentrated in improving the user interface
by having multiple windows [Mar89], maps [Nie90a,bl[Bro891, and tours or path
mechanisms [Tri88] [Ze189]. Unfortunately, these techniques do not scale up nicely.
Multiple windows help only in a very localized way, maps lose their appeal when
hypertext have more than a few dozen nodes, and path mechanisms are very hard to
author and maintain.

One reason for the complexity of hypertext is the large number of nodes and links that
compose them. Halasz [Ha188] suggested that composition will be an important
mechanism in future generations of hypertext systems. A composition mechanism is a

lPartially supported by the Brazilian National Research Council (CNPq) under grant
201008/88.2 and NCR Corporation. Currently at NEC Corporation, Tokyo.

2Address correspondence to Ben Shneidennan.

Hypertext ’91 Proceedings 63 December 1991



way of dealing with a set of nodes and links as a single object. A similar notion was also
introduced by Smith & Smith [Smi77a,b] in the database field: the formation of
abstraction.

An abstraction is the concealment of atl but relevant properties of an object or concept.
Only information relevant to the task being performed is shown in an abstract object.
Smith & Smith claim that abstraction allows for the intellectual manageability of highly
structured objects. Since hypertext systems are very complex structured objects which
suffer severely from a lack of intellectual manageability y (“lost in hyperspace”), they can
profit from abstraction. Smith & Smith defiie two types of abstraction: aggregation and
generalization.

Aggregation is an operation that clusters related objects and forms a higher level object.
For example, two legs, a trunk, two arms and a head can be aggregated together in a
single higher level object called a “body.” Halasz, in his paper, only identifies
aggregation as a composition mmhanism. However, generalization seems to be a very
important property to simplify hypertext. Generalization happens when a set of similar
objtzts are regarded as a generic object. A hummingbird, a hawk, an eagle, etc., can be
genemlized to a single concepc that of “bird.”

Developers of future generations of hypertext systems will face two important challenges:
how to deal with abstraction and how to help authors to create comprehensible structures.
The first challenge was described by Halasz [Ha188] and some systems such as
NLS/Augment @ng68] or IGD ~ei82; Fei88] already have preliminary solutions to it.
The second issue is the one of interest in this paper. Botafogo, Rivlin, and Shneiderman
[Bot91] studied hypertext structures to provide authors with different views and with
useful metrics. Brown [Bro90] stresses the importance of analytical tools and metrics to
assess hypertext quality. In this paper structural analysis will be used to help authors find
abstractions in hypertext.

Section 1 introduces some preliminary concepts and section 2 shows how to use two
graph theoretical algorithms, biconnected and strongly connected components, to create
aggregates. The interested reader is directed to [Bot90] [Bot91] for a complete discussion
of generalization and metrics.

In this paper the word “hypertext” does not refer to every type of hypertext system. We
focus on a card-based hypertext systems where nodes and links are untyped, or systems
which can be represented by a directed graph. All the hypertext that were used for testing
our ideas were created in Hyperties (a hypertext system developed by the Human-
Computer Interaction Laboratory; it has been expanded and distributed by Cognetics
Corporation, Princeton Junction, NJ). We believe, however, that the ideas presented here
could be extrapolated to other hypertext systems with a more complex structure.

1 PRELIMINARIES

1.1 Index and Reference nodes

Intuitively index nodes are nodes that can, as the name implies, be used as an index or
guide to many other nodes. For example, an article that points to all the other articles in
a hypertext is an index. In a hypertext about a computer science department an article
pointing to atl the professors that work in human factors is also an index. Formally, an
index node is a node whose outdegree is greater than the mean outdegree of all nodes, plus
a threshold value.

Reference nodes are in a certain way the converse of index nodes. For example, in a

hypertext about animals, all birds might link to an article about “feathers,” dogs to an
article about “sharp teeth,” etc. It is possible to make reference to the birds by saying
that they are animals that have feathers. Formally, a reference node is a node whose

Hypertext ’91 Proceedings 64 December 1991



indegree is greater than the mean indegree of all nodes, plus a threshold value. Since
index and reference nodes usually point to or are pointed by whole classes of nodes it is
natural to define index and reference nodes as a function of their out and in-degrees
respectively.

