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Abstract
Timeboxes are rectangular widgets that can be used in direct-manipulation

graphical user interfaces (GUIs) to specify query constraints on time series data

sets. Timeboxes are used to specify simultaneously two sets of constraints:

given a set of N time series profiles, a timebox covering time periods x1...x2

(x1rx2) and values y1...y2 (y1ry2) will retrieve only those nAN that have values

y1ryry2 during all times x1rxrx2. TimeSearcher is an information visualiza-

tion tool that combines timebox queries with overview displays, query-by-
example facilities, and support for queries over multiple time-varying attributes.

Query manipulation tools including pattern inversion and ‘leaders & laggards’

graphical bookmarks provide additional support for interactive exploration of
data sets. Extensions to the basic timebox model that provide additional

expressivity include variable time timeboxes, which can be used to express

queries with variability in the time interval, and angular queries, which search
for ranges of differentials, rather than absolute values. Analysis of the

algorithmic requirements for providing dynamic query performance for

timebox queries showed that a sequential search outperformed searches based

on geometric indices. Design studies helped identify the strengths and
weaknesses of the query tools. Extended case studies involving the analysis of

two different types of data from molecular biology experiments provided

valuable feedback and validated the utility of both the timebox model and the
TimeSearcher tool. Timesearcher is available at http://www.cs.umd.edu/hcil/

timesearcher

Information Visualization (2004) 3, 1–18. doi:10.1057/palgrave.ivs.9500061

Keywords: TimeSearcher; timeboxes; dynamic query; visual query; angular queries; time
series; temporal data; bioinformatics; graphical user interfaces

Introduction
Analysts in many domains study measurable quantities that change over
time. Financiers examining trends in economic indicators, meteorologists
studying climate data, demographers quantifying trends in census data,
and numerous others use time series graphs, statistical evaluations, and
other tools to identify patterns and find trends in these time series data
sets. Our motivation for this work stems from collaboration with
molecular biologists who are studying gene expression data, where typical
experiments involve thousands of gene over tens of time periods.

Algorithmic and statistical methods for identifying patterns have
provided substantial functionality in a wide variety of situations,1 – 4 but
this research only addresses one aspect of the analysis problem. The
question of query formulation – which questions are worth asking? – is
often left unanswered.

Users need tools to support interactive exploration of the contents of
time series data sets. By providing analysts with the power to construct
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queries quickly, modify parameters, and examine result
sets, these tools would encourage the development of
understanding of these data sets.

Familiar graphic displays of time series presents an
obvious starting point for the application of information
visualization techniques to time series data. Timeboxes
are rectangular regions that specify queries on
these displays.5 After introducing timeboxes, this paper
discusses the TimeSearcher application, which supports
timebox queries along with a number of extensions
designed to provide increased expressivity. Algorithmic
implications and evaluations through design studies and
case studies are also discussed.

Timeboxes
Timeboxes are rectangular query regions drawn directly
on a two-dimensional display of time series data. The
extent of the timebox on the time (x) axis specifies the
time period of interest, while the extent on the value (y)
axis specifies a constraint on the range of values of
interest in the given time period. Given a data set
consisting of n items, each of which has a measurement
at each of m time points, a timebox acts as a filter that
accepts only those items that have values in the given
range during the interval spanned by the box.

More specifically, assume that niAN is an item in a
time series data set, ni(j) is the value of ni at time j,
and a timebox is a 4-tuple: b¼ (tmin,tmax,vmin,vmax)
(Figure 1). An item ni satisfies the timebox b if
8tmin�t�tmax

vmin � niðtÞ � vmax (assuming vmaxZvmin and
tmaxZtmin).

Creation of timeboxes is straightforward: users click on
the desired starting point of the timebox and drag the
pointer to the desired location of the opposite corner. As
the box is drawn, it is constrained to occupy an integral
number of time points. As this is identical to the
mechanism used for creating rectangles in widely used
drawing programs, this operation should be familiar to
most users.

Once the timebox is created, it may be dragged to a
new location or resized via appropriate resize handles on

the corners, using similarly familiar interactions. In all
cases, the query is re-processed with each mouse event.
When user action leads to a modification of a timebox,
the new position of the timebox is stored, the query is
updated, and the new result set is displayed.

Multiple timeboxes can be drawn to specify conjunc-
tive queries. Items in a data set must match all of the
constraints implied by the active timeboxes in order to be
included in the result set.

The example data set shown in Figure 2 contains 52
weekly stock prices for 1430 stocks and will be used in a
brief scenario to illustrate the use of timeboxes. The graph
overview display provided in Figure 2(a) shows all of the
items in the data set, drawn directly on the query area.
This overview provides insight into the density, distribu-
tions, and patterns of change found among items in the
data set.

An analyst interested in finding stocks that rose and
then fell within a 4-month period might start by drawing
a timebox specifying stocks that traded between 70 and
190 during the first few weeks. When this query is
executed, the graph overview is updated to show only
those records that match these constraints. This
query substantially limits the number of items under
consideration, but many still remain (Figure 2(b)).

To find stocks in this restricted set that dropped in
subsequent weeks, this query is extended by a second
box, specifying items that traded between 12 and 80
during weeks 10–12 (Figure 2(c)). A third box, specifying
a higher price range (60–120) during weeks 19–24
completes the query (Figure 2(d)).

As timeboxes are added to the query, the graph
overview provides an ongoing display of the effects of
each action and an overview of the result set. Once
created, the timeboxes can be scaled or moved singly or
together to modify the query constraints.

The use of simple, familiar idioms for creation and
modification of timeboxes supports interactive use with
minimal cognitive overhead. Rapid (o100 ms), auto-
matic query processing on mouse events provides the
virtually instantaneous response necessary for dynamic
queries, thus supporting interactive data exploration.
Users can easily and quickly try a wide range of queries,
modifying these queries to see quickly the effects of
changes in query parameters. This ability to explore easily
the data is helpful in identifying specific patterns of
interest, as well as in gaining understanding of the data
set as a whole.

TimeSearcher
TimeSearcher is an information visualization tool based
on the use of timeboxes to pose queries over a set of
entities with one or more time-varying attributes. Time-
Searcher is written in Java, using Piccolo for all graphics
rendering and scenegraph management.6 A screenshot of
the main TimeSearcher window is given in Figure 3.

