
Dynamic Queries and Brushing on Choropleth Maps

Gunjan Dang, Chris North*, Ben Shneiderman
Human-Computer Interaction Lab &

Department of Computer Science
ryniversity of Maryland, College Park MD 20742

{gunjan, north, ben} @cs.umd.edu
www. cs. umd.edu/hcil

i

Abstraict

Users who must combine dcmographic, economic or
other data in a geographic context are ofren hampered by
the integration of tabular and n w p representations. Static,
paper-based solutions limit the amount of data that can be
placed on a single map or table. By providing an effective
user interface, we believe that researchers, journalists,
teachers, and students can explore complex data sets more
rapidly and effectively. This paper presents Dynamaps, a
generalized map-based informalion-visualization tool for
dynamic queries and brushing on choropleth maps. Users
can use color-coding to show a variable on each
geographic region, and then filler out areas that do not
meet the desired criteria. In addition, a scatterplot view
and a details-on-demand window support overviews and
specific fact-finding.

Keywords: choropleth maps, dynamic queries, sliders,
brushing and linking, information visualization

*Current address:
Virginia Tech, Blacksburg, VA 24061

Department of Computer Science,

1 Introduction

Organizations that publish increasingly large quantities
of data face a major challenge in representing that data in a
usable and helpful form. For example, the U S . Census
Bureau has the mandate to collect enormous amounts of
data, and to disseminate this information to the public for
the public good. It is necessary that this data be
represented in a way that enables citizens to gain insight
about the nation, to discover, decide, and explain.

The Census summary data is primarily represented in
terms of geographic regions. Each region has a large
number of attribute values foi various demographic,
economic, and geographic statistics. For example, there is

I

0-7695-1195-3/01 $10.00 0 2001 IEEIC

data for each of the 3148 counties within the USA, such as
population, area, per capita income, median rent, median
property value, total sales, and distributions of ethnic
groups, age groups, business sectors, etc.

This data is extremely useful for many users, tasks, and
applications. Examples include: a senior citizen looking
for a place to settle after she retires, a business considering
relocation, lawmakers deciding on a new policy, and an
elementary school student learning more about the
country.

Typically, the user interfaces for such data
dissemination systems force users to sift through vast
detailed data or limit users to retrieve only a single data
value at time. More advanced systems demand that the
user possess the required skill set to formulate queries and
presume the users’ familiarity with the structure of the
database and other details.

New user interfaces are needed that enable users to
gain an overview of data available, discover exceptions or
patterns and trends across regions, zoom in on relevant
areas of interest, and quickly access desired details on
demand. In the case of the census and other CIS
(Geographic Information Systems) applications, it is
critically important that users be able to relate the
statistical data in the context of the geography.

The Census Bureau reports that they receive two
general types of queries from patrons: (a) specific
questions, such as “what is the population of my county?”
and (b) open-ended questions, such as “where is a nice
place to live?” Census data dissemination systems are
minimally capable of answering the former type, but are
completely unprepared to support the latter.

This wide range of tasks for CIS data is the motivating
factor for the creation of Dynamaps, a generalized map-
based information-visualization tool built for the Census
Bureau.

757

mailto:cs.umd.edu

I-- --1
f

.--"I " --. 1

-j

i
-..4

P . u

Il1t.N
&seae.~itrza+

" * 1 . . I '

24 " _

- I I

-*Cl-

-
D..tk

Figure 2: Dynamic Queries on a Health Statistics
Map [Pla93]

2 Related Work

2.1 Dynamic Queries

The inception of the dynamic query method started
with the development the Dynamic HomeFinder [WS92]
(see Figure 1). This tool consisted of a map of Washington
DC, with homes displayed as dots on the map. Sliders
were used to represent the query graphically, where each
double-box slider represented the possible range of values
for an attribute. Dragging a slider was equivalent to
entering attribute values for a query, and updated the
display in real time. The results of the query were
displayed as the filtering out (or in) of dots representing
houses. A real-time visual display of both the query
formulation and results facilitated rapid exploration.