Definitions

● Let p be the mean of the outdegrees of the nodes in the hypertext and let V’ be the mean
of the indegrees of the nodes in the hypertext. Note that ~ = W’ since every link that
leaves a node has to reach another node. For this reason we will use v for both means.

● Let u be the standard deviation of the outdegrees of the nodes.

QLet O’ be the standard deviation of the indegrees of the nodes.

● Let ~ be a threshold value.

● An index node is a node whose outdegree is greater than p + ~.

s A reference node is a node whose indegree is greater than v + ~.

We usually define ~ as been equal to 3 * c (cr’). The motivation for this choice is as
follow~ if the number of links follow a normal distribution, then a node that has in or
out-degree exceeding three standard deviations will occur less than one percent of the time
making them special in the context of the hypertext.

1.2 Metrics

Since hypertext are composed of two main components, nodes and links, it is helpful to
the author to have knowledge of the number of nodes and links in the hypertext. Many
systems do provide the first piece of information, but few consider the number of links.
With that information at hand the author can start forming an idea of the complexity of
the hypertext. However, the number of nodes and links and possibly their ratio gives
only a rough idea of the complexity. In order to better capture the notion of how
complex a hypertext is the compactness metric will be developed. The compactness
indicates the interconnectedness of a hypertext.

From a reader’s point of view a too high compactness means that each node has many
links and that consequently there are potentially many cycles. Traversing many cycles
can disorient users. Too many links might also indicate a poorly organized hypertext.
For example, a hypertext that is fully connected is equivalent to a hypertext that is fully
disconnected but where the user can access any node by using an index. In a fully
connected hypertext the user has no clue to which article should be read next, which is
equivalent to choosing the next article to be read from a general index. On the other hand,
a too low compactness indicates insufficient links and that possibly parts of the hypertext
are disconnected. For our purposes the following facts about the compactness are of
importance [Bot90a,b]:

(a) The compactness (Cp) is a value in the range O to 1. It is O when the hypertext is
disconnected and 1 when the hyp-text is fully connected.

(b) Any graph has a unique compactness associated to it.

(c) From experience, appropriate compactness is in the range 0.3 to 0.8.

Hypertext ’91 Proceedings 65 December 1991



Formally the compactness is defined as:

. Q . (MaX - ~i ~j Cij) / (Max - Min)

Cij is the distance from node i to node j. If node i is not connected to node j the distance

between them is infinite. However, in order to be able to calculate efficiently, when two
nodes are not connected the distance Cij is set equal to a constant K. This constant is

called the converted distance (see [Bot91] for more detailed information about the constant
K). Max is a parameter that depends only on the number of nodes in the graph and the
converted distance. It is the distance from every node to every other node when the graph
is completely disconnected. We note that

e Max= (n2 - n) K, where n is the number of nodes in the hypertext. The distance from

anode to itself is always zero.

Min is defined in a similm way than Max, but in this case the graph is completely
connected. Again we note that

. Min = (n2 - n). when the graph is completely connemd, the distance Of a node to anY

other node is equal to 1.

2 CLUSTERING BY INTERRELATIONS: AGGREGATION

Aggregation was defined previously as an operation that clusters related objects and forms
a higher level object. In order to help authors in the formation of aggregates, the notion
of related objects (or related articles in our case) must be formally defined. In information
retrieval there is a long history of multi-dimensional clustering algorithms based on text
analysis [Cro89]. By contrast, hypertext are explicitly structured by links between
articles which establish that there is a semantic relation. Assuming that the semantic
relation is a transitive one, a ~ between two nodes rdso indicates a semantic relation.

However, as the distance between two nodes in the path increases, the strength of the
relation diminishes. On the other hand, the more paths there are between any two nodes
the stronger their relation.

