
Motif Simplification: Improving Network Visualization
Readability with Fan, Connector, and Clique Glyphs

Cody Dunne, Ben Shneiderman
Department of Computer Science and Human-Computer Interaction Lab

University of Maryland, College Park, MD 20742
{cdunne, ben}@cs.umd.edu

(a) 65% (b) 65% simplified (c) 70% (d) 70% simplified

Figure 1: U.S. Senate 2007 co-voting network at 65% and 70% agreement cutoffs, simplified using clique motif glyphs. Key
features are visible, such as the moderate Republican clique around McCain with “wildcards” at the periphery.

ABSTRACT
Analyzing networks involves understanding the complex re-
lationships between entities, as well as any attributes they
may have. The widely used node-link diagrams excel at
this task, but many are difficult to extract meaning from be-
cause of the inherent complexity of the relationships and lim-
ited screen space. To help address this problem we introduce
a technique called motif simplification, in which common
patterns of nodes and links are replaced with compact and
meaningful glyphs. Well-designed glyphs have several ben-
efits: they (1) require less screen space and layout effort, (2)
are easier to understand in the context of the network, (3)
can reveal otherwise hidden relationships, and (4) preserve
as much underlying information as possible. We tackle three
frequently occurring and high-payoff motifs: fans of nodes
with a single neighbor, connectors that link a set of anchor
nodes, and cliques of completely connected nodes. We con-
tribute design guidelines for motif glyphs; example glyphs for
the fan, connector, and clique motifs; algorithms for detect-
ing these motifs; a free and open source reference implemen-
tation; and results from a controlled study of 36 participants
that demonstrates the effectiveness of motif simplification.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

Author Keywords
Motif simplification; network visualization; graph drawing;
node-link diagram; visual analytics.

ACM Classification Keywords
H.5.2. User Interfaces (D.2.2, H.1.2, I.3.6)

INTRODUCTION
Networks of entities and their ties have long been common
data structures in computer science, but have only recently ex-
ploded into popular culture with publishers like the New York
Times including elaborate and interesting networks with their
articles. Online communities like Facebook, MySpace, Twit-
ter, Flickr, and mailing lists (to name only a handful) enjoyed
enormous growth over the last few years and provide incred-
ibly rich datasets of interpersonal relationships, which social
scientists are now fervently exploring. Networks have also
found applications in such diverse disciplines as bioinformat-
ics, scientometrics, urban planning, politics, and archeology.

Analysis of network data requires understanding clusters,
connectivity, and centrality. Statistical analysis and conven-
tional visualization tools like bar and pie charts are often inad-
equate when faced with these varied and oftentimes immense
datasets. visualcomplexity.com provides almost 800 network
visualizations, but most are variations of node-link diagrams,
where nodes represent entities and the links or edges indicate
ties connecting them. Node-link diagrams only recently be-
came widely available but have already been put to great ef-
fect, such as detecting social roles in online newsgroups [32]
or studying U.S. political blog ties during an election [2].

http://www.visualcomplexity.com

However, there is a huge array of possible layouts of the
nodes and links in any given network, many of which can
be misleading or incomprehensible. Network visualizations
are only useful to the degree they “effectively convey infor-
mation to the people that use them” [3]. In fact, the spatial
layout of a node-link diagram can have a profound impact on
the detection of communities in the network and the perceived
importance of actors [23]. Significant thought must be given
to proper visualizations so that analysts will be able to un-
derstand and effectively communicate data like clusters, the
paths between them, and the importance of individual actors.

As manual layout of nodes in the node-link diagram is incred-
ibly time consuming to do well, a lot of effort has been put
into developing automated network layout algorithms and fil-
tering tools. As the optimization of many readability metrics
is NP-hard [3], layout algorithms often use heuristics that pro-
duce suboptimal visualizations quickly. However, the results
of applying a layout algorithm can vary greatly depending on
the size and topology of the network, and the layout gener-
ated is highly dependent on the algorithm used. We believe
that state of the art layout algorithms alone are insufficient to
consistently produce understandable network visualizations.

One way forward is the use of aggregation, specifically by ag-
gregating common network structures or subnetworks called
motifs. Large, complex network visualizations often have
motifs repeated throughout because of either the network
structure or how the data was collected. Regardless of their
cause, some frequently occurring motifs contain little infor-
mation compared to the space they occupy in the visualiza-
tion. Existing tools may highlight certain motifs, allow users
to filter them out manually, or replace them with meta-nodes.

We improve on these approaches with motif simplification,
in which network motifs are automatically replaced with
compact, representative glyphs. Well-designed glyphs have
several benefits: they (1) require less screen space and lay-
out effort, (2) are easier to understand in the context of
the network, (3) can reveal otherwise hidden relationships,
and (4) preserve as much underlying information as possi-
ble. In this paper we discuss three high-payoff motifs that
plague network analysts, shown in Fig. 2: fans, connectors,
and cliques. We contribute the design of representative and
combinable glyphs for these motifs, algorithms for detect-
ing them, and a supporting task-based controlled study with
36 participants. These techniques are all implemented and
made publicly available as part of the free and open source
NodeXL network analysis tool [27], which is available from
nodexl.codeplex.com.

Specifically, the contributions of this paper are:

• A technique for simplifying node-link diagrams by replac-
ing common network motifs with representative glyphs,
• A set of design guidelines for these glyphs to show the mo-

tif contents and underlying attributes,
• The design of glyphs for fans, connectors, and cliques,
• Algorithms for detecting these three motifs,
• A supporting task-based study with 36 participants, and
• A free and open source implementation as part of NodeXL.

Figure 2: From left to right: fan, connector, and clique motifs.

RELATED WORK
Network analysis tools generally use node-link diagrams,
as in NodeXL [27], or matrix representations like Matrix-
Explorer [13]. Both node-link and matrix diagrams show
the topology of small networks well but can be unreadable
with a few thousand nodes. We can reduce the visualiza-
tion complexity by showing an aggregate version of the net-
work, based on any number of criteria. NetLens [17] groups
nodes by their attributes and can pivot between connected
groups of two different types, while PivotGraph [31] uses
attribute groupings but shows ties between aggregates using
arcs. GraphTrail [5] combines these approaches with familiar
charts, arc diagrams, and a many-to-many pivot between sev-
eral node types. However, these approaches focus on attribute
comparisons at the expense of showing topology.

Alternatively, we can use a hierarchical topologic clustering
to show a network of meta-nodes like ASK-GraphView [1]
and van Ham & van Wijk [30]. Rather than letting meta-
nodes overlap, van Ham & van Wijk used semantic fisheye
views to show clusters as merging spheres. Other approaches
to creating overview networks include graph summarization
[25] and aggregating nodes by shared neighbor sets [21]. [21]
also provide a topologic clustering tool, and a level of detail
option to split meta-nodes apart to better see the underlying
topology. ManyNets [7] takes a different tack, showing sta-
tistical comparisons of a network partitioned by topology, at-
tributes, or time. In each of these techniques it can be difficult
to understand the topology of the individual aggregates, often
because of the ambiguous nature of clustering algorithms.

Instead of clustering, we can use a metric for node importance
to filter to an important subset. Skeletal images [15] high-
lights high-metric nodes, and replaces filtered trees with tri-
angles that take the same space. Tsigkas et al. [29] similarly
filtered a security network of events and features on a domain-
specific metric, while including a way to aggregate the events
joining a subset of features into meta-edges. However, the
aggregation is limited to ties between two feature types and
obscures the number of connecting nodes and edges.

