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ABSTRACT

Designing graph drawings that effectively communicate the under-
lying network is challenging as for every network there are many
potential unintelligible or even misleading drawings. Automated
graph layout algorithms have helped, but frequently generate in-
effective drawings. In order to build awareness of effective graph
drawing strategies, we detail readability metrics on a [0,1] contin-
uous scale for node occlusion, edge crossing, edge crossing angle,
and edge tunneling and summarize many more. Additionally, we
define new node & edge readability metrics to provide more lo-
calized identification of where improvement is needed. These are
implemented in SocialAction, a tool for social network analysis, in
order to direct users towards poor areas of the drawing and provide
real-time readability metric feedback as users manipulate it. These
contributions are aimed at heightening the awareness of network
analysts that the images they share or publish could be of higher
quality, so that readers could extract relevant information.

Keywords: Readability metrics, aesthetic, graph drawing, social
network analysis, information visualization.

1 INTRODUCTION

Graphs have long been common data structures in Computer Sci-
ence, but have only recently exploded into popular culture with pub-
lishers like the New York Times now frequently including elaborate
and interesting graphs with their articles. Online communities like
Facebook, MySpace, Twitter, Flickr, mailing lists, and Usenet (to
name only a handful) enjoyed enormous growth over the last few
years and provide incredibly rich datasets of interpersonal relation-
ships, which social scientists are now fervently exploring. Con-
ventional visualization tools like bar and pie charts are often in-
adequate when faced with these varied and oftentimes immense
datasets. www.visualcomplexity.com provides many beautiful al-
ternative visualizations for these data, but one enduring visualiza-
tion in particular models relationships using a node-edge diagram,
where nodes in the graph represent actors in a community and the
edges indicate relationships between individual actors [7]. This
graph is called a social network and the resulting graph drawing
is called a sociogram [34].

Sociograms have only recently been established as tools for net-
work analysis, but have already been put to great effect. [13,
54] successfully used sociograms to detect common social roles in
online discussion newsgroups such as answer person and discus-
sion person, and [1] applied sociograms to the study of relationships
between political blogs during the 2004 U.S. Presidential Election,
showing the division between liberal and conservative communities
as well as their internal interactions.

There is a huge array of possible sociograms for any given social
network, many of which can be misleading or incomprehensible.
Drawings of relational structures like social networks are only use-
ful to the degree they “effectively convey information to the people
that use them” [6]. What’s more, there is no “best” layout for a so-
cial network as different layouts can highlight different features of

the network being studied [7]. In fact, the spatial layout of nodes in
the sociogram can have a profound impact on the detection of com-
munities in the network and the perceived importance of individual
actors [32]. Hence, significant thought must be given to properly
drawing graphs so that network analysts will be able to understand
and effectively communicate data like clusters in the network, the
bridges between them, and the importance of individual actors.

As manual layout of nodes in the sociogram is incredibly time
consuming to do well, a lot of effort has been put into develop-
ing automated graph layout algorithms. There are many that can
be used for sociograms, including variants of the spring embed-
der [11] such as the popular Fruchterman-Reingold force-directed
algorithm [15] and more scalable gravitational N-Body approaches
such as [2]. The results of applying these algorithms can vary
greatly depending on the size and topology of the network, and the
layouts they generate are dependent on the algorithm used. Each
attempts to find an optimal layout of the graph, often according to a
set of readability metrics, which are measures of how understand-
able the graph drawing is, such as the number of edge crossings
or occluded nodes in the drawing. While optimizing readability
metrics, or RMs, does not guarantee the resulting drawing is un-
derstandable, it has been shown to promote many common analysis
tasks. Traditionally these RMs have been called aesthetic criteria.
We choose to call them readability metrics instead because of the
ambiguity implied by the word “aesthetic”. We are not concerned
as much with how visually pleasing a particular graph drawing is;
instead we are interested in how well it communicates the underly-
ing data. However, many graph drawing algorithms create visually
appealing visualizations, and some of the most informative visual-
izations are also the most beautiful.