The top left corner of the TimeSearcher window is the
query input space. TimeSearcher’s bottom left window –

Figure 1 A Timebox query expresses constraints in time and

value. An item ni in the data set will satisfy a timebox query if

and only if 8tmin�t�tmax
vmin � niðtÞovmax.
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Figure 2 Timebox queries can be combined to form conjunctive queries of arbitrary complexity. The graph overview displayed,

which is formed by superimposing the time series for all items in the data set on the query space, shows how the addition of new

query constraints leads to a reduction in the set of items that satisfy the query. (a) Graph overview display for the entire data set. (b)

Single timebox query, for items for items between 70 and 190 during weeks 1-5. (c) Query containing two timeboxes, refining the

query in (b). (d) Three-timebox query: a further refinement of the query in (c).
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the display list – contains graphs for each of the items in
the data set, in a scrollable list. The items in this list are
tightly coupled with the upper right-hand window,
which provides complete details-on-demand for an item,
and the middle right hand window – the item list – which
displays all of the items in the data set by name. These
three windows are tightly coupled: selection of an item in
the display list leads to the selection of the item in the
item list (and vice versa), and the display of the item in the
details-on-demand window. When query processing
completes, the display list and the item list on the right
are updated to show those entities that match the query
constraints.

Once the initial query is created, the timeboxes can be
moved and resized. The hand and box icons on the upper
toolbar are used to switch between creating timeboxes
and moving/resizing them. As is the case with initial
timebox creation, the query is reprocessed with each
mouse event. Timeboxes can also be adjusted via paired
range sliders and text entry fields in the lower-right hand
corner of the screen.

When multiple timeboxes are present, they can be
modified individually or simultaneously in groups of two
or more. This functionality is particularly useful for
searches for complex patterns (Figure 2(d)). Users can
select some or all of the timeboxes (using standard lasso
and shift-click interactions) and simultaneously apply the
same translation and/or scale along either or both axes to
all selected timeboxes. This is useful for searching for
instances of a pattern that vary slightly in scale or magni-
tudes, or for modifying queries based on example items.

TimeSearcher also provides support for querying by
example. An individual item from the display list can be
dragged and dropped onto the query space. This leads to
the creation of a query consisting of one timebox for each
time point, centered around the value of the given item
at that time point. These timeboxes can be modified to
specify for varying definitions of similarity. For example,
the boxes could be enlarged to allow for a looser
definition of similarity, or subsets of the query could be
eliminated to focus on items that are similar only at
specific time points. This tool is particularly useful in
combination with the search box, which can be used to
find items by name. Together, these tools support
searches for items similar to an item known by name.

Overviews of the data set are provided by the graph
overview display described above. The lines in the graph
overview also support browsing: when users mouse over
one of these lines, it is highlighted, thus displaying the
individual item in the context of the larger data set. At
the same time, the name of the item is displayed as a
tooltip, along with the value of the item at the time point
closest to the point where the mouse-over occurred. The
item list, display list, and details-on-demand window are
also updated to display the selected item. This tight
coupling in response to lightweight mouse movement
will encourage exploration based on visual examination
of the graph overview.

Overdrawing and visual clutter might cause the graph
overview display to become less useful for large data sets.
Furthermore, the computational overhead of drawing the
graph overviews and processing the mouse-over handling

Figure 3 The TimeSearcher information visualization tool is based on the timebox query model. Clockwise from upper-left: query

space where timeboxes are drawn (with data envelope, query envelope, and graph overview) details-on-demand for selected items,

list of items by name, range sliders for query adjustment, and display list, containing the graph display for each item in the data set.
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can lead to substantial performance degradation when
graph overviews are used with these data sets.

To avoid these difficulties, TimeSearcher provides a
lower-resolution overview that produces less screen
clutter and has lower computational requirements.
Known as a data envelope, this overview is shown in the
background of the query window as a contour that
follows the extreme values of the query attribute at each
point in time, thus displaying the range of values that
may be queried. When users execute a query, the data
envelope is extended by a query envelope – an overlay that
outlines extreme values of the entities in the result set
(Figure 4).

TimeSearcher supports the possibility of graceful
degradation between overviews. For large result sets, the
data and query envelopes will be shown. When user
queries reduce the size of the data set below a user-
specified threshold (set to 100 items by default), the
graph overviews will be displayed. The use of graph
overviews for smaller result sets and data/query envelopes
for larger result sets thus provides an example of a
dynamic decision regarding the tradeoff between high-
resolution overviews and performance.

Leaders & laggards
The analysis of time series data sets frequently includes a
search for items with behavior trends that somehow
anticipate changes that will eventually be seen in other
items in the data set. For example, stock market analysts
might look for a given stock that dropped sharply shortly
before other stocks in the same sector experienced a
similar decline in price. Similarly, biologists looking at
microarray experiments might be interested in finding a
gene that has a sharp increase in expression levels
immediately before a group of genes has a similar
increase. Such a finding might form the basis for the
hypothesis that the first gene is a regulatory gene that
plays a role in stimulating the expression of the other
genes.

TimeSearcher provides a graphical bookmark mechan-
ism that supports this search for ‘‘Leaders & Laggards’’.
After creating a timebox query that identifies the set of
items with a trend of interest, users press a toolbar button
to invoke this ‘‘leaders’’ mode. The query window will
then be split into two sub-windows:

� The top, ‘‘leader’’ window contains the originally
specified query, along with the graph overview lines
for items that match that query.

� The lower, ‘‘laggard’’ window contains one new query
box for each timebox in the original query. These new
query boxes are offset by one time period from their
original counterparts. This display also includes out-
lines of the timeboxes found in the original query.

These two windows are vertically aligned, in order to
support direct visual comparison between the two queries
and result sets. An example query, and its use as a
‘‘leader’’, are shown in Figure 5.

Once the leader and laggard windows have been
created, users can use the standard mechanisms to
modify the query in the laggard window as desired. For
example, users might lasso all of the timeboxes in the
laggard query and move them further in the time
direction, in order to find items that lag the original
query by an arbitrary number of time points. Alterna-
tively, users might scale the laggard boxes to find items
that have a different range of values than the original
query.

The ‘‘leaders & laggards’’ facilities grew out of design
discussions with molecular biologists who were inter-
ested in using TimeSearcher to identify genes that
exhibited certain expression behaviors before or after
other genes. Identification of these relationships can
be very useful in identifying potential regulatory
interactions.