Our approach is to aggregate the network by the frequently
occurring motifs it contains. While the fan, connector and
clique motifs we target are quite prominent in social network
datasets, there are many other motifs of interest, especially
for biologists. Motif census (counting the kinds of motifs)
and analysis is used extensively to analyze the behavior of
complex biologic networks, looking for repeated patterns that
indicate underlying processes. For example, Milo et al. [24]
find motifs that appear more frequently than expected in ran-
dom networks, and provide a chart of small motif frequency.

http://nodexl.codeplex.com/

Knowledge of the motifs present in a network can help predict
behavior and the “structural signatures” of individual entities
[32], but visualizing these motifs effectively is challenging.
Huang et al. [16] detect motifs with fewer than five nodes
and draw transparent convex hulls to highlight them. Sim-
ilarly, in [19] the matches to a chosen 3–5 node motif are
colored within the overall visualization and are drawn identi-
cally to be easily spotted. Highlighting small motifs can help
biologists spot the locations of particular processes, but does
little to reduce the clutter of a complex network visualization
and can even reduce readability.

Current approaches to reducing complexity aggregate nodes
based on their attributes, topology, or metrics but do not pro-
vide visible indications on the meta-nodes showing the un-
derlying topology. Moreover, these algorithms usually pay
little attention to the motifs present and create a grouping
with ambiguous topology. While current tools can highlight
small detected motifs, there are few techniques for providing
a graphical overview or summary of them. More importantly,
we know of no approaches that leverage the motifs present to
reduce the visual complexity of the network visualization.

NETWORK MOTIF SIMPLIFICATION
Many common network motifs present little meaningful in-
formation, yet can dominate much of the display space and
obscure interesting topology. We believe that replacing these
motifs with representative glyphs will create more effective
visualizations as there will be far fewer nodes and edges for
layout algorithms and users to consider. We have chosen three
motifs for our initial foray into motif simplification:

• A fan motif consists of a head node connected to leaf
nodes with no other neighbors. As there may be hundreds
of leaves, replacing all the leaves and their links to the head
with a fan glyph can dramatically reduce the network size.
• A D-connector motif consists of functionally equivalent

span nodes that solely link a set of D anchor nodes. Re-
placing span nodes and their links with a connector glyph
can aid in connectivity comparisons.
• A D-clique motif consists of a set of D member nodes in

which each pair is connected by at least one link. Cliques
are common in biologic or similarity networks, where
swapping for a clique glyph can highlight subgroup ties.

These motifs are prime simplification candidates for several
reasons. For one, these motifs are quite common in the net-
work datasets we have encountered in several disciplines.
While simple to understand on their own, these motifs can
account for much of the visual complexity of a node-link di-
agram. The fan motifs especially can dominate the diagram.
While connector motifs usually occupy less space than the
fans, they are hard to detect and can contribute substantial
complexity. In the densest networks, such as pairwise simi-
larity scores, overall relationships can be hidden in a tangled
hairball of edges from overlapping clique motifs as in Fig. 1a.

Glyph Design
For each motif, careful thought must be given to how to rep-
resent the simplified version. Arbitrary motifs can be shown
as a simple meta-node (e.g.,

⊕
), possibly with embedded

Figure 3: A 2-connector motif with three simplified glyph
variants: diamond, crescent, and tapered diamond.

images that show a small node-link diagram of the underly-
ing subnetwork. However, a specially designed representative
glyph for a motif can make it easier to understand aggregate
topology and attributes with only minimal additional visual
clutter. We went through several designs for each of our mo-
tif glyphs, though for space reasons we will primarily discuss
the final designs and criteria for designing effective glyphs.

Motif Topology
Foremost each glyph must be representative of the underly-
ing subnetwork topology so that the aggregate relationships in
the network can still be understood. As we aim to reduce vi-
sual clutter, we must use a small, easily-distinguishable glyph
rather than heavy-weight visualizations. An effective way to
differentiate the glyphs is to use unique shapes to identify
each type, ideally that correspond to the underlying topology.

Several example shapes for a connector motif are shown in
Fig. 3. The diamond is a straightforward representation of
the outline made by the motif topology, is discernible at scale,
and has geometric properties that allow easy area scaling and
subdivision. However, they are often used with other shapes
for categorical attribute coding. The crescent is not, but our
user studies indicated that its asymmetry was visually jar-
ring and that it had poor edge connector properties. We fi-
nally chose a symmetric tapered diamond: unique enough to
be distinguishable and representative yet symmetric and con-
nectable. We use the same shape regardless of the number
of anchor nodes so as to reduce the shape corpus required.
The clique motifs were originally represented with a tapered
square to indicate the link density, but it was easily confused
with the connector motif and has since been replaced with a
rounded X (Fig. 6). Like the connector motif, the same shape
is used for any number of clique members. For the fan motifs,
we chose a sector of a circle (Fig. 4), as it represented the fan
of leaf nodes commonly seen in node-link diagrams.

Contained Nodes
In addition to the topology, it is helpful to show information
about the nodes contained in the motif. What information we
want to show impacts the display mechanism we choose for it.
Most useful would be a count of the nodes in the motif. This
quantitative value is best expressed by position [22], though
in node-link diagrams this is reserved for showing ties. The
next best choices would be length, angle, or area [22]. For
the fan motif, we can scale the angle of the sector linearly
between 10–120◦ by the number of contained nodes, which

Figure 4: Three fan motifs and two glyph variants of each.

Figure 5: Three 2-connector motifs and their glyphs.

also linearly scales its area (Fig. 4). We chose this range af-
ter tests using smaller ranges (20–90◦) did not reveal enough
size variation. The vertical alignment eases area comparisons
and eases glyph subdivision to show edge directionality or at-
tributes. We also scale the area of the other motifs linearly by
the number of nodes (Figs. 5 and 6). Designers should ensure
the shape is still discernible at its minimum size while not so
large at its maximum to occlude edges unnecessarily.

We may also wish to show quantitative attributes or statistics
of the underlying nodes. Showing all the values or their distri-
bution would require complex embedded charts or focusable
tooltips. Instead, we show a function of the values such as
mean (used for these examples), sum, min, or variance. As
size is reserved for node count, we are left with the less ef-
fective color saturation, color hue, and density/opacity [22].
While these are less effective encodings, the maximum devi-
ation reported for quantitative tasks is only 13% [4]. Glyphs

Figure 6: 4-, 5-, and 6-clique motifs and their glyphs.

demonstrating these quantitative attribute or statistic encod-
ings are shown in Figs. 4 to 6, using the same color scale as
the underlying nodes in the network. Categorical attributes
are more challenging to display without subdividing glyphs
or embedding visualizations, increasing the visual clutter. Fi-
nally, text attributes such as labels would help reveal the con-
tents of the motif. While a glyph can show a small label, it is
challenging to compute a representative one. Instead, we dis-
cuss later how interactivity can reveal the underlying nodes.

Connecting Edges
Nodes contained within a motif may have connecting edges,
and when the motif is simplified these edges are re-routed to
link to the glyph instead. This can result in duplicate, over-
lapping edges in straight-line drawings, as with the connector
motif in Fig. 5. As with nodes, it is useful to show the num-
ber of duplicate edges and any attributes they may have. The
edges could be drawn independently as curves of varying arcs
or stacked in slices with scaled area, but again we strive to
avoid visual clutter and show aggregate relationships clearly.

