
Pixel Data Access for End-User Programming
and Graphical Macros

Richard Potter, Ben Shneiderman, and Ben Bederson
Human-Computer Interaction Laboratory

UMIACS and Department of Computer Science
University of Maryland

College Park, MD 20742.
E-mail: {potter, ben, bederson}@cs.umd.edu

ABSTRACT
Pixel Data Access is an interprocess communication
technique that enables users of graphical user interfaces to
automate certain tasks. By accessing the contents of the
display buffer, users can search for pixel representations of
interface elements, and then initiate actions such as mouse
clicks and keyboard entries. While this technique has
limitations it offers users of current systems some
unusually powerful features that are especially appealing in
the area of end-user programming.

KEYWORDS: End-User Programming, Programming by
Example, Pixel Data Access, Interprocess Communication,
Graphical Macros.

INTRODUCTION
Users of many systems appreciate the power they have to
create novel automations that extend the power of these
systems. Macros in word processors such as Emacs,
WordPerfect, and Word enable users to record frequent
sequences of actions for repeated replay and save them for
future use. Macros can automate tasks such as making
back-up files, merging complex lists, or converting formats.
Macros are widely used in spreadsheets such as Excel and
can be useful in presentation tools such as PowerPoint or
operating systems such as Windows.

However, macros, scripting languages and other end-user
programming tools are often limited because they put a
burden on the application developer. End-user
customization is often considered an "extra" and is left out,
or only supported in minimal ways.

A good solution typically requires all or most of the
application’s internal functions to be wrapped and made

available to the macro program. This can be a significant
amount of work, and has the potential to create significant
maintenance problems when internal features change. One
of our goals is to create a powerful end-user customization
system that does not require this effort of the application
builder.

Pixel Data Access directly accesses pixels in the display
buffer. This paper reports on how pixel data access can be
combined with exact pixel pattern matching, programming
by demonstration and the simulation of mouse and
keyboard actions to make an end-user programming system
that can be used with any application. Application
developers do not have to go to any effort to make these
techniques work because they take advantage of the already
existing graphical user interface.

These ideas have been validated with Triggers-III, a
prototype system that runs on the Macintosh OS, and by a
user study of 6 computer science students. In addition, we
have learned from the current implementation, and
designed a new version that addresses several questions of
visibility. The new design (Triggers-IV) is described in
detail in [20].

Although pixel data access could be combined with higher
level techniques, Triggers-III has shown it can do a
surprising amount when combined with only keyboard and
mouse actions. We have used it to do graphical search and
replace in drawing and paint programs, circle negative
number in a spreadsheet program, and use a word processor
to convert a folder full of files from one format to another.
The ability for pixel data access to periodically look at the
screen makes it possible to write programs that trigger on a
variety of conditions, such as the appearance of a particular
dialog box or user interface widget. We have used this
ability to simulate floating menus and snap-dragging
alignment techniques[4]. Although the techniques require
significant computer sophistication to use, we anticipate
that they would appeal to users who appreciate being able
to learn a relatively simple system that can automate tasks
in any application.

PREVIOUS WORK
Pixel data access provides additional interprocess
communication for end-user programming, a need that
operating system developers have long recognized. Apple
Computer provides Apple Events [1] for the Macintosh OS,
which can be used with the AppleScript and other
programming systems. Microsoft supports OLE
Automation [5] for the Windows OS, which can be used
with Visual Basic and other programming systems. Formal
solutions such as these are developed especially for end-
user programming. They support not only the
communication of information between user programs and
existing applications, but also define standard ways for
applications, such as word processors, to define their data
objects, such as characters, words, and paragraphs. Formal
solutions also define ways for applications to document
what functionality they expose to interprocess
communication, so that users can browse the functionality
in a standardized way when writing programs.

Apple Events also defines a way for applications to
communicate information about a users manual actions.
This allows programming systems to record user actions.
There have been research proposals to extend this technique
to communicate the information as a hierarchy of events so
that the programming system can have information to more
accurately infer generalized programs [8]. Making an
application "recordable" by using these techniques is
powerful but requires even more effort from application
developers. Other researchers are investigating ways to
simulate recording capabilities by polling applications that
support interprocess communication [12].