Although each automated graph layout algorithm attempts to
produce an understandable graph, the particular RMs it optimizes
intentionally or indirectly may not be the correct ones for what the
users are trying to demonstrate. Additionally, as the optimization
of many RMs is NP-hard [6], these techniques often produce sub-
optimal graph drawings. The International Symposium on Graph
Drawing has met annually for 16 years working to improve auto-
mated graph layout algorithms and RMs, among other things, but
we believe that state of the art automated layout algorithms alone
are insufficient to consistently produce understandable graph draw-
ings.

Instead of focusing on a purely automated graph layout, we pro-
pose raising user awareness of the importance of RMs for their
graph drawings and providing users with computer-assisted layout
manipulation tools. Taking up where the automated layout leaves
off, these tools would give users real-time feedback as to how their
movement of nodes affect the RMs and potentially even provide
local placement suggestions for the RMs users wish to optimize.
This functionality could take a form similar to the “snap-to-grid”
feature of many modern graphics applications, optionally pulling
the dragged nodes to local maxima. We believe that this approach
will provide users, and network analysts in particular, tools and
guidelines that will allow them to create more understandable graph
drawings that more accurately highlight features like communities
within social networks.

We do not yet have a complete set of requirements for highly
readable graph drawings, but we believe that many currently pub-



lished graphs could be substantially improved with a few modest
refinements. While no set of requirements can fully capture all ef-
fective graph drawings, we believe that applying RMs will improve
most graph authors’ output. A simple interim set of guidelines for
editors and network analysts might be to aspire to these four prin-
ciples that we playfully call NetViz Nirvana:

1. Every node is visible
2. For every node you can count its degree
3. For every edge you can follow it from source to destination
4. Clusters and outliers are identifiable

This name NetViz Nirvana is meant to be in harmony with
and complement the widely cited principles in the Information-
Visualization Mantra: overview first, zoom and filter, then details-
on-demand [46]. These principles will need refinement to deal with
large graphs where node aggregation, edge bundles, and cluster
markers may be necessary to allow users to make scalable com-
parisons.

The remainder of this paper delves into the creation of RMs for
graph drawings and a software tool for network analysts that incor-
porate the idea of communication-minded visualization: “visual-
ization designed to support communication and collaborative anal-
ysis” [51]. Four RMs are outlined in detail in §2, along with an
overview of additional ones. We then in §3 describe the integration
of our RM framework into SocialAction, a tool that allows ranking
by the attributes of nodes and edges and provides multiple coordi-
nated views to help users systematically explore various statistical
measures for social network analysis [36, 38, 37]. We leave the
implementation of the “snap-to-grid” feature as future work (§4).

2 READABILITY METRICS

There is a substantial body of work aimed at developing and, more
recently, empirically verifying the correctness of a wide variety of
RMs. Excellent overviews of RMs for general graphs can be found
in [48, 6, 52, 5, 4], and RMs specific for trees and UML diagrams
are in [55] and [12], respectively. The first standard and numeri-
cal definitions of many specific RMs were given in [45] and were
elaborated on by [41], which presents seven specific RM formulae.
These will form the basis for many of our RMs.

Previous work in this area primarily deals with RMs for the en-
tire graph drawing, giving, for example, a count of the total number
of edge crossings. We will call such RMs global readability met-
rics, or global RMs. These serve as excellent measures for how
understandable the whole graph drawing is, but do not provide the
level of specificity we need to direct users to problem areas. More-
over, the computational requirements of some global RMs limit
their usefulness for providing real-time feedback.

Additionally, we would like to integrate our RM framework
into SocialAction’s attribute ranking system, so users can intu-
itively move between rankings of statistical measures and those for
RMs (§3). To do so, we can provide additional attributes for both
nodes and edges in the network that describe how these individ-
ual components affect the global understanding. We will call these
node readability metrics and edge readability metrics, or node RMs
and edge RMs for short. This is an extension of the idea of indi-
vidual node and edge metrics espoused in [16]. Defining RMs for
individual clusters or regions would also be helpful, especially for
examining large graphs, but we leave this as future work.