We aggregate these duplicate edges into meta-edges, with
width and thus area representing a function of the underly-
ing edges such as the number of edges (Figs. 1 and 8), the
average of an attribute value (Figs. 4 and 5), etc. There are
options for showing categorical attributes or labels, but these
require cluttered embedded visualizations or interactivity. In
some cases there are no attributes on the edges to encode, and
showing even edge count would be a redundant. One exam-
ple is the fan motif, in which the number of edges equals the
already-encoded number of leaf nodes (in an undirected net-
work without duplicates). Example fan glyphs without meta-
edges are shown in the center column of Fig. 4.

Alas, glyph shape impacts how edges connect to them. Ide-
ally, each glyph lies along a straight line with connecting
edges so paths can be traced easily. For the 2-connector mo-
tif, a crescent would suffice if its corners were aligned along
the path (Fig. 3). However, for connectors with three or more
anchors our users reported that crescents make edges difficult
to follow. Symmetric shapes like the tapered diamond and
rounded X are better suited for many connecting edges.

Motif Overlap
Often motifs are non-overlapping and easily transformed into
glyphs, though many motifs do not have this luxury. When
detecting motifs we can choose a non-overlapping set to dis-
play, but motif glyphs will be more effective at reducing com-

plexity when they can be combined to show overlapping mo-
tifs. The design of any motif glyphs must thus take overlaps
into account. Among our three motifs, fans are the most im-
mune to overlap. The fan leaves have too few edges to partic-
ipate in the other motifs, though the fan head can be a connec-
tor anchor or clique member. As a clique glyph replaces all
the clique members, we must exclude the fan head from the
fan glyph to allow this combination. Similarly, a connector
anchor can be a clique member, which requires its exclusion
from the connector glyph. Two example overlaps are shown
in Fig. 7 and more on overlap handling is discussed later.

Glyph Interactivity
While the motif glyphs we described can be effective for sim-
plifying a network, we would like to make sure that they are
easily understandable and investigable. One important aspect
of this is to ensure that users can switch between the orig-
inal and simplified views interactively. Users can simplify
the entire network, or only a selected subset of motifs. Like-
wise, users can expand the entire network to see the original
visualization, or only expand a selected glyph they are inter-
ested in exploring. We expose the contents of each glyph with
tooltips. It would be possible to expand on this and show de-
tails for a glyph via a heavyweight focusable tooltip that con-
tains a chart of attribute distributions or a list of node labels.

Direct manipulation of the motif glyphs and underlying nodes
is an effective way of exploring the network. Users can adjust
node or glyph placement manually, as well as highlight inci-
dent edges or adjacent nodes through simple context menus.
Additionally, automatic layout algorithms are available for
laying out the simplified network. An ideal layout algorithm
would take the shape and size of the glyphs into account, in
addition to the number of edges in any meta-edges.

Motif Detection Algorithms
General motif detection can be accomplished with ap-
proaches like symmetry-breaking [10], but custom algorithms
are more effective for specific motifs that can vary substan-
tially in size. We have implemented algorithms to detect fan,
connector, and clique motifs of all sizes, but due to space con-
straints can only present an overview and refer the interested
reader to our supplementary material, tech report,1 and source
code.2 We will use the terminology of a network or graph G
with a set of nodes G.nodes with a size denoted |G.nodes|.

Fan Motifs
We use the obvious algorithm for detecting fan motifs which
has a run time complexity of O(|G.nodes| × average neigh-
bor count). Average neighbor count is usually relatively small
and can be considered a bounded constant. The main thing to
note is that we count the neighbors for each node, rather than
its degree, as there may be overlapping or directed edges.

Connector Motifs
Connectors have a dimension, denoted D, that indicates the
number of anchors it has and is always two or greater. Our
1www.cs.umd.edu/localphp/hcil/tech-reports-
search.php?number=2012-29
2nodexl.codeplex.com/SourceControl/changeset/view/70521#1208172

Figure 7: Glyphs for fan, clique, and connector motif overlap.

algorithm for detecting connector motifs of all dimensions
takes parameters D-min and D-max to indicate the range
of dimensions to search for. The run time complexity of this
algorithm is also O(|G.nodes| × average neighbor count).

Connectors require more algorithmic details to detect than
fans, despite having the same run time complexity. The al-
gorithm is broken into several components. First, a pass is
made through all nodes searching for span nodes with sets
of neighbors that could be anchors and creating or adding to
a map of keys to possible motifs. An additional pass is re-
quired to traverse the potential motifs and remove those with
only one span node, as well as remove all but the most de-
sirable of any overlapping motifs. We choose motifs to keep
first by the total number of anchors and spanners, then by the
number of spanners, then arbitrarily.

Clique Motifs
To find all cliques in the graph we use the Tomita et
al. algorithm [28], which has a run time complexity of
O(3|G.nodes|/3). However, this algorithm has high memory
requirements and for especially large graphs a new linear-
storage algorithm by Eppstein and Strash may be faster or
required [6]. Unfortunately cliques in general can have high
amounts of overlap. We use a greedy heuristic that chooses
the largest non-overlapping clique motifs to keep that is
O(number of motifs × average motif size). This works well
on the networks we have analyzed, but may be insufficient for
studying dense networks.

Resolving Motif Overlap
When computing motifs, not only can motifs of a type over-
lap (like cliques), but in general the various types can overlap
with each other as well. While our design for fan and connec-
tor motifs prevents any ambiguous overlap and allows easy
combinations (Fig. 7), the choice of which cliques are simpli-
fied can impact user perception of the network. In order to ef-
fectively pick a disjoint set of motifs to keep, we would have
to rate each motif by desirability and solve the set packing
problem, one of Karp’s 21 NP-complete problems [18]. Not
only is this problem computationally hard to solve exactly, it
is also difficult to approximate, hence our use of heuristics.

NodeXL Implementation
We have implemented a reference implementation of mo-
tif simplification and made it publicly available as part of
the NodeXL network analysis tool [27]. NodeXL is a free
and open source template for Microsoft Excel 2007/2010 that
is tailored to provide powerful features while being easy to
learn. The Excel integration allows rapid data processing

http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2012-29
http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2012-29
https://nodexl.codeplex.com/SourceControl/changeset/view/70521#1208172

using standard formulas and macros, but NodeXL also pro-
vides calculators for network statistics, automatic layout al-
gorithms, visual attribute encodings, dynamic filters, direct
manipulation, coordinated views, and importers from on-
line social networks and common network file formats like
GraphML, Pajek, and UCINET. More details are available
in our supplementary material. NodeXL is widely used in
many disciplines and has a full-time developer as well as a
team of volunteer advisors, including the authors of this pa-
per. Many introductory courses on network analysis have
used NodeXL and its companion book [11] as part of their
curriculum,3 and user studies have shown NodeXL to be ef-
fective in these situations. Given that these users generally
have little prior knowledge about network visualization read-
ability, we believe that they will particularly benefit from our
interactive motif simplification techniques.

CASE STUDIES
We explored several networks of interest using motif simplifi-
cation, in several cases while helping domain experts analyze
their data. Overall, motif simplification resulted in vastly re-
duced network size, reducing the visual complexity faced by
the user and easing automatic and manual layout tasks.