Interprocess communication only requires that the receiving
process be able to monitor some entity that the sending
process can affect. To be dependable, the entity must also
be stable. Formal solutions have the advantage that the
entity stays stable by design. Thus, when they are available
and the applications support them, they usually provide the
most dependable solution. The disadvantage is that
developers of applications must go to extra effort to support
the formal solutions. Many applications do not support
formal interprocess communication, and few application
support it completely

When formal protocols are not sufficient, developers and
researchers have found other entities that can fill the role,
even those not originally designed for interprocess
communication. The keyboard device driver has been used
by many automation utilities including Tempo II and
QuicKeys to simulate keystrokes and thus communicate
with applications. A search for "macro" on any shareware
Web site will reveal dozens of similar utilities. Many of
these also connect to the mouse driver to simulate mouse
actions. These solutions have proved useful for providing
communication in the direction from user programs to
applications. However, they are unable to provide

communication in the direction from applications to user
programs. Some of the utilities also connect to standard
graphical user interface widgets to simulate selections at a
higher level. Widget-level solutions achieve a limited
amount of communication from applications to user
programs. While they can get the contents of text boxes
and read items in menus, they cannot process custom-
rendered content such as a drawing or even a browser page.

Pixel data access is related to these solutions because it
connects to the display buffer, an entity originally not
meant for interprocess communication. Because it is a low-
level solution, it can access information that is not available
to widget-level solutions. Other researchers are exploring
pixel data access. VisMap [21] is a system that has been
successful using pixel data access to recognize common
Windows user interface widgets. Although it provides
higher-level functionality to the user program, it does
provide programming by demonstration techniques to help
the user map the pixel data to new uses. AutoMouse [22] is
similar to our research in that its programs work at the
device level, but it does not allow programmatic control of
a search area, a technique that will be shown to be useful
later in the paper. Another related system is Expect [11],
which performs analogous data access reading stdout for
interactive Unix commands such as telnet and ftp.
However, Expect can not work with graphical user
interfaces.

Our research shows that pixel data access can be used in a
programming by demonstration system. Previous work in
programming by demonstration [7] has required that a
system be integrated with applications at a higher level,
which has limited the application of programming by
demonstration to research systems. Our system, in contrast,
can be used with any application. However, our system
does not provide all the benefits that these other systems
can achieve with higher-level data. For example, Eager [6]
allows even non-programmers to be successful in creating
programs. Chimera [9,10] provides many useful techniques
for automating graphical editing tasks such as graphical
search and replace and a comic strip style graphical history
that can be used to compose and generalize graphical
macros. Many of these systems also provide some form of
inference to automatically make programs more general
[6,14,15,16]

LESSONS FROM DEVICE-LEVEL KEYBOARD MACROS
The main design issue for pixel data access is how to
process information in pixel form. The strategy used in
Triggers-III is a generalization of the strategy successfully
used in device-level keyboard macros. Keyboard macros
allow a user to record keystrokes into a simple program
called a macro. When the macro is run or "played back", it
simulates the keystrokes. From an interprocess
communication perspective, keyboard macros are programs
that can communicate with any application that responds to

keystrokes, which are low-level input into a user interface.
Analogously, pixels are the low-level output from a
graphical user interface. However, recording and playing
back, which works so well with keystrokes, is difficult to
apply directly to pixels. Therefore a more general
understanding of keyboard macros is necessary.

A keyboard macro system is a simple programming system
with one control structure (sequential), one data type
(keystroke), and one operator (send keystroke). Although
its programs contain only device-level data and operators,
they can perform tasks in many domains, because the user
interfaces of various applications can map the keystrokes to
higher-level roles. Therefore one lesson that can be learned
from keyboard macros is that a small amount of device-
level functionality can result in programs that can perform
a surprising range of useful tasks.

A second lesson is that with the right user interface, a user
can create these programs easily. Keyboard macros require
that the user be aware of the mapping from device-level
operators to higher-level roles. The user must also verify
that the assumptions under which the mappings are valid
are reasonable for the specific task situation. Keyboard
macro systems help the user handle these responsibilities
with programming by demonstration [7]. Since programs
are created by recording, the user can see many relevant
details of the application while choosing each keystroke of
the macro. Therefore lesson two is that with programming
by demonstration it is possible to provide context that can
help the user choose the device-level operators that map to
the higher-level task.

A third lesson from keyboard macros is that programming
by demonstration can bring other benefits. A keyboard
macro system can be extremely simple and still be useful,
because a keyboard macro system essentially reuses the
user interfaces of applications for creating. The classic
keyboard macro system can be useful with only three
commands: start recording, stop recording, and play macro.
For special cases, it is possible to simplify the interface to
one repeat command [13]. Interfaces this simple can be
mastered such that it is possible for an experienced user to
write macros without ever seeing any extra user interface.
The user can focus almost all attention on aspects of the
application and task. Although a keyboard macro system
can provide these benefits of programming by
demonstration, it does not automatically generalize
programs, which has been a popular goal for programming
by demonstration research [6,14,15,16].