The compactness is then a good measure of how related a set of nodes is. The higher the
compactness the more related they are. A semantic cluster – a set of related objects
appropriate for aggregation – will be defined as:

Definition:

. A semantic cluster of a hypertext is a set of nodes and links that have the following two
properties

(a) they are a subgraph of the hypertext graph.

(b) the compactness of the subgraph is higher than the compactness of the whole graph.

With a formal mathematical definition of related objects, it becomes possible to apply
graph theoretical algorithms to help in the formation of aggregates. Unfortunately,
hypertext are written in a way that does not always make our assumptions true, For
example, the aggregate “body,” made of two legs, a trunk, two arms, a head, etc., will be
represented in a hypertext as in figure 1. Note that the links between the parts is not
present, since the abstract notion has already been formed. When one sees a leg it is
usually followed by another leg, both of them are seen with a trunk, unless you are
seeing a cartoon or a horror movie, all the previous part are crowned by a head. Figure 2
is then a more realistic, although less structured, representation for the hypertext This
suggests that the more unstructured the hypertext is, with all relevant links present, the

Hypertext ’91 Proceedings 66 December 1991



more it will profit from the use of semantic clusters.

In order to make hypertext intelligible for readers, authors remove links as explained
above, but in many cases they also add extra links. Figure 3 shows a hypertext in which
all the birds seem to be highly related, since there are many paths between them (if
direction of links is not considered).

legs

Figure 1.

I legs

Figure 2.

Introduction

How to treat a bwd Birds in the hypertext

Figure 3. Hypertext where the removal of links is very important for identifying
aggregates.

Hypertext ’91 Proceedings 67 December 1991



However, a close analysis shows that the relationship between those birds is mainly
limited to two facts:

● They are birds, But this is the topic of the hypertext and thus is not a relevant property
for clustering, and

● The techniques to treat them are the same. Again, since they are birds it is not
surprising that one should use the same process for treating them and no special
clustering should come from this fact.

Observe that in this example the nodes “how to treat a bird” and “birds in the hypertext”
are reference and index nodes respectively. Those links do not contribute at all in the
formation of aggregates and will consequently not be considered when forming aggregates.

In the two subsections that follow two graph theoretic algorithms that identify semantic
clusters in a hypertext will be presented. An example showing how they perform in an
actual hypertext will also be shown.

2.1 Biconnected components

Definitions:

● An articulation point in a connected graph is a vertex “a” for which there exists two

other vertices “v” and “w” such that any path between “v” and “w” does include “a”.

● If a graph has no articulation points then the graph is said to be biconnected.

● The removal of all the articulation points of a graph will split the graph into
biconnected components.

Biconnected components in a graph have then the property that there are at least two paths
between any two nodes in this component. Finding biconnected components is a quite
simple task and can be implemented in O(V+E) [Sed83]. Bicomponents, by the way they
are defined, are only applicable to non-directed graph. In the algorithms presented below,
the graphs are considered non-directed. A directed graph can easily be made undirected by
adding for each link a link in the opposite direction.

Since at least two paths exists between two nodes in a biconnected component, it is
likely that bicomponents will be semantic clusters of the hypertext. Using the notions
described above, a clustering algorithm by interrelation of nodes can be developed

Cluster 1:

Step 1) Find the index and reference nodes in the hypertext. If none exist and the
algorithm has run at least once then return.

Step 2) Remove outgoing edges from index nodes and incoming edges to reference nodes.

Step 3) Treating the graph G as undirected, find the biconnected components.

Step 4) Build the reduced graph G’ from G.

Step 5) For each of the bicomponents go back to step 1.

Some important features of this algorithm should be observed. First, the algorithm is
recursive (step 5). This implies that every bicomponent found will be treated as an
independent graph (with fewer nodes than the original graph) and consequently it will be

Hypertext ’91 Proceedings 68 December 1991



possible to find new index and reference nodes. Finding those nodes and removing their
links will allow for a more precise clustering of the hypertext with the intrinsic
relationship between nodes assuming an important role.