U.S. Senate Voting Patterns in 2007
The power of clique motif simplification is shown in an ex-
ample network of U.S. Senate voting patterns from 2007,4
shown in Figs. 1 and 8. The percent similarity in voting pat-
terns is an attribute of each one of the 4950 links connecting
the 100 Senator nodes. The naive drawing produces a com-
pletely connected graph, but filtering the similarity values to
show only those with values above 0.65 and applying a force-
directed layout produces a revealing portrait (Fig. 1a). We see
the willingness of three Republican Senators (center, in red)
to vote in support of their Democrat colleagues (top-right, in
blue). One of these, Arlen Specter, later switched his affilia-
tion to the Democrats in 2009. However, further insights are
not readily visible in the tangled hairball of each party.

After simplifying cliques, several additional features are vis-
ible (Fig. 1b). There are three completely connected groups:
one with 48 Democrats, the two independents, and a Repub-
lican (Snowe); another with 42 Republicans; and a 4-clique
of Collins, Smith, McCain, and Specter. We worked with a
political scientist to see if these cliques highlighted known
behavior, and, in fact, they did. The 4-clique represents mod-
erate Republicans and bridge builders that were often decisive
votes, though they have stronger ties to the Republican clique.
The only Senator not in a clique is Coburn, a staunch Repub-
lican on contentions issues but who often votes his heart.

We increased the cutoff to 0.70 and ran the layout again
(Fig. 1c). However, the simplified version (Fig. 1d) has be-
come quite intriguing. While the Democrats and Indepen-
dents still form a 50-clique, a few members trickled out of
Republican cliques. Snowe returns to the middle with high
connectivity with her former Democrat clique. Collins and
3nodexl.codeplex.com/wikipage?title=NodeXL%20Teaching
%20Resources
4Data by Chris Wilson of Slate magazine, available from above link.

Specter also move to the center, replaced in the McCain
clique by Coleman and Lugar – more moderates. The cor-
ner outliers are known wildcards that do not follow the party.

Extending this process to higher cutoffs, we begin to see party
fragmentation, led by the Republicans (Fig. 8). At 0.80 the
network bisects (Fig. 8a), and the Democrats split into three
cliques and a solitary Nelson, a Blue Dog moderate (Fig. 8b).
The top right 4-clique is the east-coast liberals, while the left
4-clique are moderates. The Republicans splinter further, and
by 0.95 only the two Senators from Georgia remain (Fig. 8d).

All told, the political scientist was impressed that motif
simplification could highlight many of the features he was
already aware of. Moreover, several new insights came
from analyzing these visualizations and then checking other
sources to provide additional evidence for the pattern.

Lostpedia Wiki Edits
An example of overlapping motif simplification is shown in
Fig. 9, which represent the bipartite network for the Lostpedia
wiki community collected by Beth Foss. Boxes with labels
show wiki pages, linked to the colored discs representing their
associated editors. The editors are colored and sized accord-
ing to two measures of their activity in the wiki. Fig. 9a shows
the initial network, while the Fig. 9b shows a simplified ver-
sion. By combining fan and connector glyphs, we only have
13 nodes to lay out and compare instead of the original 513,
only 23 edges instead of 586, and use a fraction of the screen
space. While these simplifications are not entirely necessary
to understand such a small and well-arranged diagram, they
are effective at showing aggregate relationships like the large
number of highly active main page editors.

VOSON Web Crawl
A larger dataset we encountered is shown in Fig. 10a, which
we modified from the NodeXL book, Fig. 12.9 [11, p. 192].
This network of 3958 web pages and 4380 hyperlinks was
collected by crawling sites connected to voson.anu.edu.au. It
is immediately evident that large fans of nodes dominate the
periphery, in in part because the NodeXL [27] implementa-
tion of the Fruchterman-Reingold layout [8] tends to draw el-
liptical layouts within a rectangular space. However, the fans
tend to dominate the visualization regardless of the layout.

Our manual calculations using Gimp showed that 21% of the
screen space in Fig. 10a is wasted as blank space in the cor-
ners, with 33% showing the core network with its connec-
tor motifs, and the remaining 46% used to show the fan mo-
tifs. Calculating only for the elliptical visualization region,
approximately 58% of the space available is used to show the
fan motifs. This is a substantial amount of area dedicated
to showing a very common structure in network datasets ob-
tained by crawling web sites or using surveys. Moreover,
these fans do not show any information besides the rough
number of nodes they contain. The fans in Fig. 10a vary from
17 to 852 nodes, but due to overlap this can be hard to see.

Some of the overlap between motifs and and with other nodes
is not visible in the original image, but there is substantial
overlap in the bottom-right and many of the smaller fans are

http://nodexl.codeplex.com/wikipage?title=NodeXL%20Teaching%20Resources
http://nodexl.codeplex.com/wikipage?title=NodeXL%20Teaching%20Resources
http://voson.anu.edu.au

(a) 80% (b) 80% simplified (c) 95% (d) 95% simplified

Figure 8: U.S. Senate 2007 co-voting network at 80% and 95% agreement cutoffs, simplified using clique motif glyphs. The
east-coast liberals and the Blue Dog Democrats separate at 80%. We see the network decompose at higher cutoffs.

(a) (b)

Figure 9: A bipartite network of Lostpedia of wiki edits (left) and a simplified version using fan and connector glyphs (right).

(a) (b)

Figure 10: A web crawl starting at voson.anu.edu.au, modified from Fig. 12.9 of the NodeXL book [11], p.192 (left) and the
simplified version using fan and connector motifs and colored by eigenvector centrality (right).

http://voson.anu.edu.au

spread in several directions or hidden in the interior. More-
over, many of the fans overlap and obscure other more im-
portant nodes that are not participating in any fan, such as
a huge 2-connector motif with 50 span nodes in the bottom-
right. This 2-connector motif, as well as the several others
connecting parts of the web page network together, are quite
hard to detect among the clutter.

We then simplified these fan and connector motifs, going
from 3958 nodes to 559 and 4380 edges to 765, creating a
much less cluttered visualization (Fig. 10b) After simplifica-
tion, it became evident that the large connector motif in the
linked the web sites for the Summer Doctoral Programme at
the Oxford Internet Institute and the National Center for eS-
ocial Science. Applying a layout algorithm to the simplified
network would result in a new layout that makes more effec-
tive use of the newfound space. This visualization is much
clearer at presenting (1) the size and membership of the vari-
ous fans motifs and (2) the large connector motifs connecting
pairs of fan heads. Moreover, it appears to have minimal loss
of information and visual clutter compared to the original.

Larger Networks
We analyzed several other large networks not pictured here.
One was a network of innovation and funding ties with 7124
nodes and 16,109 edges. Another showed acquisitions of JP
Morgan Chase, with 5766 nodes and 6752 edges. Both were
visualized interactively with no performance issues, and had
drastic reductions in complexity with motif simplification.

CONTROLLED EXPERIMENT
We ran a controlled experiment to determine the effect motif
simplification has on user performance with several common
network visualization tasks.

Tasks
We chose a varied set of tasks relating to topology, attributes,
and overviews from a taxonomy [20], which demonstrates
how all complex tasks can be seen as a series of low-level
tasks. These tasks are also used in many recent papers evalu-
ating network visualizations [14, 26, 9]. We asked:

1. About how many nodes are in the network?
2. Which individual node would we remove to disconnect the

most nodes from the main network?
3. Which is the largest (fan | connector | clique) motif and

how many nodes does it contain?
4. Which node has the label “XXX”?
5. What is the length of the shortest path between the two

highlighted nodes?
6. Which of the two highlighted nodes has more neighbors?
7. How many common neighbors are shared by the two high-

lighted nodes?
8. Which of two pairs of nodes has more common neighbors?