As per [41], each of our RMs are scaled appropriately to a con-
tinuous scale from [0,1] where 1 indicates the positive maximum of
the RM. This allows us to assign graph readability requirements to
particular drawings based on the content and information we want
the impart. For example, a journal may recommend 0% node oc-
clusion, <2% edge tunneling, and <5% edge crossing to publish a
sociogram, while having different suggestions for UML diagrams
or other kinds of graphs. However, there are many useful graph
drawings that violate these limits and they shouldn’t be eliminated

(a) Tight layout (b) Relaxed layout

Figure 1: We can eliminate the node occlusion that makes the center
cluster in 1a so hard to understand by zooming out and reducing the
the spring lengths of our layout algorithm 1b.

(a) Random layout (b) After reducing edge
crossings

(c) After eliminating
edge crossings

Figure 2: Different drawings of the same graph with high (2a),
medium (2b), and low (2c) edge crossings.

based solely on the RMs.
§2.1-§2.4 describe the RMs we will look at in depth: node oc-

clusion, edge crossing, edge crossing angle, and edge tunneling.
§2.5 provides a brief overview of additional RMs.

2.1 Node Occlusion
Euclid defined a point as that which has no part. Historically, ab-
stract graph layout algorithms were designed around this princi-
ple, with nodes taking up little or no space [55, 33, 30]. Practical
applications of graph layouts like sociograms or UML diagrams
however represent nodes using text, shapes and colors, pictures,
and size (§2.5). Classical algorithms can thus frequently result
in nodes occluding one another. This node occlusion (also called
overlapping or overplotting) is contrary to accepted graph readabil-
ity guidelines [48], including those for trees [55] and UML dia-
grams [12]. Moreover, areas of the drawing with high occlusion
make it very difficult for the viewer to get an accurate count of the
number of individual nodes in a cluster to get a sense of its scale.

Misue et al. [33] first addressed this issue using the Force-Scan
algorithm to adjust cluttered graph layouts. Additionally, many
variants of the spring embedder [11] include a node-node repulsion
force that often reduces node occlusion.

Node occlusion has largely been ignored in the recent literature
and there is little direction given to tool designers or end users to
reduce it. Even widely used graph drawing tools such as Pajek [3],
a common social network analysis tool for sociologists, fail to prop-
erly reduce occlusion. In a recent user study [25] the authors had
to hand tune the diagrams produced by Pajek to avoid occlusion.
Fig. 1 shows how node occlusion can be eliminated by zooming
out and increasing default spring lengths, at the cost of decreasing
implied clustering.

Node Occlusion Readability Metrics: We are not aware of any



suitable existing readability metrics for node occlusion. We suggest
a global RM proportional to the number of uniquely distinguish-
able items in the graph drawing, where an item can be either a node
or a connected mass of overlapping nodes. On a continuous scale
from 0 to 1, 1 indicates that every node is uniquely distinguish-
able from its neighbors (possibly including a spacing requirement)
and 0 indicates that all nodes in the graph drawing are overlap-
ping, creating one large connected mass. Similarly, a node RM can
be proportional to the ratio of the node’s representation area (pos-
sibly including a spacing requirement) that is obscured by other
nodes. Naturally there is no edge RM for node occlusion, how-
ever node occlusion is usually grouped in the literature with edge
tunneling (§2.4), which provides additional RMs.

2.2 Edge Crossing
The number of edge crossings or intersections is the most widely
accepted RM in the literature. In 1953, Moreno [34] wrote, “The
fewer the number of lines crossing, the better the sociogram.” Edge
crossings is listed as an important general RM in many books on
graph drawing, including [6, 48, 52], as well as for automated UML
diagram layout [12]. Substantial work has been done in the design
of graph drawing algorithms that reduce the number of edge cross-
ings [49, 10, 15, 8, 9, 35].

Purchase’s seminal RM comparison user study identified edge
crossings as having the greatest impact on human understanding of
general graphs of the five RMs she studied [39]. This finding has
been empirically validated in [44, 40, 43]. These studies focus on
edge tracing tasks like finding the length of the shortest path be-
tween two nodes, though use a global count of the number of edge
crossings. [53] suggests the number of edge crossings along the
relevant edges is more important than a global measure. Additional
evidence for the importance of edge crossing comes from [29],
which deals with visualizing ordered sets. Moreover, user prefer-
ence studies identify minimizing edge crossings as the most impor-
tant RM for UML diagrams [42, 43] as well as for sociograms [23],
and when given the option of improving on an initial force-directed
or random layout, users created graph drawings with 60% fewer
edge crossings on average [50]. [29] theorizes that crossed lines
could be salient properties which distract the user’s visual system
from the relationships the drawing was designed to convey.