Soon thereafter, a variety of dynamic query prototypes
were built. Figure 2 shows an early prototype for dynamic
queries on a choropleth map of health statistics for the
National Center for Health Statistics [PJ94][Pla93]. The
FilmFinder [AS941 (Figure 3) demonstrated the use of
dynamic queries on non-spatial databases, using a
scatterplot to visualize a database of films.

Spotfire [AW95] (Figure 4) generalized the FilmFinder
approach, enabling users to explore tabular data with
dynamic queries and a variety of types of charts such as
scatterplots, histograms, and pie charts. Spotfire also
supports brushing [BC87], in which users select data items
in one plot and the same items are highlighted in all other
plots. This enables users to relate items across multiple
plots, including maps with markers.

2.2 Geographic Information Systems (GIs)

ESRI ArcView (Figure 5) is a popular desktop CIS
software package that provides a powerful map display

758

engine and spatial analysis functions. One type of map
ArcView can display is choropleth maps. Unfortunately,
the user interface for interactive: data exploration is limited.
The Census Bureau web site (www.census.gov) also
presents a number of data access tools, such as the
American Fact Finder (Figure 6), which enables web users
to view choropleth maps of selected attributes. The
American Fact Finder uses the Arcview display engine.

Other work on data exploration in GIS includes
[Mon89], [MK97], [SMC96], [AA99]. These prototypes
and systems explore a variety of approaches for brushing
with maps and dynamic queries.

Figure 5: ESRI ArcView shlows a choropleth map.

J

Figure 6: American Fact Finder on the Census
Bureau web site generates choropleth maps.

3 Dynamaps

Dynamaps is a generalized map-based information-
visualization tool, designed for map-related Census
summary data that builds on these systems. It makes
several contributions:

Dynamic queries on choropleth maps as well as other
types of geography. This enables a powerful

exploration capability for both specific and open-
ended questions.
Uniform-distribution sliders as well as standard sliders
for dynamic queries. The new uniform-distribution
sliders improve slider interaction for some census
data, which is often overly non-uniformly distributed.
Brushing across choropleth maps and scatterplots.
Users execute a form of 2-dimensional dynamic query
by selecting regions in a scatterplot to highlight the
corresponding geographic elements in the map. Also,
this enables reverse queries by selecting regions in the
map to highlight the corresponding elements in the

Use of industry-standard commercial tool, ESRI
ArcView components, for map display. This enables
the use of standard data formats and files, and takes
advantage of extensive existing GIS functionality in
the ESRI software. In this sense, Dynamaps adds a
powerful new information-visualization user interface
to this existing commercial software.
Algorithm for performing rapid dynamic queries with
a commercial GIS display engine (ESRI) that was not
originally designed for such dynamic interactivity.
Generalized, distributable, GIS viewer tool with
flexibility to load and display arbitrary geography and
data types. Databases can be loaded with many
attributes. Once a map is loaded, data with an
appropriate join attribute can also be loaded and
explored. Hence, Dynamaps could become the Adobe
Acrobat viewer of GIS.

plot.

User Interface

4.1 Map

When using Dynamaps, users first load a geographic
data file into the tool to display the map (Dynamaps
displays US states and counties by default). Then, users
can quickly display the map as a choropleth by simply
selecting a data attribute from the drop-down list to color
the map accordingly.(see Figure 7). Map elements can be
colored by any of the available attributes loaded in the data
file. The color legend at top shows the minimum and
maximum values.

For example, consider a situation in which a senior
citizen, about to retire, is looking for a suitable location to
move to. One of her primary concerns might be the cost of
rent. She colors the Dynamap by the ‘Median Rent’
attribute (Figure 7) and notices that California and the
northeast are clearly the high rent areas that she might
choose to avoid. The darker regions indicate a low value
of median rent and the lighter regions have higher values.