DESIGN OF TRIGGERS-III
The three lessons from keyboard macros provide the design
guidelines for using pixel data access in Triggers-III. First,
include generic device-level data types and operators.
Second, allow the user to choose device-level operators in
meaningful contexts. Finally, maximize the programming

by demonstration benefits. Figure 1 summarizes the
features in Triggers-III as influenced by the guidelines.

The main piece of device-level functionality in Triggers-III
for processing pixel data is the pixel pattern match
operator. It searches for a rectangular pixel pattern in a
rectangular area of the computer display buffer. The pixel
pattern match operator returns a value indicating whether a
match was found and its location. Matches must be
identical to the pattern. Pixel pattern matching is a device-
level operator because it operates on the device-level form
of the information rather than the higher-level content. For
example, to match the word "Cancel" in a button on the
screen requires matching the actual pixels on the screen that
make up that word, not a text string of those six characters.
As will be shown in the example programs that follow, the
pixel pattern match operator can map to many task-domain
roles, similar to how the sending of keystrokes can map to
many roles.

The pixel image, rectangle and point data types support the
input and output parameters of the pixel pattern match
operator. Pixel images are used to store pixel patterns.
Rectangles are used to designate which area of the display
buffer to search. Points are used to store the locations of
the found instances of the patterns. To provide
complementary interprocess communication, Triggers-III
includes operators to simulate keyboard and mouse actions.
Vector arithmetic is used to shift rectangles based on the

Figure 1: The Features in Triggers-III.

I. Device-Level Functionality
a. Data Types

• Pixel Images
- to store patterns and screen images

• Points
- to store locations that mark instances of patterns

• Rectangles
- to store areas in which to search for patterns

b. Operators
• Vector Arithmetic

- to shift locations or areas
• Pixel Pattern Match

- to find a pattern within an area of the screen
• Keyboard and mouse macros

- to manipulate and send information to applications

II. User Interface for Mapping from Device-Level to Task Domain
a. Data Types in pixel-image context

• Pixel Images
• Points
• Rectangles

b. Operators in pixel-image context
• Vector Arithmetic parameters
• Pixel Pattern Match parameters
• Macro parameters

III. Programming by Demonstration
• Desktop Blanket

- to toggle quickly between applications and programming system
- to provide screen images for context

• Pixel Pattern Match shortcut
- to specify patterns and search areas by direct manipulation

• Keyboard and mouse macro recording
- to specify keyboard and mouse actions by demonstration

• Trigger control structure
- to specify an ordered set of rules

location of another pixel pattern and to shift point locations
for mouse actions.

Following the second guideline, Triggers-III allows a user
to edit device-level details in context by way of the Desktop
Blanket. The Desktop Blanket allows widgets to be
displayed above the graphical user interfaces of other
applications. The user raises the Desktop Blanket by
pressing the control and options keys together. The
Desktop Blanket displays as a light gray grid across the
entire display and above all other applications, which show
through the grid as in Figure 2. The front application is not
deactivated, which is important since deactivating it would
change its pixel-level appearance. The control and option
key combination acts as a toggle, so pressing it again
restores the screen as if the Desktop Blanket were never
raised.

Figure 2: Triggers-III’s interface floats above other
applications on a light gray grid called the Desktop
Blanket.

The pixel pattern match specification widget allows all
parameters of a pixel pattern match operator to be specified
on the Desktop Blanket and thus in the context of any
application’s GUI. For example, if

PixelPatternMatch(,theScreen,
{120,120,500,150},Location1);

is an example of a pixel pattern match operator written in
pseudo code, it can be difficult to interpret what the various
low-level parameters would mean. Figure 3 shows the
same information displayed on top of a drawing
application. In context, one can see that the pattern is the
top of a line and that the search area bounds the tops of
lines that represent suspension cables in the drawing of a
bridge. Triggers-III supports similar widgets for specifying
the parameters of mouse actions in context.

For the third guideline of maximizing programming by
demonstration benefits, Triggers-III uses a trigger control
structure that allows conditionals to be recorded in a way
similar to how keyboard macros are recorded. Each trigger

consists of a conditions part and an actions part. The user
first records steps for the conditions part followed by steps
for the actions part. When run, a trigger acts like an if
statement. If all the condition steps succeed, then the action
steps are performed. The pixel pattern match operator can
be included as a condition step that succeeds if a pattern is
found. Mouse and keyboard actions are used for action
steps.

Figure 3: Pixel pattern match shown in context.