Data
Current random network generators do not produce realis-
tic data [14], which we confirmed trying to generate sev-
eral networks with similar characteristics. Thus we chose to
use three sufficiently interesting networks produced by actual

users solving their own problems, which are discussed in the
Case Studies section.

Participants
After a two-participant pilot study, we recruited 36 students
from our university (19 males and 17 females). The partici-
pants were almost entirely graduate students, half from com-
puter science and the balance from eight other departments.
9 had used network visualization tools and an overlapping
9 had seen motif simplification, though none had used it. As
we could not generate sufficiently varied datasets with similar
properties, we used a between subjects design. We randomly
divided participants into two groups, which had similar dis-
tributions of gender, department, grade level, and experience.

Procedure
Each 45-minute session began with 5-10 minutes of training
on the tool and for the specific tasks, followed by about 35
minutes for answering a total of 31 questions across the three
networks and tasks. Each participant received the same or-
der of questions and visualizations. The control group was
provided with an interactive node-link diagram in which they
could select nodes along with their incident edges, as well
as move the nodes. The treatment group received a simpli-
fied version of each new visualization, with additional inter-
active tooltips and the ability to expand and collapse the mo-
tifs. Each visualization is presented consistently, originally
computed using Harel-Koren [12].

As in [9, 14], users were given one minute to answer each
question, told to answer as quickly and accurately as possible,
and that they could skip if they could not answer a question.
The evaluator spoke each question, gave the participant time
to ask for clarification, then revealed the next visualization in
turn and began the timer. Users were given $10 plus a $15
bonus for the fastest, most accurate participant in each group.

Analysis
The recorded data was analyzed in several ways. As is com-
mon with response time data, the response times were not
normally distributed so were normalized using a log trans-
formation. The two groups were then compared using a t-
test. Answers to questions consisted of a categorical an-
swer (a specific item), which was recorded correct or not,
and/or an integer answer. For questions with categorical an-
swers, the groups were compared with Fisher’s exact test in-
stead of the chi-square test as none of the significant group-
by-correct matrices had expected values of five or higher in
all four cells. For numeric answers we computed error =
(answer− truth)/truth, skipping any questions that had an
incorrect categorical answer the integer answer depended on,
and compared error across groups using a t-test.

Results
Here we report only the significant findings. We expect
overview tasks like identifying the maximal motif of a type
would be easier with the less visual complexity of a simpli-
fied network. This was true for all three motifs across all
three networks. Cliques, the epitomical clusters, were found
in the two networks they occurred in faster (p<0.01, -20.82s),

more accurately (p<0.01, 92% vs. 23.5%), and with fewer
people giving up (3 vs. 0). Moreover, in the Senate network
there was higher accuracy in size estimates (p<0.05, 0% vs.
-28% error), which could be true for the web network but we
could not measure it as not one control participant detected
the maximal 5-clique.

Fans were found in both the networks they occurred in faster
(p<0.01, mean -7.77s) and their size was approximated more
closely (p<0.01, 2% vs. -62% error). In the large web
network the maximal fan was also found more frequently
(p<0.01, 95% vs. 35%). Connectors were detected in both
their networks faster as well (p<0.01, mean -17.13s). In the
web network the largest connector was found more frequently
(p<0.01, 79% vs. 6%), and in the wiki network its size was
estimated more precisely (p<0.1, -5% vs. -17% error).

These results show that using glyphs for motifs makes the
motifs easier to detect and measure, but how does simplify-
ing motifs affect the rest of the network? We would think
estimating the number of nodes would be easier in the sim-
plified, interactive view. Our participants could indeed gauge
the size of all three networks with significantly more accu-
racy (p<0.01, -8% vs. -47% error), but for the wiki and web
networks users took longer to do so (p<0.01, 21.82s). How
about finding a specific node by its label? Logically reducing
the number of visual items makes finding a label easier. Our
results show that finding labels that are not in motifs is sig-
nificantly faster (p<0.01, -19.93s), they are found more fre-
quently except in the Senate case (p<0.01, 97.5% vs. 14.5%),
and fewer users give up or run out of time (12 did on the plain
wiki and web networks). We only saw worse search time for
labels in motifs for the Senate clique case (p<0.05, 15.29s).

What about topology-based tasks? It seems that with fewer
items on the screen tracing edges would be easier. For some
questions it did turn out better, like finding the node to cut
in the web network correctly (p<0.05, 53% vs. 18%) and
the accuracy of the shortest path length between two clique
members in the Senate network (p<0.05, -7% vs. 22% error).
For others topology questions, the results were mixed to poor.
Shortest path length time and accuracy worsened in the web
network (p<0.1, 10.06s & 20% vs. 1% error). Comparing the
number of neighbors was slower on the wiki (p<0.01, 10.89s)
and senate (p<0.05, 9.26s) networks, and the choice accuracy
dropped for the senate (p<0.1, 53% vs. 82%) and web (p<0.1,
68% vs 76%). Lastly, the shared neighbor count tasks were
slower in the web network (p<0.01, 11.73s), and reduced ac-
curacy in the wiki network (p<0.1, -21% vs. -10%).

Discussion
All told it appears that motif simplification is beneficial for
many analysis tasks. Naturally identifying maximal motifs is
faster, more accurate, and we can estimate their sizes more
accurately when we have glyphs and interaction. Counting
nodes in the network turned out to be slower, but more accu-
rate when using the glyphs. Finding unsimplified labels be-
came much quicker, while simplified labels were only slower
in one case. Finally, it seems like topology-based tasks are
a mixed bag. Finding cut nodes is more accurate, but path-
based tasks were better and worse in different circumstances.

Comparing the number of neighbors and shared neighbors
turned out slower and less accurate in a few cases, while
counting them was more error-prone.

We have already implemented additional features to increase
user performance on topologic tasks. When we ran the study
we did not yet use the sized meta-edges that are shown in
Fig. 1. With this simple modification, we believe we can
show much of the aggregate connectivity. However, user edu-
cation is likely the most promising way to improve the glyph
performance. Many participants had difficulty understanding
the topology inside the collapsed glyphs. With more than the
5-10 minutes of training provided in this study, users may
perform much better on these tasks.

LIMITATIONS & FUTURE WORK
Our studies indicate that motif simplification is an effective
way of reducing node-link diagram complexity, but it does
pose several challenges. There is an extra effort in learning
the motif concepts and interpreting the glyphs, which may de-
ter some users, but simplification is a user choice which can
be reversed at any time. Heavyweight glyphs with color strip-
ing or embedded charts would help users see the content of a
motif, but would also add to the visual clutter and reduce the
utility of the simplification. While the underlying topology of
an individual motif is unambiguous, in some cases the choice
of which motifs to simplify can lead to different overviews.
The fan and connector motifs prevent ambiguous overlap, but
clique motifs can overlap each other substantially. We use a
heuristic that picks the largest non-overlapping clique to sim-
plify. A more effective, but computationally hard, approach
would be to rate each motif by desirability and find the opti-
mal set of motifs. Alternatively, instead of visualizing exact
cliques, we could show the overlap between almost-cliques
and the confidence of various clusterings.