However, [35] suggests that allowing some edge crossings can
sometimes result in more readable graph drawings and recent litera-
ture points to restricting edge crossing angles being almost as effec-
tive as reducing edge crossings (§2.3). Furthermore, recent research
on sociograms comparing edge tracing tasks like finding groups to
node importance tasks indicates that while reducing edge crossings
improves edge tracing task performance and user preference, it has
little effect on node importance tasks [24, 22, 26]. This was further
verified in eye tracking studies [17, 19, 21]. They postulate that this
indicates the effects of edge crossings can vary depending on the
situation. Further discussion of the cognitive load imposed by edge
crossings quantified using eye tracking is in [28, 25, 18, 21]. Fig. 2
demonstrates how reducing edge crossings can lead to a much more
understandable drawing.

Edge Crossing Readability Metrics: [41] defines a global RM
based on the number of edge crossings in the graph drawing scaled
against an approximation of the upper bound of the number of pos-
sible crossings on a continuous scale from 0 to 1. We define a sim-
ilar node RM, counting only edges directly connected to that node
and scaling by a similar upper bound. Likewise, we specify an edge
RM that scales the number of crossings along that edge appropri-
ately.

2.3 Edge Crossing Angle
The impact of edge crossing angles was first introduced as a global
RM by [53], which is based on a neurophysiological view of the

(a) Original layout (b) After making edge crossings
more perpendicular

Figure 3: In edge tracing tasks such as finding the length of the short-
est path between the bottom right and top left nodes in 3a, increas-
ing the edge crossing angles approaching 90 degrees (3b) improves
user path finding performance.

user. Ware et al. claim rapid early-stage neural processing causes
certain features to “pop out” to users, and that these neurons are
coarsely tuned when examining angles, roughly between +/- 30 de-
grees. Though they did not find the impact of edge crossing an-
gles to be significant, they did find that another angular measure,
path continuity (§2.5), was. This neurophysiological view supplies
an explanation for the results of [20, 17, 19, 18, 27], which use
an eye tracking user study to verify that the angle of edge cross-
ings has a significant impact on user response time for edge tracing
tasks. Moreover, response time significantly decreased as the cross-
ing angle tended towards 90%, though tended to level off or even
slightly increase beyond 70%. This is attibuted to extra back-and-
forth eye movements around accute crossings. However, as the size
of the graph increases creating longer searching paths, the impact of
even near-perpendicular crossings can build up and become signifi-
cant [19]. See Fig. 3 for a demonstration of how more perpendicular
edge crossing angles promote path finding tasks.

Edge Crossing Angle Readability Metrics: We believe the
global RM for angular resolution (§2.5)can be modified to incor-
porate the average deviation of edge crossing angles from the ideal
angle of 7̃0 degrees instead. [53] uses the average cosine crossing
angle as their global RM metric, and our planned experiments with
these metrics may suggest that modification as well. The associ-
ated edge RM follows simply by removing the sum over all nodes
and the relevant scaling. The node RM is somewhat harder to de-
fine, though it can be based on the combining the edge RMs for the
node’s connected edges.

2.4 Edge Tunnel
There is little literature dealing with nodes occluding edges and vice
versa, and it is often lumped together with node occlusion (§2.1).
Because of the limited definitions available for this RM, we will call
the specific case of a node occluding an edge an edge tunnel. The
reverse can be called an edge bridge, but as many modern graph
drawing tools (e.g. SocialAction, NodeXL [47]) draw nodes with
higher priority than edges we are ignoring this case.