Triggers-III has shortcuts for creating triggers and the
various program steps. If the user has mastered these, it is
possible to create complete programs with loops and
conditionals without looking at the programs’ static
representations, analogously to how keyboard macros can
created. Some of these shortcuts will be used in the
examples that follow.

CHANGE WIDGET DEFAULT EXAMPLE
Pixel data access is useful for programs that simulate a user
doing a task manually. In general, pixel data access
supplies functionality that simulates times when the user
must look at the computer screen. When used with pixel
pattern matching, pixel data access is useful for cases where
the user must look at the screen to find the existence or
location of something in the graphical user interface.

For example, consider a Web-based search engine that lets
the user choose how many matches to return, such as in
Figure 4. It defaults to 25 matches, but the user always
changes the widget to 100 matches. A simple program
could simulate the user’s action of noticing the undesired
default and changing the default to 100. Pixel data access
can be used to simulate the user looking at the screen to
notice the widget at the undesired default.

Triggers-III can be used to show how this program can be
created quickly using pixel pattern match, a trigger, and a
few shortcuts. The basic form of the program is "if a
widget with the label ’Number of matches:’ is set to 25, then
change its setting to 100." This form of program fits well
with the trigger control structure.

To create the program with Triggers-III, the user first
displays the web page with the widget set to 25. Then the
user raises the Desktop Blanket by pressing the control and

options keys simultaneously. Next, pressing the command-
I shortcut creates a new trigger. The shortcut of pressing
the command key and dragging the mouse across the
appearance of the widget creates a new pixel pattern match
specification widget as shown in Figure 5. The user clicks
on the widget’s OK button (not shown) to accept the
selected pixel pattern. Then, the user presses command-A
to record a search using the new specification into the
trigger. The conditions part of the trigger has been
completed.

Figure 4: A Web page to customize.

Figure 5: Selecting a pixel pattern on the Desktop
Blanket.

To create the actions part of the trigger, the user presses the
command-D shortcut, which puts Triggers-III into a macro
recording mode. The user can then demonstrate the mouse
drag that will change the default from 25 to 100, and then
conclude the recording mode by clicking on the OK button
on a special dialog. This completes the program, which
takes approximately 30 seconds to create with Triggers-III.
Pressing command-G starts the program running.

This example shows how pixel data access has the potential
to be applied to any application. Triggers-III could be used
to easily create a similar program for changing almost any
widget from one default to another. The main requirement
is that the widget must be rendered with the same pixel
pattern in its original default state. It does not matter how
the application developer creates the widget or whether the
application developer has gone to the effort to tie the

widget to any interprocess communication. The widget
could be built with standard widgets from the operating
system or built specially for an application. The widget
could be part of a web page, as in this case, or a custom
Java widget running in a Web page. The widget could
even be on another machine being used by remote control
software.

SHORTEN LINES EXAMPLE
The main advantage of pixel data access is that it provides
interprocess communication for applications that do not
explicitly support it. Another advantage is that it can
sometimes provide a new perspective for automating a task
that would not likely be supplied by other interprocess
communication techniques. For example, consider the task
of shortening the 35 lines representing suspension cables in
the drawing in Figure 3 so that the lines just reach the arcs
that represent the support cable. A program could automate
this task by simulating the user actions for doing this task
manually. The user would first find a line needing
shortening. Then the user would click the line to select it,
and then drag the top handle of the line downwards until
the line just reaches the arc that represents the support
cable. The user must visually find each line and visually
decide how far to shorten it. It is for the visual steps that
pixel data access can be useful.

The user’s manual actions can be simulated with a device-
level program. The basic ideas are that each line needing
shortening can be found by searching for the top of the line,
and the intersection point can be found by searching down
the edge of the line for the first black pixel. The program
can be recorded as four steps into one trigger. The first step
searches for the top of a line needing shortening. The
second step searches for the intersection point. The third
step selects the line with a mouse click. The fourth step
shortens the line with a mouse drag.

Recording the first step is similar to the pixel pattern match
of the previous program. However, in this case the search
area must be set. Therefore after the user command-clicks
on the Desktop Blanket to select the pattern of the top of
the line, the user defines the search area by dragging two
new handles that Triggers-III has placed around the new
pattern. For this search, the user drags these outwards until
the search area encloses every line needing to be shortened,
which has just been done in Figure 3. Then the user can
click on the pixel pattern match specification widget’s OK
button and record it into a trigger with command-A. The
search area is removed, but the pattern remains on the
Desktop Blanket.

Recording the second step is similar to the first step since
both a pattern and search area must be specified. However,
for the second step the search area is different for each line.
In other words, the rectangle is defined relative to the
location of the match, using the match location as origin.