CONCLUSION
We present motif simplification, a technique for increas-
ing the readability node-link diagram network visualizations.
With motif simplification, common repeating network motifs
are replaced with easily understandable motif glyphs that re-
quire less space, are easier to understand, and reveal hidden
relationships. While users must learn the visual language of
motifs and glyphs, there is a dramatic payoff in the usabil-
ity and readability of the visualization. We contribute design
guidelines for motif glyphs; designs of glyphs to replace the
high-payoff fan, connector, and clique motifs common in net-
works; as well as algorithms to identify these motifs. Finally,
we have developed a free and open source reference imple-
mentation, made publicly available as part of NodeXL.

With case studies and a controlled study we demonstrate the
effectiveness of motif simplification as well as areas to focus
on for improving glyph design. Motif simplification can re-
sult in substantial reductions in visual complexity, allowing
easier understanding and manipulation of large network visu-
alizations. There are several avenues for exploration opened
up by this work, including additional glyphs for other com-
mon motif types, algorithms and glyphs for fuzzy motifs, and
methods for showing edge directionality within glyphs.

ACKNOWLEDGEMENTS
We thank Marc Smith, the NodeXL team, and Yiyan Liu for
their assistance. This work is supported in part by the Social
Media Research Foundation, the Connected Action Consult-
ing Group, and National Science Foundation grant 0915645.

REFERENCES
1. Abello, J., van Ham, F., and Krishnan, N.

ASK-GraphView: a large scale graph visualization
system. IEEE TVCG 12, 5 (2006), 669–676.

2. Adamic, L. A., and Glance, N. The political blogosphere
and the 2004 U.S. election: Divided they blog. In ACM
LinkKDD (2005), 36–43.

3. Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. G.
Graph drawing: Algorithms for the visualization of
graphs. Prentice Hall, July 1998.

4. Cleveland, W. S., and McGill, R. Graphical perception
and graphical methods for analyzing scientific data.
Science 229, 4716 (1985), 828–833.

5. Dunne, C., Riche, N. H., Lee, B., Metoyer, R. A., and
Robertson, G. G. GraphTrail: Analyzing large
multivariate, heterogeneous networks while supporting
exploration history. In ACM CHI (2012), 1663–1672.

6. Eppstein, D., and Strash, D. Listing all maximal cliques
in large sparse real-world graphs. In SEA, vol. 6630
(2011), 364–375.

7. Freire, M., Plaisant, C., Shneiderman, B., and Golbeck,
J. ManyNets: An interface for multiple network analysis
and visualization. In ACM CHI (2010), 213–222.

8. Fruchterman, T. M. J., and Reingold, E. M. Graph
drawing by force-directed placement. SPE 21, 11
(1991), 1129–1164.

9. Ghoniem, M., Fekete, J.-D., and Castagliola, P. A
comparison of the readability of graphs using node-link
and matrix-based representations. In IEEE InfoVis
(2004), 17–24.

10. Grochow, J., and Kellis, M. Network motif discovery
using Subgraph Enumeration and Symmetry-Breaking.
In RECOMB (2007), 92–106.

11. Hansen, D., Shneiderman, B., and Smith, M. Analyzing
social media networks with NodeXL: Insights from a
connected world. Morgan Kaufmann, 2011.

12. Harel, D., and Koren, Y. A fast multi-scale method for
drawing large graphs. JGAA 6, 3 (2002), 179–202.

13. Henry, N., and Fekete, J.-D. MatrixExplorer: A
dual-representation system to explore social networks.
IEEE TVCG 12, 5 (2006), 677–684.

14. Henry, N., and Fekete, J.-D. MatLink: Enhanced matrix
visualization for analyzing social networks. In
INTERACT (2007), 288–302.

15. Herman, I., Marshall, M. S., Melançon, G., Duke, D. J.,
Delest, M., and Domenger, J.-P. Skeletal images as
visual cues in graph visualization. In Data Visualization
(1999), 13–22.

16. Huang, W., Murray, C., Shen, X., Song, L., Wu, Y. X.,
and Zheng, L. Visualisation and analysis of network
motifs. In IEEE InfoVis (2005), 697–702.

17. Kang, H., Plaisant, C., Lee, B., and Bederson, B. B.
NetLens: Iterative exploration of content-actor network
data. In IEEE VAST (2006), 91–98.

18. Karp, R. M. Reducibility among combinatorial
problems. In Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, Eds. Plenum Press,
1972, 85–103.

19. Klukas, C., Schreiber, F., and Schwöbbermeyer, H.
Coordinated perspectives and enhanced force-directed
layout for the analysis of network motifs. In APVis
(2006), 39–48.

20. Lee, B., Plaisant, C., Parr, C. S., Fekete, J.-D., and
Henry, N. Task taxonomy for graph visualization. In
ACM BELIV (2006), 1–5.

21. Liao, Q., Shi, L., and Sun, X. Anomaly analysis and
visualization through compressed graphs. In IEEE LDAV
Poster Session (2012).

22. Mackinlay, J. Automating the design of graphical
presentations of relational information. ACM TOG 5, 2
(1986), 110–141.

23. McGrath, C., Blythe, J., and Krackhardt, D. The effect
of spatial arrangement on judgments and errors in
interpreting graphs. Social Networks 19, 3 (1997),
223–242.

24. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N.,
Chklovskii, D., and Alon, U. Network motifs: Simple
building blocks of complex networks. Science 298, 5594
(2002), 824–827.

25. Navlakha, S., Rastogi, R., and Shrivastava, N. Graph
summarization with bounded error. In ACM SIGMOD
(2008), 419–432.

26. Shneiderman, B., and Aris, A. Network visualization by
Semantic Substrates. IEEE TVCG 12, 5 (2006),
733–740.

27. Smith, M., Shneiderman, B., Milic-Frayling, N.,
Rodrigues, E. M., Barash, V., Dunne, C., Capone, T.,
Perer, A., and Gleave, E. Analyzing (social media)
networks with NodeXL. In ACM C&T (2009), 255–264.

28. Tomita, E., Tanaka, A., and Takahashi, H. The
worst-case time complexity for generating all maximal
cliques and computational experiments. Theoretical
Computer Science 363, 1 (2006), 28–42.

29. Tsigkas, O., Thonnard, O., and Tzovaras, D. Visual
spam campaigns analysis using abstract graphs
representation. In ACM VizSEC (2012), 64–71.

30. van Ham, F., and van Wijk, J. J. Interactive visualization
of small world graphs. In IEEE InfoVis (2004), 199–206.

31. Wattenberg, M. Visual exploration of multivariate
graphs. In ACM CHI (2006), 811–819.

32. Welser, H. T., Gleave, E., Fisher, D., and Smith, M.
Visualizing the signatures of social roles in online
discussion groups. JOSS 8, 2 (2007).

http://www.smrfoundation.org/
http://www.smrfoundation.org/
http://www.connectedaction.net/
http://www.connectedaction.net/
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0915645

Motif Simplification: Improving Network Visualization
Readability with Fan, Connector, and Clique Glyphs –

Supplementary Material

Cody Dunne, Ben Shneiderman
Department of Computer Science and Human-Computer Interaction Lab

University of Maryland, College Park, MD 20742
{cdunne, ben}@cs.umd.edu

ABSTRACT
This document provides supplementary material for the CHI
2013 paper “Motif simplification: improving network visual-
ization readability with fan, connector, and clique glyphs”. It
presents algorithms for detecting two common network mo-
tifs: fans of nodes with a single neighbor and connectors
that link a set of anchor nodes. The other motif the full paper
deals with are cliques of completely connected nodes, but the
clique detection is fully described in the full paper and makes
use of the Tomita et al. algorithm [3]. This document also
provides more of the implementation details for motif simpli-
fication in NodeXL [2].