Both cases are accounted for by the simulated annealing graph
drawing algorithm from [9], which incorporates the distance be-
tween every node and edge in a fine-tuning step. [48] calls avoid-
ing edge tunnels a basic rule, and for UML diagrams, [12] specifies
that nodes should not be too close to edges unless they are con-
nected or a more important RM forces their proximity. However,
many algorithms do not take this into account, including [30] and
the commonly used Fruchterman-Reingold algorithm [15]. Even
tools using algorithms that remove edge tunnels are not guaranteed
to do so. The excellent user study [53] used 200 generated graph



Figure 5: SocialAction with the integrated Graph Drawing Readability Metric framework rapidly shows problem areas in the graph drawing
highlighted in red and listed in a ranked table. It is currently showing a subset of the reply relationships within the Alberta Politics discussion
newsgroup, and the graph drawing has been optimized for the node occlusion and edge tunnel readability metrics. The steps in SocialAction’s
Systematic Yet Flexible framework are shown along the top. The Graph Readability panel (middle-left) shows node or edge readability metrics
as well as global ones. The Rank Nodes panel at the far left ranks nodes by the edge crossing readability metric and provides the color scale for
the Graph pane.

(a) Original layout (b) After removing edge tunnels

Figure 4: In 4a it is difficult to tell which edges connect to which nodes
because of the number of edge tunnels. By zooming out and hand
tuning the layout (4b) we can completely eliminate edge tunnels (but
not crossings).

drawings with 42 nodes each, of which the results from 7 graph
drawings had to be excluded from the final analysis because of un-
expected edge tunnels that implied nonexistent connections. The
standard users of graph drawing tools are more likely to overlook
such problems than RM researchers. Fig. 4 shows how zooming out
and hand tuning a layout to reduce edge tunnels allows for a much
clearer picture of the network topology.

Edge Tunnel Readability Metrics: The global RM for edge tun-
nels can be built upon the global RM for edge crossings (§2.2),
comparing the number of edge tunnels in the graph drawing to an
appropriate upper bound. A simple edge RM is thus an appropriate
scale of the number of edge tunnels that edge has. Local edge tun-
nels is defined as a node RM for the number of edges that tunnel
under that node. An second node RM for triggered edge tunnels,
the edge tunnels of all edges connected to that node, can be speci-
fied in terms of the combined edge RMs for those edges.

2.5 Additional Readability Metrics

There are many potential RMs that can be taken into account to pro-
duce effective graph drawings, and each impacts how understand-
able the final product is and how successfully it imparts the author’s
message. Many that we are investigating for standardization and in-
clusion in our framework are briefly discussed below.

Angular Resolution: The angular resolution RM refers to the
minimum or average angle formed by all the edges incident to an
individual node. [49] and [14] dealt with this early on, and [41]
defines a minimum angle metric. [39] found it had no effect on
path finding tasks, but this was found significant for recognizing
actor status by [24].

Node Size: The size of nodes in the graph drawing can signifi-
cantly affect node occlusion, edge tunneling, and the ability of users
to see shapes and colors as well as read labels. We suggest outlin-
ing four size constraints depending on the amount of information
to be displayed. Displaying the location of the node only requires
representing a point, while adding properties like color and shape to
indicate additional attributes requires more space to be identifiable.
Nodes must be even larger yet in order to display meaningful text
labels within the node, which are dealt with more in the following
two RMs.

Node Label Distinctiveness: In many graph drawings node la-
bels must be truncated to limit node occlusion and edge tunneling.
As it is important to have uniquely identifiable and meaningful la-
bels, users should attempt to remove common prefixes (e.g. “De-
partment of” in an organization network). A RM for assessing the
distinctiveness of individual labels in the drawing would draw at-
tention to these problems, but must be flexible enough to accom-
modate unexpected prefixes. A potential solution might be found
through the use of suffix trees.

Text Legibility: Similarly, the text must be sized and formatted
appropriately so that it is readable in the final drawing. If this is
not possible, the text should be removed to reduce node occlusion,
edge tunneling, and the size of the graph. A common measure for
this is the angle subtended by the text from the users point of view,



though this may be difficult to translate into a RM.
Node Color & Shape Variance: As users have substantial diffi-

culty interpreting a graph drawing using too many distinct shapes
or colors to represent attributes, a RM should be defined that indi-
cates the difficulty of keeping those combinations in memory. This
might limit the publication of drawings with excessive shape and
color coding.

Edge Bends: [10] stated that edges in a graph drawing should be
as straight as possible. While the examples here deal with only
straight-line drawings, edges with bends can be very useful for
some types of graphs like UML diagrams. [41] defines a RM for
edge bends, while [39] found that they have an impact on path find-
ing tasks.