Dynamaps users can also zoom and pan the map to
observe data patterns in smaller or denser regions (see
Figure 8).

759
‘I

I
Figure 7: Dynamaps showing the US states
colored by 'Median Rent' value. The west coast
and east coast are most expensive.

Figure 8: Dynamaps showing the US counties
colored by 'Median Rent', and zoomed in on the
northeast. The Washington DC to Boston
corridor is most expensive.

4.2 Dynamic Queries

When a data file is loaded, the attributes related to each
of the elements of the map also appear on the right in the
form of adjustable dynamic-query sliders. Each slider
represents the range of values (minimum to maximum) for
its attribute. Adjusting sliders enables the formulation of a
query and map elements are then filtered (in or out)
accordingly (Figure 9). The real advantage lies in the
.presence of multiple sliders; the ' user can formulate
conjunctive queries by adjusting more than one slider and
view the results on the map. Map elements that have been
filtered out by the query are colored dark gray. Elements
that are not filtered remain colored according to the chosen

choropleth attribute. As users drag the sliders, the map
animates to give immediate feedback in real time.

For example, in addition to rent considerations, our
senior citizen might also want to live where there are more
people of her age group. By adjusting the slider for the
attribute 'percent of population over age 65', she filters out
states with low values for this attribute to reveal that
Florida and central US are good candidates. However, she
finds that if she also insists on low levels of
unemployment, then the central states are the best match
(Figure 9). Now that she has narrowed her search, she can
select a state of interest to view its attribute values in the
detail view on lower right. Selecting multiple states shows
their attribute values in a tabular form to facilitate
comparison.

Each dynamic query slider can filter items according to
one of two possible distributions of the items. In standard
slider mode, the items are distributed along the slider like a
histogram, ordered and located according to the
corresponding attribute value. This enables users to
quickly select desired value ranges for the attribute and
view items meeting that criteria on the map. However, this
approach is problematic when items are not uniformly
distributed on the attribute. For example, California has a
much higher population than all the other states. As a
result, selecting among the, low population states is
difficult with a standard dynamic query slider because they
are all tightly packed at the low end of the slider. Hence,
Dynamaps' dynamic query sliders have an additional
uniform-distribution mode. In this mode, items are
uniformly distributed along the slider according to rank
order for the attribute. This enables users to quickly select
ranges of items by rank (e .g . the 5 least-populated states).

I - -
- ..

fo; high 'Percent Over Age 65' and low
'Unemployment' using dynamic query sliders.
Six states in the central US remain.

760

4.3 Scatterplot

Dynamaps displays a scatterplot of the map elements at
the bottom of the screen. It plots a two-dimensional graph
of the elements according to attributes selected from the
drop-down menus on ,each axis as shown in Figure 10.
Users can pick any two attributes to plot the elements by.
All 4 sub-windows are tightly coupled: The dynamic
query sliders filter both the map and the scatterplot.
Selecting items in either the map or the scatterplot causes
the corresponding items to be highlighted in the other
(“brushing”), and also displays lthe items’ attribute values
in the detail view.

The scatterplot and the brushing capability enable more
open-ended exploration of the data. Users can discover
patterns, trends, outliers, and relationships from both a
statistical and geographical perspective. For example,
Figure 10 shows the US states plotted by ‘Per Capital
Income’ (x axis) and ‘Percent of Population with College
Degrees’ (y axis). Clearly there is a positive relationship
between education and income. Selecting the highly
educated and high-income states in the scatterplot reveals
in the map that they are all located in the northeast (light
color highlights in Figure 10). The outlier at the bottom
center of the scatterplot is Nevada. These are forms of 2-
dimensional dynamic queries that are not as obvious with
the 1 -dimensional sliders and sometimes not possible with
sliders. Likewise, brushing idso enables geographic
dynamic queries. For example, selecting the southern
states on the map reveals that they are all at the lower end
of both scales in the scatterplot.