NETWORK MOTIF DETECTION
There are two particular motifs we will discuss:

• A fan motif consists of a head node connected to leaf
nodes with no other neighbors. As there may be hundreds
of leaves, replacing all the leaves and their links to the head
with a fan glyph can dramatically reduce the network size.
• A D-connector motif consists of functionally equivalent

span nodes that solely link a set of D anchor nodes. Re-
placing span nodes and their links with a connector glyph
can aid in connectivity comparisons.

General motif detection can be accomplished with ap-
proaches like symmetry-breaking [1], but custom algorithms
are more effective for specific motifs that can vary substan-
tially in size. We have implemented algorithms to detect fan
and connector motifs of all sizes, but due to space constraints
the main paper only presents an overview with the details
presented here, in the tech report,1 and source code.2 We
use the terminology of a network or graph G with a set of
nodes G.nodes, and each node n has a set of adjacent nodes
n.neighbors. The size of each of these node sets, say s, is
denoted as |s|.

Fan Motifs
Our approach to detecting all the fan motifs in a network is
detailed in Algorithm 1, which has a run time complexity
of O(|G.nodes| × average neighbor count). Average neigh-
bor count is usually relatively small and can be considered a
bounded constant. The algorithm first passes through all the
1www.cs.umd.edu/localphp/hcil/tech-reports-
search.php?number=2012-29
2nodexl.codeplex.com/SourceControl/changeset/view/70521#1208172

Algorithm 1 Fan motif detection algorithm.
Time complexity: O(|G.nodes| × average neighbor count)

1: procedure DETECTFANS
2: for all n ∈ G.nodes do
3: if |n.neighbors| ≥ 2 then
4: leaves← {∅}
5: for all nbr ∈ n.neighbors do
6: if |nbr.neighbors| = 1 then
7: leaves.add(nbr)
8: end if
9: end for

10: if |leaves| ≥ 2 then
11: RECORDFAN(n, leaves)
12: end if
13: end if
14: end for
15: end procedure

16: procedure RECORDFAN(head, leaves)
17: · · · . Record a given fan motif
18: end procedure

nodes in the network, searching for potential fan heads. Each
fan head must have two or more neighbors to exclude the de-
generate barbell case (Line 3), though this criteria could be
increased to find larger fans. For each potential fan head, we
then search through the set of its neighbors to find any leaf
nodes connected only to it (Line 5). Each of these leaf nodes
are added to the set of potential leaves. If two or more leaves
have been detected in the neighbor set, the found fan motif is
acceptable and recorded (Line 10).

The differing neighbor count criteria for head and leaf nodes
in Algorithm 1 prohibit any overlapping motifs from be-
ing detected. However, please note that we are using
|n.neighbors| to show the size of the neighbor set of n, which
may differ from n’s degree if there are overlapping edges. For
example, in a network with directed edges a leaf node may
have two overlapping edges connecting it to the head node,
one for each direction. Moreover, an undirected network with
several edge types may have overlapping edges of differing
types. Some algorithms for computing degree would return
higher values in these cases than the actual number of neigh-
boring nodes.

http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2012-29
http://www.cs.umd.edu/localphp/hcil/tech-reports-search.php?number=2012-29
https://nodexl.codeplex.com/SourceControl/changeset/view/70521#1208172

Algorithm 2 D-Connector motif detection algorithm. [D-
min, D-max] is the range of dimensions of the connector
motifs to find (the number of anchors). Time complexity:
O(|G.nodes| × average neighbor count).

1: procedure DETECTCONNECTORS(D-min, D-max)
2: found←Map〈STRING, CONNECTOR〉
3: detectLoop:
4: for all n ∈ G.nodes do
5: if |n.neighbors| ∈ [D-min, D-max] then
6: for all nbr ∈ n.neighbors do
7: if |nbr.neighbors| < 2 then
8: continue detectLoop
9: end if

10: ADDSPAN(n.neighbors.sorted, n, found)
11: end for
12: end if
13: end for
14: out← {∅}
15: used←Map〈NODE, CONNECTOR〉
16: filterLoop:
17: for all c ∈ found.values do
18: if |c.spanners| ≥ 2 then
19: for all s ∈ c.spanners do
20: if s ∈ used.keys then
21: c′ ← used[s]
22: cTotal← |c.spanners| + |c.anchors|
23: c′Total← |c′.spanners| + |c′.anchors|
24: if cTotal ≥ c′total or

(cTotal = c′total and
|c.spanners| > |c′.spanners|) then

25: out.remove(c′)
26: used.removeAll(c′.spanners)
27: used.removeAll(c′.anchors)
28: ADDCONNECTOR(out, used, c)
29: end if
30: continue filterLoop
31: end if
32: end for
33: ADDCONNECTOR(out, used, c)
34: end if
35: end for
36: for all c ∈ out do
37: RECORDCONNECTOR(c.anchors, c.spanners)
38: end for
39: end procedure

Connector Motifs
Connectors have an dimension, denoted D, that indicates the
number of anchors it has. D can be any integer two or greater,
though the frequency of the motifs generally decreases pro-
portional to D. Our algorithm for detecting connector motifs
of all dimensions is shown in Algorithm 2, and takes param-
eters D-min and D-max to indicate the range of dimensions
to search for. The run time complexity of this algorithm is
also O(|G.nodes| × average neighbor count). Again, aver-
age neighbor count can be considered a bounded constant.

Algorithm 3 Continuation of Algorithm 2

40: procedure ADDSPAN(anchors, spanner, found)
41: key← string(anchors)
42: if key /∈ found then
43: found[key]← new CONNECTOR(anchors)
44: end if
45: found[key].spanners.add(spanner)
46: end procedure

47: class CONNECTOR
48: anchors← {∅}, spanners← {∅}
49: procedure CONNECTOR(new-anchors)
50: anchors← new-anchors
51: end procedure
52: end class

53: procedure ADDCONNECTOR(out, used, c)
54: out.add(c)
55: for all spanner ∈ c.spanners do
56: used[spanner]← c
57: end for
58: for all anchor ∈ c.anchors do
59: used[anchor]← c
60: end for
61: end procedure

62: procedure RECORDCONNECTOR(anchors, spanners)
63: · · · . Record a given connector motif
64: end procedure

Connector motifs are not as straightforward to detect as fan
motifs, despite the algorithms having the same run time com-
plexity. First, a pass is made through all nodes searching for
span nodes with sets of neighbors that could be anchors and
creating or adding to a map of keys to possible motifs. An
additional pass is required to traverse the potential motifs and
remove those with only one span node, as well as remove all
but the most desirable of any overlapping motifs. We choose
motifs to keep first by the total number of anchors and span-
ners, then by the number of spanners, then arbitrarily.

Algorithm 2 is broken into several procedures and a class to
store the details for each potential connector motif. The de-
tect loop in the algorithm (Line 3) passes through all nodes
in the network, searching for potential span nodes. Each
span node must have between D-min and D-max neighbors,
which must be anchor nodes. We require a minimum of two
span nodes for the connector motif, so each anchor node must
have two or more neighbors itself (Line 7). At least two of the
neighbors are span nodes, but the remainder can be connec-
tions to the main network or other anchor nodes in the motif.