The implementation of leaders & laggards as a
graphical bookmark represents a compromise between
functionality and performance. As implemented, leaders

Figure 4 Query display with data and query envelopes. Graph overviews (Figure 2) can become cluttered when the result set is large.

When this happens, lower-fidelity overviews that show the ‘‘shape’’ of the result set without displaying each item individually might

be more useful. The data envelope (dark gray) is a contour formed by the largest and smallest values of any item in the data set at each

point in time. The query envelope (light gray) includes only those items that match the current query.
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& laggards supports direct identification of patterns that
are offset by one time period, with user modification of
the query required for further comparison. A more
powerful variant might have supported a fully
open-ended query, identifying all items in the data set
that undergo a given transition at any points in time.
However, evaluating this query within the 100 ms
response time desired for dynamic query performance
would be very difficult for even moderately-sized data
sets.

The leaders & laggards functionality might be extended
with a more generalized bookmark facility, which would
provide similar functionality for multiple stored queries.
These stored queries would serve as a library of templates
that might be used to identify patterns of interest.

Query inversion
Having found items in a data set that match a specific
query, users might like to find items that have opposite
behavior patterns. For example, a stock analyst might like
to see stocks that fell at the same time as others were
rising. TimeSearcher’s ‘‘query inversion’’ facility supports
this task.

Queries containing one or more timeboxes can be
inverted by selecting the desired timeboxes and pressing
a toolbar button. The inverse query is derived by
calculating a pivot point for the group, and rotating each
of the selected boxes around this pivot. The pivot is used
by finding the average of the upper-most upper bound
and lower-most lower bound for all of the selected
timeboxes (Figure 6).

As the original queries all must fit within the
parameters of the results set, this approach to inversion
has the desirable feature that the resulting inverse query
is guaranteed to be a legal query. Other definitions of
reciprocal queries – for example, taking the first timebox
as a given constant and rotating other boxes relative to
this first box – might lead to queries that fall outside the
range of values that are found in the data set.

Multiple time-varying attributes
Although the basic definition of timeboxes assumes a
data set containing items having a single measurement
that varies over time, there is no particular reason for
restricting consideration to data sets involving only one
attribute. In fact, many meaningful data sets include
multiple simultaneous measurements.

TimeSearcher uses a tabbed display to support data sets
with multiple variables. When a data set with multiple
variables is loaded into TimeSearcher, the first variable in
the data set is initially shown as the default, in a single
pane of a tabbed pane window. To examine and query the
values of any other variable, users select the desired
variable name from the pull-down menu marked ‘‘Query
Variable’’ in the toolbar. This leads to creation of a new
frame in the tabbed pane.

When multiple attributes are present, users can switch
between them by clicking on the tab at the top of the
pane. An attribute can be removed by clicking the close
icon (the ‘‘� ’’) in the appropriate tab, and reinstated by
making the appropriate selection in the pull-down menu.
The pane for each attribute acts as a query space for that

Figure 5 TimeSearcher’s ‘‘leaders & laggards’’ tool can help users identify items that have similar transitions at different times. In this

mode, the query space is split into two new windows. The top window shows the original query. Below this window, the laggards

display has new timeboxes representing the new query, which is defined by shifting the old query one time period to the right. The

laggards display also contains outlines of the timeboxes found in the original query. By comparing the results of the laggard query in

the lower window to the original leader query, the user can identify items that undergo transitions similar to those experienced by

results from the leader query, but at a later time. The laggard query can be arbitrarily modified to specify the desired similarity

between leaders and laggards.
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attribute. Queries can be created independently for each
attribute, and only items that match all queries – even
those for variables in panes other than that which is
currently selected – will be included in the result set.
When a query is created or modified, the query envelopes
and graph overviews for each active variable will be
updated to display the appropriate subset of the results.
Figure 7(a) shows the query window to a data set
containing two variables. There are no timeboxes on
the selected query space (‘‘high’’), but the query envelope
has been updated to indicate the filtering of the data set
by queries that have been created in the query space for
the other variable (‘‘low’’).

The use of the tabbed pane for multiple time-varying
attributes represents an efficient use of screen space at the
potential expense of lesser clarity and greater cognitive
load. As only one query space is visible at any given time,
users must remember the queries that have been created
on other variables in order to interpret search results.
TimeSearcher provides an optional ‘‘summary’’ overview
that can help alleviate this problem. This window
contains miniature views of all of the active query spaces
is opened. Each summary view is labeled with the name
of the appropriate attribute, and the summary view

corresponding to the currently active query window is
highlighted (Figure 7(b)).

These windows contain active linked views that are
dynamically updated with each event that updates the
query space. Although the miniaturized views do not
provide enough detail to fully interpret the queries, they
provide reminders of the content of the occluded query
spaces without taking large amounts of screen space from
the currently selected query.

Future work might address alternative solutions to this
problem of occlusion. For example, the tabbed pane
might be replaced by a series of individual windows, one
for each attribute. These windows would be coordinated,
providing multiple perspectives similar to those found in
Snap-Together Visualizations.7

Variable-time timeboxes
The basic timebox is limited to expressing queries with
fully defined time and value constraints. Additional
expressive power might be gained by extending the
model in a manner that relaxes these constraints. One
possibility is to support searches for items that fall within
a given value range during some interval of a given
duration that falls within some longer window of time.

Figure 6 Query inversion enables users to find patterns that are opposite to each other by horizontally flipping the timeboxes around

the center of their range. (a) A query containing three timeboxes finds two items that have an upward trend. (b) The inverse of this

query finds two items with a downward trend.
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For example, stock analysts might want to identify stocks
that traded between 30 and 60 for some 3-month period
anytime between January and August (inclusive). These
queries are known as variable time timeboxes (VTTs).

Formally, a VTT is defined as two points (x1,y1) and
(x2,y2) and a single integer R. The VTT provides a
constraint on a time series such that for the time range
x1rxrx2, the dynamic variable must have a value in the
range y1ryry2 for at least R consecutive time units
(assuming y2Zy1 and x2Zx1). A VTT with a value of
R¼ x2-x1 is simply a standard timebox.8

Graphically, VTTs are represented as outline boxes that
surround a traditional time box (Figure 8). A VTT is
created by drawing a box, just as a standard timebox is

created. Initially, the interval of interest covers the entire
width of the box: R¼ x2-x1. By clicking and dragging the
sides of the internal rectangle, users can adjust the value
of R.