Path Continuity: How continuous a path is is inversely related
to the number and size of its bends. [53] defines continuation at a
node as “the angular deviation from a straight line of the two edges
on the shortest path which emanate from the node.” The sum of
these deviations provides the basis for a path continuity RM. Their
user study found path continuity to be significant for path finding
tasks.

Geometric-path tendency: A path between two nodes in a graph
drawing can “become harder to follow when many branches of the
path go toward the target node” [19]. This is known as the geo-
metric path tendency. Though a RM is not obvious, developing one
may result in graph drawings better suited for edge tracing tasks.

Orthogonality: [41] defines a RM for orthogonality using mea-
sures for the extent nodes and edges in the graph drawing follow
the points and lines of an imaginary Cartesian grid. Orthogonality
is important for some kinds of drawings, especially those of UML
class diagrams ([42]) and other hierarchical structures. However,
it is unimportant and can even be misleading for sociograms, as by
placing nodes along imaginary lines the sociogram implies to view-
ers that horizontally or vertically adjusted nodes are related [29].
Node and edge RMs for orthogonality would likely be of limited
use.

Symmetry: [31] observed that a graph drawing is “good” when it
displays as many symmetries as possible. This was verified by [39]
and a RM for axial symmetry is provided by [41]. Like for orthog-
onality, node and edge RMs for symmetry are of limited value.

Spatial Layout & Grouping: The spatial layout of nodes in a
graph drawing has a substantial impact on the ability of users to
ascertain the importance of actors in the network as well as iden-
tifying groups or communities of them [32]. A RM for this might
compare how effectively the visual grouping of nodes in the graph
drawing conveys groupings found via a community algorithm that
operates only on the structure of the graph.

Edge Length: The most common algorithms for sociogram lay-
out are the many variations of the spring embedder ([11]), which
attempt to reduce the variance of intra-node distances in the graph
drawing. However, [50] found that users prefer to space clusters of
nodes proportional to number of connecting edges between them.
This might lend credence to a RM that analyzes the strength of re-
lationships between clusters and compares that to the actual visible
separation, though optimizing the RM would be difficult when us-
ing spring or force based layout algorithms.

Path Branches: The number of edges branching from shortest
paths within the graph drawing can also have an affect on path find-
ing tasks [53]. A global RM might compute the number of branches
along each shortest path in the graph drawing as a measure of the
general difficulty of edge tracing tasks.

3 IMPLEMENTATION

We have implemented a prototype of the RM framework inside of
SocialAction, a tool that uses attribute ranking and multiple coordi-
nated views to help users systematically explore various statistical
measures for social network analysis. In SocialAction, users can

(a) Tight layout
NO:14,ET:70,EC:180

(b) Medium layout NO:4,ET:26,EC:159

(c) Concise tight layout
NO:1,ET:25,EC:180

(d) Concise medium layout NO:0,ET:12,EC:159

(e) Loose layout NO:0,ET:14,EC:157

Figure 6: Ranking and coloring with the node occlusion node RM
shows areas of high occlusion in red. To reduce occlusion we can
relax the layout by increasing default spring lengths (Fig. 6a,6b,6e).
Note that this is not the same as merely increasing the size of the
drawing: the adjustment of the parameters of the layout algorithm re-
sults in a somewhat different layout as well. We can also use shorter
unique, trimmed, or simplified labels (Fig. 6c & 6d), in addition to
hand-tuning node position as a final step. Note that color scales may
change between figures as the worst nodes become better. Metrics
listed are node occlusion (NO), edge tunnels (ET), and edge cross-
ings (EC).