4.4 Geography and Data

In addition to handling polygonal geographic regions
as, in choropleth maps, Dynamaps also has the ability to
handle map elements of different types, such as lines or
points on a map, with the same dynamic query and
brushing capabilities. For example, Figure 1 1 shows a
map of US Highways. Exploring the ‘length’ attribute
with Dynamaps reveals that the longer highways are in the
Central and Western parts of the country. In Figure 12,
Dynamaps displays data about the US state capital cities in
the form of points on a map. The ‘Load Geography’ menu
option allows users to load other map layers for
visualization. The ‘Load Geography Background’ menu
option supports the display of background layers. For
example, the map of US highways and cities displays a
background of the US states. Dynamaps uses geography
data files in the standard ESRI Shape file format.

7gure 11 : Dynamaps displaying highway data.

Figure 10: Brushing between scatterplot and
map reveals that high lincome and highly
educated states are in the northeast.

IC L.41”\
u I I m

r m I I (3 2 r I l E8(

Figure 12: Dynamaps displaying state capital
cities.

761

The ‘Load Data Table’ menu option allows users to
load additional data attributes from a data table and join
them to the currently loaded geography. This enables the
use of many easily obtainable data tables from the Census
Bureau or other sources without the need to reformat the
data files into the more difficult geography format. Data
table files can be in Microsoft Access database or dBase
format.

5 Algorithms

Dynamaps is implemented on the PC/Windows
platform. The map portion of the Dynamaps display uses
ESRI MapObjects. The use of ESRI components is
important because of its advanced GIS functionality,
powerful display engine, industry standard file format, and
continued ESRI-supported upgrade path. It is not our
intention to attempt to compete with ESRI, but to build on
and enhance ESRI’s work.

A major challenge in developing Dynamaps was to
extend the MapObjects components, which focus primarily
on static presentation of map data, to efficiently support
dynamic query interaction. We believe that this is an
important general problem, as software engineering
continues to evolve more towards component-based
approaches. Many valuable software components simply
are not designed with dynamic interaction in mind. User
interface designers must then retrofit these components to
build forward-looking systems using more advanced
information visualization principles. Dynamic Queries on
Mapobjects is just one example of many, and we believe
that our solution will be a helpful guide to other designers.

As query sliders are dragged, the display must update
in real time. Previous work on dynamic query algorithms
focused on linear and spatial data structures to efficiently
compute the query result set [TBS97]. Dynamaps uses
Mapobject’s database query functionality for such
computation. In Dynamaps, the challenge is in the display
of the result set. Since the objects being displayed are
filled complex polygons, the bottleneck is in drawing the
result set rather than computing it.

First, Dynamaps generates the SQL query string based
on the current positions of the sliders, and then submits
this query to the database engine. The SQL query contains
a ‘WHERE’ statement with a minimum and maximum
clause for each attribute that has been constrained by the
user with a slider. To optimize construction of the SQL
query while users drag a slider, Dynamaps first generates
the SQL for all attributes except the slider currently being
manipulated. Then, as the user manipulates the slider,
only the updated clause for that slider needs to be inserted
into the query string.

After submitting the SQL query to the database engine,
the results must be updated on the display. To draw the
results, we tried several algorithms each one improving

upon the previous. The first algorithm simply drew the
result set on a blank background. This approach was
unacceptable because it completely eliminated the filtered
items from display. Remaining items were out of context
and disorienting for the user.

The second algorithm used two duplicate geographic
layers. The background layer colored all the map items
gray (as if filtered out). The foreground layer used the
choropleth coloring. The SQL query was applied to the
foreground layer only and then both layers were redrawn,
background first then foreground. Actually the
background only needed to be redrawn if the user had
tightened the query (moved a slider box inwards) and
filtered some items out. Unfortunately this resulted in a
flashy display since MapObjects does not support double
buffering, and slow performance because many elements
are drawn twice (background + foreground).