A preliminary evaluation of variable time timeboxes
has shown that they can be useful for creating and
interpreting queries that attempt to separate items in a
time series data set into disjoint classes.8

Angular queries
Timeboxes are straightforward and easy to interpret. This
simplicity has helped illustrate their utility in a number
of contexts. However, timeboxes are limited to searches
based on changes between specific, fixed values. This may

Figure 7 Multiple-attribute queries can be used to express simultaneously queries involving multiple time-varying values. A tabbed-

pane interface supports switching between multiple query spaces, one for each time-varying value. As queries are created in each

space, the conjunction of all active queries provides the overall result. Overviews in each query space are updated to reflect queries

constrained over any of the variables. A summary window provides a smaller-scale view of all active query spaces. (a) Updated query

envelopes for one of two attributes that are currently active. Note that even though there are no queries in this window, queries in the

inactive window (for ‘‘Low’’ measurements) have constrained the data set, as shown by the query envelope. (b) Summary window for

the query in (a).

Dynamic query tools for time series Harry Hochheiser Ben Shneiderman

8

Information Visualization



limit their utility for analyses involving relative rates of
change. For example, timeboxes can be used to find items
that rise from a value of 80 to a value of 120 four time
periods later, but they cannot be used to identify all items
that rose by 40 in value – regardless of the starting value –
over that same time period.

The display of individual data items on a two-dimen-
sional query space – as used in TimeSearcher’s graph
overviews – provides a natural basis for this sort of query.
As an item in a data set changes over time, its graph will
form an angle with the horizontal (Figure 9(a)). Query
widgets that allow users to specify minimum and
maximum desired values for this angle over some period
of time can be used to identify relative changes in value.

TimeSearcher’s angular query widget supports this
relative query. An angular query is a four-tuple:
b¼ (tmin,tmax,ymin,ymax). As with standard timeboxes, tmin

and tmax specify the starting and ending points for the
query. The angles ymin and ymax (-p/2ryminrp/2 and -p/
2rymaxrp/2) present upper and lower bounds on the
angle that the item’s profile must form with the
horizontal during the interval in question. These con-
straints must be met by each transition during the given
interval: if f(ni(t),ni(t+1)) is the angle formed by the
segment connecting ni(t) with ni(t+1), an item ni satisfies
the angular query b if 8tmin�t�tmax

yminrf(ni(t),ni(t+1))
rymax.

The angular query widget consists of two lines. An
angled line from the starting point to the ending point
indicates the time interval associated with the query. This
line meets a vertical line at the ending point. The
segment between the left-hand end of the query and
the bottom of this line is used to calculate the minimum
angle of the query, while the segment between the left-
hand end and the top of the vertical line defines the
maximum angle, as shown in Figure 9(b). The width of
the angular query widget is used to indicate fixed starting
and ending points. Handles on the angled line and the
vertical line can be dragged to modify the query’s length
in time and angles.

An example query is shown in Figure 9(c). Note that
the query widget is above the item that matches

the query. As the angular query is based on relative
changes between values, the vertical position of the
query widget is unimportant: as long as the relative
positions of the end points do not change, the widget
can be translated vertically without changing the result
of the query.

Angular queries are conceptually distinct from time-
boxes. A timebox is constructed around the notion of
requiring that items fall inside the box during a given
interval. Angular queries do not have any ‘‘insides’’ –
they simply specify a range of slopes. Preliminary
observations with users indicates that this does not pose
any difficulties for comprehension, but further investiga-
tion will be needed to understand the usability tradeoffs
involved in the designs, as well as to understand the
relative utility of these query widgets.

Angular queries are conceptually similar to angular
brushes in parallel coordinates. Angular brushes can be
used to find trends of a certain direction and magnitude
in parallel coordinates displays, without regard for initial
comparison point.9 CASSATT uses a dialog box to provide
similar functionality.10

There are two important differences between angular
queries and angular brushes. Angular brushes are limited
to comparisons between two adjacent axes, while the
comparisons specified by angular queries may involve
comparison across time points separated by an arbitrary
interval–adjacency is not required.

Angular brush widgets are also simpler than angular
queries, involving only the selection of a maximum angle
that an item can make, with an implied minimum of
zero. This interface provides greater simplicity, at the
expense of reduced expressivity: angular brushes cannot
be used to restrict changes to falling within two non-zero
angular values. Comparison of the relative strengths and
weaknesses of these two approaches for specifying queries
on relative values might be an interesting area for further
investigation.

Performance issues
A series of measurements of display time relative to total
processing time indicated that over 75% of query
processing time was spent in query evaluation, as
opposed to the display of query results. Thus, optimiza-
tion efforts focused on improving search performance are
likely to be most fruitful. Side-by-side tests of query
evaluation algorithms were conducted as a means of
identifying efficient algorithms and understanding the
reasons for those efficiencies.

Query evaluation algorithms
The naive approach to timebox query evaluation follows
directly from the definition of the problem: for each of
the item in the data set, examine all of the time points in
all of the timeboxes in a query.

The conjunctive nature of timeboxes leads directly to
the some improvements on this scheme. If some item
fails to meet the constraint for a timebox at some time,

Figure 8 Variable time timeboxes relax some of the constraints

of timeboxes, allowing searches for items that fall within a given

range for some number of time periods that fall within a longer

interval. For at least R consecutive time periods between x1 and

x2, items must have values in the range y1ryry2.
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we can immediately conclude that the item does not
match the query, even if we have not completely
processed the range of times covered by the query. Thus,
processing of any (item, timebox) pair can stop as soon as
one value outside of the given range is encountered. This
is equivalent to the familiar programming language
shortcut used in evaluation of conjunctive conditionals.

Additional optimizations can be applied to conjunctive
queries. When a new timebox is added to an existing
query, the only items that must be checked are those that
met the constraints of the original query. Analogous logic
can be applied when deleting a timebox.