If all the anchor nodes check out, the span node is added to a
connector motif (Algorithm 2, Line 10) using the ADDSPAN
procedure (Line 40). This motif can be new or an existing one
with the same set of anchors. All existing motifs are stored in
a map (Line 2), using a string representation of the anchors
as a key and an instance of the CONNECTOR class (Line 47)

as the associated value. This allows speedy lookup of each
potential motif given a sorted anchor set. Note that the anchor
set and its string representation must be sorted so as to avoid
having motifs with identical anchor sets but the anchors were
found in a different order.

After searching for all potential span nodes, Algorithm 2 re-
quires an additional pass over the detected connector motifs
to ensure that (1) they have two or more span nodes and (2)
they do not overlap with other connector motifs. The filter
loop on Line 16 goes through each potential CONNECTOR
instance in the map to verify that they pass these two criteria.
The first criteria, the minimum number of span nodes, could
be increased if only larger higher payoff motifs are of interest
(Line 7, 18). An example we have found that matches the sec-
ond criteria, connector motif overlap, is a ring of four nodes
A−B−C−D−A isolated from the rest of the network. In
this case it is unclear whether to choose A & C or B & D as
the 2-connector motif anchors, as we do not allow overlap.

As there may be other examples of overlap that need to be
caught, we chose a general overlap detection approach that
compares each span node s in a motif to all span and anchor
nodes in already detected motifs (Line 19 – Line 33). If one of
the span nodess of a potential CONNECTOR c is also a span
or anchor node of an already found motif c′, we then compare
their sizes. We choose to keep the motif that has the greatest
total number of anchors and spanners, and if they are equal
we choose the one with more spanners. If both values are
equal we keep the first detected. If the prior motif c′ is to be
replaced, we must first remove its spanners and anchors from
the map (Line 25–Line 27). After passing the minimum span
count and overlap ranking checks, the detected connector mo-
tif c is then stored (Lines 28 and 36) using the ADDSPAN pro-
cedure (Line 40). As part of this, the spanners and anchors
are all added to the map of used nodes and associated with
their CONNECTOR. All this bookkeeping process prevents
a potential connector motif from overlapping with more than
one that was already found. Finally, we record the remaining
non-overlapping and valid connector motifs (Line 36).

NODEXL IMPLEMENTATION
We have implemented a reference implementation of our mo-
tif simplification approach and made it publicly available as
part of the NodeXL network analysis tool [2]. NodeXL is a
free and open source template for Excel 2007/2010 that is tai-
lored to provide powerful features while being easy to learn.
The basic interface of NodeXL is shown in Fig. 1. The left
side provides several worksheets in an Excel workbook that
represents the network: one each for the nodes, edges, and
any groups. Each worksheet has several columns, includ-
ing basic information about the network like the nodes and
edges between them. Additionally, there are places to insert
columns for node or edge attributes and calculated metrics,
as well as columns that control the visual display of each net-
work item. These include color, shape, size, label, tooltip,
display position, and the like. Any of these visual properties
can be automatically filled based on the metric or attribute
columns using a special autofill dialog. Moreover, standard
Excel formulas or macros can be used for arbitrary calcula-

Figure 1: The standard NodeXL workspace, showing U.S.
Senate voting patterns from 2007. The left view shows the
worksheets that store the network and its attributes, while the
right pane shows a node-link diagram of the network.

tions and scales. The Excel ribbon is customized with a new
tab for many of the common operations users perform on net-
works, including the autofill feature.

The visualization pane shown in the right of Fig. 1 displays
a node-link diagram based on the network in the workbook.
Whenever the contents of the workbook is updated, the vi-
sualization pane can be updated using a button. The pane
also provides users with several automatic layout algorithms
to arrange the network, and any automatic or manual adjust-
ments to the node positions are stored in the workbook as
well. Moreover, the contents of the visualization can be fil-
tered using a dynamic filters dialog.

The worksheet view and the visualization pane are connected
using brushing, where any selection in one is reflected in the
other. Clicking a node in the visualization or dragging a box
around several causes the associated rows to be selected in
the nodes worksheet. Likewise, any incident edges are se-
lected in the edges worksheet. The reverse is also true. Any
nodes or edges selected in the worksheets are highlighted in
the visualization pane as well.

Motif Simplification in NodeXL
We have integrated our motif simplifications into the stan-
dard NodeXL groups infrastructure, which stores groups us-
ing two worksheets: (1) Groups which contains a row for
each group and its attributes, and (2) Group Vertices where
each row maps an individual grouped node to its associated
group. These worksheets can be populated automatically in
a variety of manners, including detection of topological clus-
ters, exact-value attribute groupings, connected components,
and now the fan and connector network motifs. The NodeXL
group model allows for nodes that are in no group at all,
which is important for motif simplification as not every node
in the network is part of a motif. Note however that this group

model does not allow overlapping groups, which means that
special care must be given to the definition of what members
of each motif constitute the group in the worksheets.

In the group worksheets users can interactively edit the la-
bels, attributes, visual encoding, and membership of specific
groups; remove groups completely; or even create custom
sets of groups by editing the worksheets or visual interaction
with the node-link diagram visualization. Moreover, auto-
mated statistics can be computed for each group and added
to the Groups worksheet, including node & edge counts,
geodesic distances, and graph density; as well as the number
of edges between pairs of groups in a special Group Edges
worksheet.

After the groups have been computed or entered into the
worksheets manually, users can display them in the visual-
ization pane. When users select a group in the worksheet, all
its member nodes are selected in the visualization. Likewise,
for any nodes selected in the visualization users can select
any groups in the worksheet that contain them using the rib-
bon menu. By default, groups are shown in their original ex-
panded form based on the current layout algorithm, with cate-
gorical color and shape coding so as to distinguish them from
each other. However, users can switch between the original
expanded form and an alternate collapsed form for specific
selected groups or all groups. This is done using the context
menu in the visualization pane or the ribbon groups menu.

The default collapsed form for groups is a meta-node rep-
resentation of a the same categorically coded shape with a

plus sign inside to indicate its status (e.g.,
⊕

), sized propor-
tional to the number of nodes the group contains and with
any associated label next to it. However, the groups for our
motifs use their representative glyphs that were described in
the full paper. When a collapsed group is selected in the vi-
sualization pane it is also selected in the Groups worksheet,
and its position in the visualization can be adjusted with the
mouse. These collapsed representations are by default col-
ored using the same categorical coloring as for the expanded
version so the association between views can be easily identi-
fied. Through an option in the groups menu, users can switch
from the default categorical colors and shapes to the underly-
ing node attribute encodings the user specified. This updates
all collapsed motifs so that they show the aggregate attribute
information about the underlying nodes they represent.

REFERENCES
1. Grochow, J., and Kellis, M. Network motif discovery

using Subgraph Enumeration and Symmetry-Breaking. In
RECOMB (2007), 92–106.

2. Smith, M., Shneiderman, B., Milic-Frayling, N.,
Rodrigues, E. M., Barash, V., Dunne, C., Capone, T.,
Perer, A., and Gleave, E. Analyzing (social media)
networks with NodeXL. In ACM C&T (2009), 255–264.

3. Tomita, E., Tanaka, A., and Takahashi, H. The worst-case
time complexity for generating all maximal cliques and
computational experiments. Theoretical Computer
Science 363, 1 (2006), 28–42.