(a) Edge tunnel coloring NO:0,ET:14,EC:157

(b) Edge tunnels removed NO:0,ET:0,EC:155

(c) Edge crossing NO:0,ET:0,EC:155

(d) Edge crossings removed (1/3) NO:0,ET:0,EC:114

(e) Edge crossings removed (2/3) NO:0,ET:0,EC:90

(f) Edge crossings removed (3/3) NO:0,ET:0,EC:85

Figure 7: Using the node RM for edge tunnels, users can see areas with edge tunnels in red and manually adjust the layout to remove them
(Fig. 7a & 7b). Likewise, the node RM for edge crossings shows users areas with lots of crossings and lets them hand tune the layout to
reduce them (Fig. 7d–7f). Fig. 2 gives a prime example for how minimizing edge crossings can greatly improve the readability of a drawing.
Unfortunately, minimizing the number of edge crossings for less structured graphs often results in an asymmetric drawing like Fig. 7f in which the
centrality and angular resolution of many nodes is reduced, decreasing their perceived importance. For larger, less structured graphs a balance
must be struck between the number of edge crossings and the impact of further minimization on the spatial layout of the drawing. Note that color
scales may change between figures as the worst nodes become better. Metrics listed are node occlusion (NO), edge tunnels (ET), and edge
crossings (EC).



rank nodes and edges using ordered lists of the chosen attribute
and simultaneously visually code the node-edge drawing using the
ranking. Nodes remain in their original positions as users change
the ranked attributes, which prevents the users from losing their
mental map of the network. By combining multiple coordinated
views with rapid transitions between statistical social network anal-
ysis measures and additional node and edge attribute rankings, So-
cialAction affords network analysts a quick understanding of the
network properties. Extreme-valued nodes and edges are high-
lighted particularly effectively through the combination of ranked
lists and visual coding.

We can leverage this attribute ranking system by incorporating
the node and edge RMs we defined earlier into SocialAction as
node and edge attributes. Like any statistical measure or additional
attributes in the dataset, users can now rank nodes and edges based
on their individual RMs, highlighting problem areas in the graph
drawing. This allows them to rapidly flip between RM rankings
and identify areas that would benefit from hand-tuning of the lay-
out.

Users can then utilize the interactive features of SocialAction
which allow them to drag nodes or groups of nodes to new posi-
tions, attempting to manually optimize the RMs. Node and edge
RMs are computed in real-time for the nodes being dragged, and
many global RMs can be selectively updated with these local com-
putations to shortcut the computational complexity a complete re-
calculation requires. This allows users to see how their movement
of nodes affects both global and node RMs simultaneously, both
in a Graph Readability panel as well as real-time updating of the
ranked list and color scale of the node-edge drawing. Moreover,
users can switch between individual RMs and statistical measures
while maintaining the same graph layout and preserving any hand
tuning they’ve done.

Fig. 5 shows the SocialAction interface displaying a sociogram
of reply relationships within a subset the Alberta Politics discussion
newsgroup for which the node occlusion and edge tunnel readabil-
ity metrics have been minimized. Across the top are the steps in
SocialAction’s Systematic Yet Flexible framework, which allows
for a guided and all-encompassing while still flexible approach to
social network analysis, along with the Attribute Nodes panel for
categorical coloring and the Graph Readability panel (shown along
the middle-left). The Graph Readability panel shows the node or
edge readability metrics for the selected items, as well as global
readability metrics. The Rank Nodes panel (far left) shows a rank-
ing of nodes by the edge crossing readability metric in decreasing
order, with a filtering slider at the bottom. The large Graph panel
shows the node-edge drawing with color coding of nodes by their
ranking in the Rank Nodes panel, with nodes having many edge
crossings colored bright red. These are candidates for movement or
resizing to reduce the number of edge crossings.

Underneath each figure are counts for node occlusions (NO),
edge tunnels (ET), and edge crossings (EC). We use actual counts
for individual RMs for clarity. Individual counts can usually be
made available as tooltips or the like, but for the RMs to be use-
ful they must be independent of the graph size, and are thus scaled
to the continuous range from [0,1]. This requirement is made ev-
ident from the global count of 2954 edge crossings in the Alberta
Politics dataset. Also note that figures which show a progression
of graph drawings being optimized for a RM may have a changing
color scale, as the worst nodes in the drawing become better.

Users can manipulate their drawings in order to minimize node
occlusion using the node RM for it as a guide (Fig. 6). Coloring
is scaled by the node RM, with bright red indicating areas of high
occlusion. By relaxing the layout slider in SocialAction we can
eliminate node occlusion entirely for this subset of the Alberta Pol-
itics dataset (Fig. 6a,6b,6e). This increases the default spring length
used by the layout algorithm, allowing clusters of nodes to spread

out and resulting in a larger drawing. Some graphs, especially dense
ones, may require manual tweaking as well. Another way to mini-
mize occlusion is to reduce the size of labels. One way is to move
from a full label to a distinctive yet concise one (Fig. 6c & 6d).
Other ways include minimizing text margins in the nodes or font
size.