Techniques from computational geometry provide an
alternative approach to timebox query evaluation. A set
of n time series profiles, each containing measurements
for each of m time points can also be interpreted as a set
of mn points in a two-dimensional space. Each of these
mn points is associated with one of the n profiles, such

that each profile has exactly one associated point for each
time point. Under this interpretation, a timebox can be
seen as a two-dimensional orthogonal range query – a
query aimed at identifying the points that fit inside the
rectangular region covered by the query.

Thus, to process a timebox query, we start by identify-
ing the points that fall within this query. For each of
these points, we increment a counter associated with the
timebox and the time series to which that point belongs.
When all of the points that are processed, the items that
have a count for the timebox that is equal to the width of
the timebox are the matches. This approach can be
extended to conjunctive queries containing multiple
timeboxes by simply maintaining a separate counter for
each (item, timebox) pair.

Implementation of geometric methods requires an
appropriate index for efficient handling of the range
queries. The two possibilities considered in the current

Figure 9 Angular queries enable users to find items with similar slopes over several time periods. (a) The motivation for angular

queries. As a time series changes, its slope creates an angle with the horizontal. Queries that specify angles can be used to find items

with desired rates of change. (b) The angular query widget. The endpoints of the vertical bar on the right allow specification of a

minimum and maximum desired angle, relative to the start point on the left. (c) In this angular query, the user finds items that

decreased steadily over three time periods.
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evaluation were orthogonal range trees and a grid
approach, which places items in a regularly sized
buckets.11

Comparison
Comparison on simulated data can be used to build a
better understanding of the merits of the various
approach. To test for the effects of the number of items
in the data set, data sets containing between 100 and
50,000 items with 100 time points each were created. To
test the effects of the number of time points in the data
set, data sets with 100 items and between 100 and 10,000
time points were used. All data sets were created pseudo-
randomly. These data sets were subjected to suites of
similarly pseudo-random queries, involving timebox
creation, scaling in either or both directions, resizing in
either or both directions, and deletions.

Four algorithms were tested: optimized sequential
search (‘‘Seq’’), geometric search with an orthogonal
range tree (‘‘Orth’’), and two variants of geometric search
with a grid index. The ‘‘Grid-20’’ data set had approxi-
mately 20 items/bucket, while the ‘‘Grid-100’’ data set
had approximately 100 items/bucket.

Sequential scan outperformed the geometric alterna-
tives in all but one of the test cases. For the test involving
100 items and 100 time points, the orthogonal search
outperformed the other alternatives. For each test case,
single-factor ANOVAs comparing the four algorithms
revealed strongly significant differences (Po0.01)
(Figure 10).

For the tests that varied the number of time points,
search time was almost completely insensitive to the
different test conditions. This might be explained by an
advantage in the number of points that must be
processed for a given timebox query. Figure 11 shows a
timebox that spans eight time points, along with a time
series that falls within the timebox for seven of those
eight points. To determine whether this item satisfies the
constraints of the timebox, the sequential search only
needs to examine the first two values in the given time
range: once it is determined that the second value falls
outside of the timebox, there is no need to examine any
of the remaining values. The geometric approach must
examine all of the seven points that falls inside of the
timebox, before concluding that the item fails to match
the constraints. As a result, the sequential search uses a
significantly smaller number of checks to determine
whether or not an item in the data set matches the
timebox.12 This advantage is crucial to the success of the
sequential search.

The superior performance of the sequential search
algorithm may be a result of the ‘‘dimensionality curse’’ –
the inherent difficulty of searching in high-dimensional
cases. As a time series data set with n time points can be
viewed as a set of n dimensional vectors, a timebox query
over that data set can be considered to be a query in
n-dimensional space. Recent analyses of index structures
for searches in high-dimensional space have shown that

sequential scans outperform indexed searches, even for
moderate (o20) dimensionalities.13 – 15 Although addi-
tional optimizations to reduce constant factors are
certainly possible, these results suggest that sub-linear
search performance for timebox queries may be difficult,
if not impossible, to achieve.

Evaluation

Design studies
Two design studies were conducted to verify that users
understood timeboxes and to refine interface features. In

Figure 10 Empirical comparisons of query evaluation algo-

rithms: (a) Average query completion times (ms) for data sets

with 100 time points and 100, 1000, 5000, 10,000, 30,000, and

50,000 items. (b) Average query completion times (ms) for data

sets with 100 items and 100, 1000, 5000 and 10,000 time

points. In all but one of the cases, the sequential search ‘‘seq’’

outperformed both the orthogonal range tree ‘‘Orth’’ and the

bucketed (‘‘Grid-20’’ and ‘‘Grid-100’’) geometric searches. For

the data set composed of 100 items and 100 time points,

orthogonal queries outperformed sequential search. In all cases,

single-factor ANOVAs for each test case revealed statistically

significant (Po0.01) differences between the algorithms.
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all, 24 Computer Science students (undergraduate and
graduate) completed tasks using timebox queries and
semantically equivalent input mechanisms: fill-in and
paired range slider (one for time and one for value)
interfaces. The first study involved comparison of all
three input modes, with a graph overview display
(Figure 2) for output results. Tasks in this study were
fully specified (‘‘During days 22–23, are there more
stocks between 69–119, 59–109, or 49–99?’’). The
second study involved comparison between timeboxes
and form fill-in queries – both with graphical output –
and form fill-in queries with output presented in a tabular
spreadsheet format. Tasks in this study were more open-
ended (‘‘Find stocks that traded in a 20 range for at least
three consecutive time periods.’’). Both studies used a
data set of mock stock price data, with one time-varying
quantity (price). Task completion time was the depen-
dent variable.

In the first study, the form fill-in interface was fastest,
followed by range sliders and finally timeboxes. All
differences were statistically significant. There were no
statistically significant differences between the three
interfaces in the second study.

These studies demonstrated that users could under-
stand and work with the timebox input and the graph
display. They yielded insights into the strengths and
weaknesses of the timebox interface. For example, when
precise values were to be entered the form fill-in boxes
were significantly easier than sizing and positioning a
two-dimensional rectangular widget. These results pro-
vided support for design decisions that had been made
prior to the study, such as allowing typed in values to
adjust timeboxes and a mode that fixes y-values when
timeboxes are dragged horizontally.

Feedback from study participants, casual users, lab
visitors, and long-term collaborators helped refine our
TimeSearcher interface design. In particular, our collea-
gues in molecular biology have successfully used Time-
Searcher to examine time series and linear sequence data
sets.