The third algorithm eliminated the problematic overlap
between background and foreground. The two map layers
were used as a positive query and a negative query. The
positive query layer represents the unfiltered (colored) map
items, and the negative query represents the filtering (gray)
items. Together, both layers combine to display all
elements of the map. The SQL query is applied to the
positive layer, and the complement of the SQL query
applied to the negative layer. When users tighten the
query (move sliders inwards) only the negative query layer
needed to be re-queried and redrawn. When the query is
loosened (sliders moved outwards) only the positive query
layer is re-queried and redrawn. This algorithm led to a
significant improvement (two-fold) in performance and
aesthetics, but still lagged for larger maps.

The fourth algorithm attempts to query and redraw
only those items that change state since the last update. As
a slider thumb is dragged, at each incremental slider event
received, a differential query computes the difference
between the previous and current states. If the user’s
query is tightened, the SQL query retrieves all items that
were just filtered out, by simply querying items with
attribute value between the current and previous values of
the slider thumb. This query is then applied to the
foreground layer and drawn in gray. If loosened, the SQL
query retrieves all items that were just filtered in, by
querying items with attribute value between the current
and previous values of the slider thumb but also meet
current constrains of all other sliders. This query is then
applied to the foreground and drawn in choropleth color.
However, whenever the entire map must be refreshed, as in
panning and zooming or resizing, Dynamaps must revert to
the third algorithm. This fourth algorithm performs very
well because it only needs to draw a few items on the map
at each interaction increment. The update is real-time with
approximately IO00 items (e.g. counties of the east coast;
this measurement is taken on a Pentium 450 Mhz PC). At
this point, the bottleneck now shifts to the database query

762

performance. Implementing custom ’data structures (as in
[TBS97]) would enable further speed up.

Highlighting selected map items is done with a third
layer that is’on top of all others and is drawn in translucent
bright yellow.

6 Limitations and Future Work

Continued work on Dynamaps is underway. Future
work Includes:

Automatically loading more detailed geography when
users zoom in. For example, zooming onto a US state
might automatically load. and display the counties of
that state. One approach to accomplish this is to

,integrate Dynamaps into the Census Bureau’s meta-
data database.
Enabling simultaneous display and exploration of
multiple geography layers. For example, users could
load states, counties, and cities, and perform dynamic
queries and brushing on each. This introduces a new
problem of overlapping map elements. Our current
display ,algorithms are optiimized for non-overlapping
elements, as is typically the case in choropleth maps.
Displaying histograms of the data on each dynamic
query slider similar to the Attribute Explorer [STD95]
and Visage [RLS96]. This would enable users to see
additional patterns, and also help users understand the
difference between uniform-distribution sliders and
standard sliders.
Integrating dynamic query data structures to improve
database query performance. A very useful project
would be to construct a generalized dynamic query
toolkit that enables many different data viewing
components, such as ArcView, to be easily plugged
into a dynamic query environment.
Enable multiple views and flexibility in choice of
views. Users could display any number of sub-
windows as needed. For example, in Figure 13 a user
is comparing spatially distant geographic locations,
east coast and west coast. Figure 14 demonstrates the
use of overview and detail. Selecting a state (Texas)
in the overview map shows 1:he counties of that state in
the detail map. These examples were prototyped
using the Snap-Together Visualization system [NSOO].
Usability studies and task performance data are
needed to evaluate and improve the user interface
design.

Conclusion

Dynamaps is a generalized map-based information-
visualization tool for dynamic queries and brushing on
choropleth maps and other GI!; data. It supports both
specific directed-search tasks as well as open-ended

exploration tasks. It enables users to relate statistical and
geographic data. Users can gain an overview, discover
trends and outliers, zoom in on areas of interest, and access
details on demand. It demonstrates the use of commercial
GIS components in an advanced visualization user
interface and algorithms to accomplish this efficiently. It
also contributes the notion of uniform-distribution sliders
for dynamic queries.