To reduce the number of edge tunnels in the drawing, users can
rank and color by the node RM for local edge tunnels. Fig. 7a & 7b
show a user removing edge tunnels by tuning node placement. This
is easier for loosely connected nodes but can be difficult in dense
areas. To reduce edge tunnels, we may have to increase the number
of edge crossings. For manually tweaking the position of poorly
connected nodes the local edge tunnel RM seems more useful.
However, the triggered edge tunnel RM is better suited for mov-
ing highly connected nodes as it shows the effect a node has on its
region of the drawing. As with node occlusion, one way of reducing
edge tunnels is to shrink nodes. Similarly, Fig. 7d–7f show a user
removing edge crossings using the node RM for it. This is often
a harder RM to minimize, as it is not always obvious how mov-
ing a node will eventually affect the total count. The process often
involves trial and error, as well as multiple passes through each re-
gion of the drawing. Moreover, most social networks are not planar
graphs and can’t be represented without edge crossings. One of the
easiest approaches is to pull tightly connected nodes near the edge
farther out as in Fig. 7e, so that less central nodes can be placed
between its connected edges. This has the unfortunate effect of sig-
nificantly worsening the angular resolution and spatial layout RMs,
which can make the node seem less important or central than it is.

Improving individual RMs can be beneficial for other RMs as
well, though often there are tradeoffs between them users may have
to weigh. Which RMs should be improved thus depends on what
users are trying to convey with their drawings. Thus, it is impera-
tive that users of graph drawing software be made aware of which
RMs their layout algorithms attempt to optimize and the effects var-
ious layout techniques have on how much of the underlying data is
effectively conveyed.

4 CONCLUSIONS AND FUTURE WORK

As social network analysis and graph drawing in general become
more mainstream it is important to provide new entrants guidelines
for effective graph drawing creation, as without them the graph
drawings users produce can be unintelligible or even misleading.
We advocate the creation of standardized readability metrics and
the incorporation of these RMs into graph drawing tools so as to
emphasize their importance in the graph drawing process to users.
We discuss in depth four RMs: node occlusion, edge crossing, edge
crossing angle, and edge tunneling, in addition to a brief overview
of many more. We provide global RMs for the whole drawing,
which are broken down into node RMs and edge RMs for the indi-
vidual nodes and edges in the drawing. Defining RMs for individual
clusters or regions would also be helpful, especially for examining
large graphs, but we leave this as future work.

To aid users in their use of RMs, we have incorporated our Graph
Drawing Readability Metric framework into SocialAction, a statis-
tics and visualization tool for network analysts. SocialAction’s at-
tribute ranking system allows users to quickly and visually pinpoint
problem areas in the graph drawing for each of the implemented
RMs, and they now have the additional ability to drag nodes in
the drawing and simultaneously see real-time feedback for each of
the implemented RMs. These features will supplement real-time
automated graph layout algorithms, providing a feedback loop be-
tween the algorithms and user manipulation. Future work on this
tool might include providing a feature akin to the “snap-to-grid”
tools of many graphics applications, which would optionally pull
the dragged node to nearby local maxima of the RMs. Automated
layout algorithms could also be developed that allow users to select



which RMs they wish to optimize the graph drawing for and the
priority for them based on their application, which could be used to
redraw either the whole graph or particular subsections of it.

We have began the process of outlining and integrating RMs into
tools for network analysts, but much remains to be done. We are ap-
proaching but have not yet achieved NetViz Nirvana. We hope that
this work will heighten the awareness of network analysts that the
images they share with others or publish in reports could be higher
in readability, so that readers could extract relevant information.
Moreover, we hope that network analysts might convey their de-
sires to designers and implementers of software tools, so that they
could integrate more effective algorithms and interfaces that give
users better control over graph displays. Finally, we hope to trig-
ger further research, both algorithmic and behavioral, to develop,
refine, and validate graph display readability metrics.
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