DNA microarray analysis: programmed cell death
Recent advances in DNA microarray technology have
provided geneticists with the ability to examine expres-
sion levels of thousands of genes under varying circum-
stances.16 Numerous published reports of microarray data
have used the examination of changes in gene expression
levels over time to examine the effects of various stimuli
on genetic expression.

Analyses of the microarray data generally are con-
ducted via some sort of mathematical grouping of genes
with similar expression profiles.17 – 19 Clustered expres-
sion profiles are often displayed with two-dimensional
layouts that use coloring to display the expression levels
of each sample, with bright-green indicating relatively
underexpressed genes and bright-red indicating genes
with relatively high levels. These displays are very useful
for condensing significant amounts of information in a
display that helps highlight gross trends and similarities
between clusters. However, they generally suffer from the
drawbacks of other static displays: interactive querying
and exploration are not supported. The Hierarchical
Clustering Explorer19 addresses many of these problems
by combining filters for minimum similarity and detail
display with alternative displays showing pairwise simi-
larities between expression profiles and the ability to
compare clusters computed from different algorithms.

TimeSearcher’s dynamic query tools are well-suited for
expressing queries aimed at identifying genes with
particular expression profiles. Researchers have been
using TimeSearcher to analyze their microarray data sets.
This collaborative effort has led to a number of sugges-
tions and design ideas that have informed the work
described in this paper.

The process of controlled destruction and elimination
of cells – known as programmed cell death (PCD) – is of
interest to biologists for a variety of reasons. As a
genetically controlled process, PCD involves complex
interactions between many genes. Furthermore, the
absence of cell death may be related to the uncontrolled
proliferation of cells associated with cancerous tumors.
Studies of cell death in flies, worms, humans, and other
organisms have identified a variety of genes that are
involved in the control of PCD. Furthermore, many of
the genes involved in this process appear to be similar in
these organisms–in other words, the relevant genes have
been conserved.20

Previous studies have identified the gene E93 as a
pivotal factor in programmed cell death in Drosophila
melanogaster – the common fruit fly.21 Subsequent
microarray experiments examined changes in gene
expression level at 6 and 12 h after a rise in hormone

Figure 11 A timebox query demonstrating the advantage that

sequential processing has over geometric methods. For this

timebox that spans eight time points, sequential processing can

stop after the second time value is identified as falling outside of

the timebox. However, the geometric approaches must examine

every point that falls within the timebox.
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level that triggers cell death. These analyses identified
significant changes in expression levels for genes known
to be involved in cell death.22

TimeSearcher has been used to analyze a microarray
data set that provides finer-grain insight into the
processes behind PCD. Specifically, this data set contains
expression profiles for 6,8, 10, 12, and 14 h after the
increase in hormone level associated with the onset of
PCD. This analysis is based on the hypothesis that genes
that have profiles similar to E93’s profile might also be
involved in cell death. Similarly, genes that show
increases in expression level after E93’s expression
increases might be regulated by E93–in other words,
E93 might be a factor that contributes to the expression
of these genes.

The use of TimeSearcher to explore this line of
investigation begins with the use of the text search box
to find the E93 sample in the database. The drag-and-
drop query-by-example tool is then used to create a query
identifying those items that are similar to E93’s profile. As
the 10 and 12-h measurements – corresponding to the
interval before the second peak in ecdysone levels – are
most interesting,23 the boxes for the 6, 8, and 14 h
samples are eliminated. The timebox for the 12-h time
point is adjusted to include only those genes with a more
pronounced increase in expression level – the box is
moved up to remove lower values, and expanded to
include a higher range of values (Figure 12).

The leaders & laggards facility was then used to identify
genes that have this same increase in expression level at a
later time point – specifically, between 12 and 14 h. This
leads to a set of under 100 laggards – genes that might be
regulated by E93.

Alternative approaches included shifting the paired
timeboxes to look at genes with increases in transcription
levels at earlier time points, and using the query

inversion facility to identify genes with expression levels
that decrease when E93’s expression is increasing.

The use of TimeSearcher for the analysis of the
cell death data played an important role in the iden-
tification of novel results.24 Collaboration with the
biologists involved numerous design discussions,
which generated several ideas for TimeSearcher function-
ality. Some of these features have been implemented,
while others present interesting possibilities for future
work.

Currently implemented features that resulted at least
partially from these discussions include leaders & lag-
gards, support for multiple time-varying attributes, and
query inversion. Leaders & laggards was suggested early
in the discussions as potentially useful for identifying
regulatory relationships, as described above. Support for
multiple time-varying attributes was proposed as useful
for simultaneous display and querying of data collected
under two different conditions: naturally occurring
(‘‘wild-type’’) flies and mutated flies. Query inversion
was proposed as a tool for identifying transitions that
were contrary to previously identified trends of interest.

Analysis of the cell death data set highlighted the
potential utility of integrating TimeSearcher with other
visualization tools. As coordination of multiple visualiza-
tions has been shown to decrease task performance time
and increase user satisfaction,25 the use of TimeSearcher
in conjunction with other visualization tools might
improve comprehension and utility of the visualizations.
For example, an ongoing effort has investigated the
possibility of displaying Gene Ontology information in a
hierarchical treemap display.26,27 A coordinated visuali-
zation might use a treemap display to highlight the genes
that matched a particular query. This would provide an
immediate graphical perspective on the similarities
between genes in the result set: the presence of multiple

Figure 12 TimeSearcher has been used to analyze gene expression patterns during programmed cell death (PCD) in Drosophila

melanogaster. A microarray dataset involving 3225 genes at five time points was analyzed to find genes that have expression patterns

similar to those of PCD gene E93. This query identifies genes with that are roughly similar to E93 at 10 and 12 h, key points during

PCD. Starting with timeboxes centered around the values of E93 at these time points, the 12 h timebox has been shifted up, to

eliminate smaller increases in expression levels. This timebox has also been increased in height, in order to include some very sharp

increases in expression level that might not have been included in the original timebox.
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similar genes would lead to a tight cluster of highlighted
genes. However, if the result set of a given query
contained highly dissimilar genes, the highlights would
be scattered throughout the treemap.

Nucleotide sequence data
The interpretation of timeboxes and TimeSearcher as
tools for querying time series data sets places an
unnecessary limitation on the applicability of these
ideas. In fact, there is nothing in the timebox model, or
in the TimeSearcher application that is restricted speci-
fically to time series data. The only requirement is that
data sets involve measurements taken at discrete intervals
along some linearly ordered dimension.