The second important property of this algorithm lies in step 4. The reduced graph G’ of
G is a tree. This simplifies enormously the structure of the hypertext that goes from a
complex graph to a very simple tree structure. And each new iteration of the algorithm
will take a complex graph and reduce it to a tree. Since trees are an easy structure to
show to an author, this might help the author have an idea of the contents of the
hypertext being created.

Finally the reduced tree G’ created has an interesting structure with one level formed by
biconnected components (with many nodes in it), the next level formed by articulation
points, then again biconnected components, followed by articulation points, and so on.
Figure 4 gives an example of this property where the “blobs” represent bicomponents and
the “dots” are articulation points. It is possible for a “blob” (a bicomponent) to
degenerate and have only 1 node. This will happen for example when the structure is
already a tree.

o t?

m f

1 r \ a i

ev

introduction

r!)d article

Figure 4(a). Unrooted tree obtained after the bicomponent algorithm has been applied and
the reduced graph formed.

P

Figure 4(b). To reach the node labeled “Bird” the reader has to read articles “a” and “f.”

Hypertext ’91 Proceedings 69 December 1991



Figure 4 emphasizes the fact that the reduced tree G’ is an unrooted tree. However, we
could make it a rooted tree by taking as the root the bicomponent that contained the
introduction article or any other article that might qualify as a good root (see [Bot9 l]).
Let T be a rooted tree generated from G. Given any article in the hypertext it is possible
to locate which node of T contains this article, call this node N. By following the path
that links the root of T to N, we will pass through many articulation points. Those
articulation points are articles whose reading is required before we are able to read the
selected article. Figure 4(b) shows the same structure as figure 4(a), but in it, node “c”
was taken as the root of the tree. In this case, to read the article “birds,” readers will have
to read articles “a” and “~ before. They will also be required to read some article in
“blob” “b.” If this blob deals with a certain subject in particular, the author of the
hypertext will know that readers that have reached the article “bird” will have at least
some notion of this subject.

It is important for the author to know the articulation points in the hypertext, since in
some cases it might not make sense to require the reading of some text before others,
while in other cases it might be desired. For instance, suppose an author wants to write a
book where at the end of each chapter there is a test that the reader must pass before going
on reading. If the test is not an articulation point of the hypertext, then this constraint
will not be enforced by the hypertext structure. However, if the node is an articulation
point, then there is no way the reader will be able to go on reading without passing the
test.

2.2 Strongly connected components

In the previous section, direction was not considered, but many systems such as Hyperties
have directional links. Although some researchers argue that links should always be
bidirectional it seems that in many cases directional links might be useful. In this
section we make use of the direction of the links to further enhance the aggregation of
nodes.

Definition

● Two nodes “a” and “b” are in the same strongly connected component if there is a path
from node “a” to node “b” and a path from node “b” to node “a”

We will improve our previous algorithm by adding step (6):

Cluster 2:

Step 1) Find the index and reference nodes in the hypertext. If none exist and the
algorithm has run at least once go to step 6.

Step 2) Remove outgoing edges from index nodes and incoming edges from reference
nodes.

Step 3) Treating the graph G as undirected, find the biconnected components.

Step 4) Build the reduced graph G’ from G.

Step 5) For each of the bicomponents go back to step 1.

Step 6) For each bicomponent left, decompose it in strongly connected components.

Several hypertext ranging in size from 100 nodes and 400 links to 250 nodes and 1600
links were analyzed in order to check the effects of the algorithm presented. The results
were similar in all of them and we will focus our discussion on the Hypertext Hands-On!
book (HHO) because it is widely available [Shn89]. HHO is the first electronic book

Hypertext ’91 Proceedings 70 December 1991



commercially published. It has 243 nodes and 803 links. This book was carefully crafted
and extensively reviewed to help ensure clear structure and ease of reading. It covers the
basic concepts of hypertext, typical hypertext applications, and currently available
authoring systems. It also describes design and implementation issues such as user
interface, performance and networks. The first iteration of the algorithm decomposed the
hypertext into 85 biconnected components and articulation points. Two of those
bicomponents are large, with 146 and 31 nodes, while the majority of them are composed
of just a few nodes. However, those small bicomponents are parts of separate trees.