Dynamaps is an example of an application that was
prototyped using the Snap-Together Visualizatiop [NSOO]
technology to demonstrate the potential for the US Census
Bureau. Dynamaps has created a wave of enthusiasm at
the Bureau, and development is in progress to make
Dynamaps the canonical viewer for census data. The
Bureau hopes to distribute Dynamaps on their data CD-
ROM products, and hopes to develop a web-based version
in the future for convenient citizen access to census data.
The Dynamaps information web page is at
h ttp:Nwww.cs.umd.eddhcillcensus/.

Figure 13: Comparing distant geographies

Figure 14: Overview and detail. Overview (left)
shows US states. Detail (right) shows counties of
the state selected in the overview.

8 Acknowledgements

This research is partially supported by the US Census
Bureau. Thanks to Kent Marquis, David Desjardins, Rob
Creecy, Tommy Wright, Sam Highsmith, Mark Wallace,
Kathy Padget, and Tom Petkunas at the Census Bureau for
their assistance and support. Thanks also to Danny Krouk
at ESRI.

9 References

[AS941

[AW95]

[AA991

[BC87]

[MK97]

[Mont391

[Pla93]

Ahlberg, C., Shneiderman, B., Visual Information
Seeking: Tight coupling of dynamic query filters with
starfield displays, Proc. ACM CHI ’94 Conference,
313-317, (1994).

Ahlberg, C., Wistrand, E., IVEE: An Information
Visualization and Exploration Environment, Proc.
IEEE Information Visualization ’95,66-73, (1995).

Andrienko, G.. Andrienko, N., Interactive maps for
visual data exploration, In11 Journal of Geographical
Information Science, 13(4), 355-374, (I 999).

Becker, R., Cleveland, W., Brushing scatterplots,
Technoinerrics, 29(2), 127-142, (1987).

MacEachren, A., Kraak, M., Exploratory cartographic
visualization: advancing the agenda, Computers and
Geosciences, 23, 335-344, (1997).

Monmonier, M., Geographic brushing: Enhancing
exploratory analysis of the scatterplot matrix,
Geographical Analysis, 21(1), 81-84, (1989).

Plaisant, C., Facilitating data exploration: Dynamic
Queries on a health statistics map, Proc. ofthe Annual

[PJ94]

[NSOO]

[RLS96]

[STD95]

[SMC96]

[TBS97 J

[WS92]

Meeting of the American Staristical Association -
Government Statistics Section, 18-23, (Aug. 1993).

Plaisant, C., Jain, V., Dynamaps: Dynamic queries on
a health statistics atlas, Video in CHI ’94 Video
Program, ACM CHI ‘94 Conference Companion, 439-
440, (1994).

North, C., Shneiderman, B., Snap-Together
Visualization: A user interface for coordinating
visualizations via relational schemata”, Proc.
Advanced Visual Interfaces 2000, 128-135, (May
2000).

Roth, S., Lucas, P., Senn, J., Gomberg, C., Burks, M.,
Stroffolino, P., Kolojejchick, J., Dunmire, C., Visage:
a user interface environment for exploring
information, Proc. Informarion Visualization, IEEE,
3-12, (October 1996).

Spence, R., Tweedie, L., Dawkes, H., Su, H.,
Visualisation for Functional Design, Proceedings
Inforinarion Visualization ‘95.4-1 0, (1 995).

Symanzik, J., Majure, J., Cook, D., Dynamic graphics
in a GIs: a biderectional link between ArcView 2.0
and Xgobi. Computing Science and Statistics, 27.
299-303, (1 996).

Tanin, E., Beigel, R. and Shneiderman, B., Design and
evaluation of incremental data structures and
algorithms for dynamic query interfaces, Proc. IEEE
Symposium on Infonnation Visualizarion, 8 1-86,
(I 997).

Williamson, C.. Shneiderman, B., The dynamic
HomeFinder: Evaluating dynamic queries in a real-
estate information exploration system, Proc. ACM
SlGlR ‘92, 338-346, (1 992).

764