Nucleotide sequences provide a particularly interesting
example of the application of TimeSearcher to linear
dimensions other than time. Specifically, short sequences
of nucleotides (A,G,C, and T) can be aligned and statistics
regarding the frequencies at which different patterns
appear in different positions in these sequences can be
calculated. TimeSearcher can then be used to find
patterns that have desired frequency profiles. The use of
TimeSearcher for this purpose complements existing
statistical approaches towards identification of these
subsequences.28,29

TimeSearcher has been used to identify consensus
branch site splicing signals in the plant Arabidopsis
thaliana. These secondary signals in the RNA transcripts
of genes help to determine which sequences (introns) are
removed from RNA. The segments that remain are known
as exons. The data set being used for this purpose was
generated from the genomic sequences surrounding 8550
internal exons that were internally truncated and aligned
with respect to their boundaries. This data set contains
the normalized frequencies of each of the 1024 possible
pentamers – sequences of five nucleotides – at each of 192
possible positions.

Figure 13(a) shows a data envelope overview of the
whole data set. Two peaks, indicating the boundaries
between the exon in the middle and the introns on the
ends, are immediately apparent. These peaks represent
well-known conservation of sequences at splice sites – the
boundaries between exons and introns.

As branch points are found approximately 25–30
positions upstream (before) the end of an intron,
sequences that might include branch points can be found
by searching for pentamers that are frequently found 25–
30 positions before the end of an intron and infrequently
found elsewhere in the intron. To identify candidate
splicing signals, a query using two timeboxes is used.
One component of the query will identify those
pentamers that are frequently found before the exon–
intron boundary. The second identifies pentamers
that are infrequently found elsewhere with the intron
(Figure 13(b)).

Taken together with domain knowledge of the expert
user, these results can be used to extend known
consensus sequences. In this case, the analysis was used

to extend the previously identified consensus branch
point sequence from five to six bases.30

Related work
Much of the recent research involving interactive tools
for time series data has been focused on display issues,
with relatively little attention paid to creation and
manipulation of queries over these data sets. Query
facilities in these tools are generally limited to selecting
and zooming in on time periods of interest. Examples
include DiskTrees and TimeTubes,31 which provides an
interesting model for the use of circles to display multiple
attributes from a hierarchical data set.

Other efforts have addressed the challenges of support-
ing multi-scale and periodic views. Recursive patterns, an
early visualization technique, provide dense displays of
data divided hierarchically into finer-grained time peri-
ods (year, month, week, etc.).32 Spiral visualizations uses
a circular metaphor to display the periodicity of some
data sets.33 Extending timeboxes and TimeSearcher to
handle these data sets is an interesting area for future
work.

Several tools have addressed various aspects of the
challenge of specifying queries over time series data.
MIMSY uses traditional GUI widgets including text entry
fields and pull-down menus,34 to search for trends of
interest in stock data. MIMSY supports a number of
aggregate operators, and support for relative changes.
Query processing is handled in a traditional batch mode.

QuerySketch is an innovative query-by-example tool
that uses an easily-drawn sketch of a time series profile to
retrieve similar profiles, with similarity defined by
Euclidean distance.35 Designed for simplicity and ease-
of-use, QuerySketch does not support editing of existing
queries. Spotfire’s Array Explorer 3 supports graphically
editable queries of temporal patterns in microarray
data.36 Queries are dynamically modified by moving
discrete value markers at each time point. The limitation
of each query point to a single time instance complicates
the expression of queries involving values that remain
relatively unchanged for a period of time.

Patterns uses a set of graphic primitives and operators
to specify patterns of interest in time series data.37 Query
primitives can be used to search for intervals during
which values are rising, falling, flat, contained within a
given threshold, straight (constant slope), concave, or
convex. Although performance details are not provided,
the Patterns query language is powerful and flexible.

The ancestry of timeboxes can be traced back to one-
dimensional range sliders, which extended traditional
GUI sliders. Range sliders allowed users to adjust values
from both ends (instead of only one end), and to move
the entire range of interest by dragging the middle of the
slider.38 Similar techniques have been used for selection
and filtering of items in parallel coordinates displays,
both with implicit and explicit sliders.39,40

These approaches share the common limitation of
controlling only one or two dimensions at any given
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time. To adjust constraints on multiple dimensions, users
must adjust multiple brushes controls individually. For
high-dimensional data sets, this can get tedious. Two-
dimensional widgets have been suggested as an approach
to improve this situation. These widgets might be used to
specify single points for two variables or to select a range
in 2D space.38

TimeSearcher’s ‘‘graph overview’’ is visually similar to
Inselberg’s parallel coordinates,41 and the angular query
tool is similar to Hauser’s ‘‘angular brushes’’.9 Timeboxes
and TimeSearcher differ from parallel coordinates in their
interpretation of the ordering of the dimension axis. For
linearly ordered or time series data, adjacency of dimen-
sions indicates adjacency in the given order. This is not
the case with parallel coordinates, which have arbitrarily
ordered dimensions. Thus, although timebox queries
might be useful for parallel coordinates, the patterns that
they reveal might be arbitrary functions of the ordering

of dimensions: transitions between measurements can
easily be artifactual. Timeboxes are also based on the
assumption that each measurement is made on a
common scale, and that all values will fall between some
global minimum and maximum value. This assumption
may not hold for parallel coordinates.

A vast body of research in the data mining and
algorithmic literature has focused on the identification
of time series data. Much of this work has involved
finding subsequences of a data set that are similar to a
query sequence As the query is simply another
time series sequence, these approaches generally do
not address questions of query specification and user
interfaces.