Figure 5 shows a picture of part of the reduced graph of the HHO hypertext, when only
the first iteration of the algorithm was performed. The central core contains the unbroken
146 nodes and connected to it are three branches of the tree. Although almost all the
biconnected components drawn contain only one article, subtrees focus on the same
subject. The whole hypertext was subdivided by the algorithm into a large core and 8
subtrees: Tours, Travel Guide, The Interactive Fiction, Resumes, Contracts, Job Aids,
Blueprints, and Jokes.

Herman

Travel (hide

AExample of a Travel Guide

Oreat Golfing seaworld TheSan DiegoZoo

Places to stay
Restaurants

San Diego Beachea

Figure 5. Part of the reduced graph of HHO.

In this first iteration 40% of the hypertext was separated from the core. Even though no
experiments were performed to check users understanding of the hypertext it is expected
that they will grasp it much more easily when dealing with 9 subparts, where the larger
has 146 nodes, than when dealing with a single hypertext of 243 nodes.

HHO comes in two versions: a hypertext disk and a paper book. The two versions
although similar are not identical. For example, the interactive fiction appears only in
the hypertext version. The book version contains mainly the centml core of the hypertext
while the subtrees appear only in the hypertext version. This reflects the actual
construction process in which the authors first wrote the core of the hypertext and later
finished building the disk version by including examples and extra information.

Hypertext ’91 Proceedings 71 December 1991



The two larger bicomponents, the core and the interactive fiction, had their compactness
measured. For the interactive fiction it was found that Cp = 0.86. A compactness index
of 0.86 is very high. This strong linkage was intended by the author, Robin Platt, whose
clever story depends on tight interweaving across nodes. For the core of the hypertext the
indices werti Cp = 0.78. Again a very high compactness index. This degree of linkage
was debated by the authors. Although redundant links from several points in an article
were eliminated, there is still a high level of interconnection. From these examples we
see that the core and the interactive fiction are semantic clusters of the hypertext. The
compactness of HHO as a whole is Cp = 0.55 indicating that the two pieces are semantic
clusters of the hypertext.

The algorithm treated recursively the two large pieces of the hypertext the Interactive
Fiction and the core. No further clustering was done in the interactive fiction or in the
core. Since no further breaking was possible with the biconnected algorithm the strongly
connected algorithm was run in those two pieces. The Interactive Fiction part was further
subdivided in 9 parts. Eight of them have only one article and the ninth has the rest of
this subgroup. AImost the same thing happens with the core. It was subdivided in 34
parts, 33 of them containing one or two nodes and the last part containing 103 nodes.
While the first iteration decomposition reflects the high level structure as perceived by
authors, the second iteration did not so clearly produce the chapter organization that the
authors intended. On reflection, emphasizing links within chapters might have been a
worthwhile goal. In summary, the clustering algorithm succeeded in revealing the
hypertext structure and raised legitimate questions for the authors.

CONCLUSION

By analyzing the structure of a hypertext, i.e., how the nodes are linked, it was possible
to identify groups of nodes that had a high semantic relation. We suggested that those
nodes should be aggregated to form a more abstract node. With the formation of
abstraction it may be possible to simplify the hypertext structure, making it easier for
readers and authors to understand the hypertext and find useful information in them. We

believe that structural analysis methods may provide potentially useful ways of giving
authors a better understanding of their hypertext so that they can revise it to reduce the
“lost in hyperspace” problem. However, our study of three modest-sized hypertext needs
to be repeated with many other hypertext, and tested with much larger hypertext to see
what adjustments are needed to support scaling up.

DIRECTIONS FOR FUTURE WORK

c We concentrated our analysis on hypertext systems that have a simple underlying
structure. Will the ideas that we presented work in more complex hypertext systems?
For instance, dealing with typed links may make the analysis more complex, but the
additional information has the potential of supporting more effective clustering methods.
Another source of relationship information would be textual analysis of article contents.

“ Since the hypertext we studied were authored with Hyperties, one can argue that the
system induced authors to produce similarly structured hypertext. The results need to be
replicated on hypertext created with other systems such as Interleaf, HyperCard, or Guide.

● Authoring should be an interactive activity, with the computer suggesting the formation
of abstraction and authors deciding exactly how this process should happen. However, for
that to be feasible a good user interface is a must. Showing abstractions over a network
is still a difficult problem.

“ Only two algorithms for forming aggregation were considered. New algorithms should
be studied in order to improve aggregation and verify that it is effective and rapid enough
with much larger networks.

Hypertext ’91 Proceedings 72 December 1991



REFERENCES

[Bot901 Botafogo, R. A. (1990). Structural Analysis of Hypertexrs. Unpublished
master’s thesis, University of Maryland, College Park.

[Bot91] BoQfogo, R. A., Rivlin, E., &Shneidemm, B.(l99l). Structural analysis of
hypertext.s: Identifying hierarchies and useful metrics. ACM Transactions
on Information Systems (In Press).

[Bro89] Brown, P. J. (1989). Do we need maps to navigate round hypertext documents?
Electronic Publishing, 2 (2), 91-100.

[Bro90] Brown, P. J. (1990). Assessing the quality of hypertext documents. Hypertext
Concepts, Systems and Applications; Proceedings of the European
Conference on Hypertext, 1-12, Cambridge University Press, Cambridge,
UK.

[Cro89] Crouch, D. B., Crouch, C. J., & Andreas, G. (1989). The Use of Cluster
Hierarchies in Hypertext Information Retrieval. Proceedings of the
Hypertext 89 Conference, 225-237, ACM, New York, NY.

@3ng68] Englebart, D. C. (1968). Authorship provisions in Augment. Proceedings of
FJCC, 395-410. San Francisco, CA.

[Fei82] Feiner, S., Nagy, S., & van Dam, A. (1982). An experimental system for
creating and presenting interactive graphical documents. ACM Transactions
on Graphics 1 (l), 59-77.

[Fei88] Feiner, S. (1988). Seeing the forest for the trees: Hierarchical display of
hypertext structure. Proceedings of the Conference on Office Information
Systems, 205-212, ACM, New York, NY.

[Ha188] Halasz, F. G. (1988). Reflections on NoteCards: Seven issues for the next
generation of hypermedia systems. Communications of the ACM, 31 (7),
836-852.

[Mar89] Marshall, C. C. (1989). Guided Tours and on-line presentations: How authors
make existing hypertext intelligible for readers. Proceedings of the
Hypertext 89 Conference, 15-26, ACM, New York, NY.

~ie90a] Nielsen, J. (1990). The art of navigating through hypertext, Communications
of the ACM, 33 (3), 296-310.

Nie90b] Nielsen, J. (1990). Hypertext & Hypermedia. Academic Press, Inc., New
York, NY

[Sed83] Sedgewick, R. (1983). Algorithms. Addison-Wesley Publishing, Reading, MA.

[Shn89] Shneiderman, B., & Kearsley, G. (1989). Hypertexf Hands-On!. Addison-
Wesley Publishing, Reading, MA.

[Smi77a] Smith, J. M., & Smith, D. C. P. (1977). Database abstraction: Aggregation.
Communications of the ACM, 20 (6), 405-413.

[Smi77b] Smith, J. M., & Smith, D. C. P. (1977). Database abstractions: Aggregation
and generalization. ACM Transactions on Database Systems, 2 (2), 105-
133.

Hypertext ’91 Proceedings 73 December 1991



[Tri88] Trigg, R. (1988). Guided tours and tabletops: Tools for communicating in a
hypertext environment. ACM Transactions on Of/ice Information Systems,
6 (4), 398-414.

[Ze189] Zellweger, P. T. (1989). Scripted documents: A hypermedia path mechanism.
Proceedings of the Hypertext 89 Conference, 1-14, ACM, New York, NY.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1991 ACM 0-89791-461-9/91/001 2/0074 . ..S1 .50

Hypertext ’91 Proceedings 74 December 1991