One exceptions is the Shape Definition Language
(SDL),2 which provides a syntax and grammar for
specifying a series of desired transitions in a time series
profile. SDL’s use of a simple syntax leads to easily

Figure 13 Application of TimeSearcher to the problem of identifying branch sites in DNA sequences. In this application, the

horizontal access is position in the DNA sequence, rather than time. A data set of 8550 aligned sequences contains frequencies for

each possible pentamer (5-base string) at each of the 192 positions in each of these sequences. (a) Data envelope overview of

pentamer frequency distributions in all 8550 aligned sequences from Arabidopsis thaliana. The peaks are the highly conserved (and

thus extremely frequent) boundaries between the introns on the ends and the exons in the middle. (b) Timebox query for

identification of branch points. This query identifies pentamers that have high frequencies frequencies at a specific region within

introns (the branch site) and lower frequencies elsewhere within introns. Items that match this query are potential branch points.
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understood queries of limited power. Thus, users can ask
for an ‘‘upwards’’ transition, but they cannot specify a
magnitude of the transition. TimeSearcher’s angular
queries can be used to specify magnitudes, but at the
potential cost of additional manipulation. Evaluation of
the relative merits of these approaches might be an
interesting topic for a future study.

Another interesting user interface suggestion for iden-
tifying interesting time series involved the use of
relevance feedback to help users refine the notion of
‘‘similarity’’ to best meet their needs.42

Future work

Extension and formalization of the timebox query
model
Although angular queries, variable-time timeboxes, and
support for queries over multiple time-varying attributes
add significant expressive power, there are numerous
other possible extensions that might be explored and
implemented.

For example, VTTs are based in a model of placing a
timebox within a larger region that provides additional
constraints. This model can easily easily be generalized to
support other extensions that increase the expressivity of
the timebox model. Queries with variability in value
instead of time – VVTs – might be formed by providing
vertical variability, instead of horizontal. Vertical and
horizontal ranges might be combined to provide queries
that support variability in both time and value.

Some queries might involve times and values that are
specified relative to each other, rather than in terms of
any absolute values. For example, a stock analyst might
be interested in a query that stated: ‘‘Find items that
traded within a 20 range for 3 days, and then had a rise in
price of at least 50% that was maintained for 1 week’’.
The starting and ending values of the item and the exact
start points of these intervals, remain unspecified: any
times or values that meet these constraints would be
acceptable.

Other queries that might be interesting in some
domains include queries involving maximal periods
(‘‘Find the longest interval consisting only of increases
in value, for a given item’’), aggregate functions (‘‘Find
items that have average prices in a given range during a
given time period’’), similarity queries (‘‘Find items that
are similar to X during a certain interval’’), and other,
more general queries: (‘‘Find items that have periods
lasting five intervals long that contain at least two
upwards changes and no more than one downward
change’’). Numerous other extensions are possible.12

Design and implementation of these extended queries
involves several challenges. Appropriate query widgets
and interactions must be supported, along with output
displays that can be used to determine why a given item
matched a given query.

For many of the more open-ended extensions, query
processing may be a concern: if queries cannot be

evaluated within the 100 ms constraint usually associated
with dynamic query interfaces, other strategies might be
needed. For example, long-running queries that are
deemed significantly useful might be evaluated upon
demand through an explicit ‘‘execute query’’ button.
Identification of algorithms and data structures that
increase the speed of query execution might also help
with this challenge.

The timebox query model and the extensions described
here provide the beginnings of a special-purpose visual
query language. Formal models that describe the seman-
tics of these query tools would ease reasoning about the
expressivity of the language and provide a framework for
consistent definition of new query tools.

Extensions to the query model should be driven by an
understanding of user needs and abilities that would be
addressed by the new queries. Queries that provide
increased power at the expense of user confusion in
execution or interpretation may not be worthwhile.

Extension of the TimeSearcher tool
Many interesting time series data sets are very large, both
in terms of the number of items, and the number of time
points in each item. Scaling the timebox/TimeSearcher
model to accommodate larger numbers (perhaps O(106)
items or time points) would require improvements to
search algorithms and the rendering portion of the
system. Alternatively, larger data sets might be randomly
sampled or mathematically clustered into smaller sets of
manageable size.

Long time series present particular problems for query
specification and display. Screen space limitations of
approximately 1000 horizontal pixels limit displays to
time series of a few hundred time points. Scrolling
displays that can be used to pan through long time series
would likely suffer from the lack of context and slow
execution often associated with scrolling.

Zooming facilities that could be used to display long
time series at varying levels of scale and detail might be
more promising. These views might be presented in
an’’overview+detail’’ fashion, with a compressed over-
view presented alongside raw data. Alternatively,
distortion techniques might be used to present areas of
interest in full detail and peripheral areas in a compressed
display.

Appropriate display and handling of missing values will
be necessary to accommodate many data sets. The easiest
approach to handling missing data may be to use some
sort of average of surrounding data points, but this might
lack mathematical validity. Alternatively, missing data
points might be displayed differently - perhaps as a
dashed line connecting the two valid points surrounding
a missing point. Query processing might be adjusted to
handles these data points correctly. For example, a
missing value might be interpreted as matching any
query.

As currently implemented, TimeSearcher is a generic,
domain-independent tool. For some domains, additional
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facilities for data manipulation and management would
provide substantial additional value. This was a recurring
theme in our work with microarray biologists, who are
regularly faced with the challenges of coalescing data
from multiple repetitions of a single experiment. This
processes involves normalization, averaging of results,
elimination of items that are not reliably present, and
performance of statistical tests that characterize the
results. Additional features that support these or other
domain-specific tasks are likely to present interesting
research challenges.

Conclusions
Despite the wide range of data sets and domains that
make extensive use of time series data, there has been
relatively little work to date involving dynamic queries
for specifying constraints on time series data sets. The
timebox query model provides the basis for an explora-
tion of issues associated with interactive queries on time
series and other linearly sequence data sets. TimeSearcher
is an information visualization tool that takes timeboxes
as a starting point and extends them with additional
queries that provide expressive power.

Ongoing use of TimeSearcher by participants in our
case studies and other users has led to encouraging

feedback. Additional work on increasing the range of
queries that can be expressed and generally increasing the
utility of the tool will present further research challenges
and possibilities for effective use by motivated users with
real data analysis problems.

The success of the case studies stands in contrast to the
relatively ambiguous results from the design studies. This
discrepancy appears to have been caused by differences
between the well-defined tasks used in the design studies
and the more open-ended explorations conducted during
the case studies. Thus, TimeSearcher presents a demon-
stration of the challenges of evaluating interfaces that
support exploration of large data sets. As such, Time-
Searcher might be useful as a platform for investigation of
evaluation strategies that bridge the gap between the
narrowly defined tasks often used in controlled studies
and the vague tasks that are most interesting to users of
information visualization tools.
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