With Triggers-III, this is specified by designating a pattern
that is displayed on the Desktop Blanket as an origin
marker. Holding down the command key and clicking on
the top-of-the-line pixel pattern raises a popup menu that
can be used to make the pattern’s location an origin for any
search areas subsequently defined. Now the user can use
the same technique to define a pixel pattern match
specification that searches for a pattern of one pixel in a
search area one-pixel wide that is located down the right
edge of the line. Since the pattern and the search area are
small, Triggers-III provides a magnifying view (Figure 6)
that pops up whenever the control key is pressed, similar to
the magic lens technique.[3]

Figure 6: Creating a one-pixel-wide search area
after having created the one pixel search pattern by
using the magnifying view.

Recording the third step requires a mouse click that is
located a certain distance from the top-of-the-line pattern.
This is done by first setting the pattern to be the Mouse
Down Origin by way of a popup menu. Then the mouse
click can be demonstrated by pressing command-D and
clicking on the line and then clicking the OK button of a
special dialog to conclude the demonstration.

The final step is a mouse drag that starts close to the top of
the line and ends close to the intersection point. The top-
of-the-line pattern is already the Mouse Down Origin. The
intersection-point pattern can be set to be the Mouse Up
Origin by way of its pop-up menu. Then the mouse drag
can be demonstrated by pressing command-D, shortening
the line manually with a mouse drag, and then clicking the
OK button of the "Demo Actions Control" dialog.

It is interesting to compare the solution that uses pixel data
access with one that uses formal interprocess
communication, because the solutions are so different. For
example, the formal interprocess communication in
Microsoft Office 97 does provide programs with
information about lines, arcs, and other objects drawn in
Word, Excel, or PowerPoint. For lines, it provides the
location of each endpoint. For arcs, it provides the
bounding box of the portion of the arc shown, the angle at
which the endpoints of the arc are located, and other
properties that seem to matter, such as whether the arc has

been flipped vertically or horizontally. If this scenario were
transferred to a drawing of a bridge in PowerPoint, a
program to automate shortening the lines would have to
compute the intersection point from these properties. The
program would also have to handle the fact that the arc that
intersects each line is one of three different arcs that make
up the support cables.

One could argue that the solution made possible by pixel
data access is easier to create, because these complexities
are avoided. However, the formal interprocess
communication solution has several advantages. The line
lengths can be computed more accurately than with pixel
data access, which is limited to within-a-pixel precision.
Speed would be greater because the commands to change
the line lengths would not be slowed by the limited speed
of the mouse actions. For a general solution to be archived
and used many times, formal interprocess communication
has compelling advantages. For a quick solution that will
only be used once, the pixel data access solution could offer
superior benefits. For an expert user of Trigger-III, this
program takes about 90 seconds to implement. It took us
several minutes to manually edit the bridge, and so in this
case, building and running the macro saved us time.

PERFORMANCE ISSUES
The use of pixel pattern matching in programs raises
performance issues because computer display buffers are
multi-megabyte structures; searching them will require
significant processing time. While performance has not
been the focus of our research, we have reasons to believe
that using pattern matching with pixel data access can be
efficient enough to be practical.

For many of the useful programs we have created, the area
searched is small, such as with the second pixel pattern
match in the shorten lines example. For this program, the
time bottleneck is the time for the drawing program to
respond to mouse actions, not pixel data access. It is likely
that the bottleneck will be other factors for many programs,
because screen updates too must process significant
amounts of display data. For today’s computers, interactive
speeds can be obtained even if every pixel has to be
touched. Switching between two full-screen applications
can give an idea of the performance possible on today’s
computer, since there too, every pixel must be processed.
Furthermore, pattern matching is a sublinear algorithm and
can be significantly faster than algorithms that must touch
every pixel.

Programs such as the first program that poll the screen
periodically raise a performance issue because many such
programs could be running in the background, potentially
making the computer run sluggishly. However, it is still
possible for performance to be very fast. In the case above,
only one location on the screen is checked for the pattern.
When testing this location, the system could dynamically

determine which part of the pattern is most likely not to
match and check it first. Therefore, the pixel pattern match
operator could need only to check just one word of memory
from the display buffer.

This discussion assumes that the pattern matching is done
in software. If display hardware ever supports pixel pattern
matching, the case for pixel data access would be even
stronger.

MAPPINGS AND ASSUMPTIONS
The previous programs show how the pixel pattern match
operator can map to different roles. In the first it tests for
the existence of a widget and its specific state. In the
second program, the pixel pattern match operator searches
for graphic objects within a collection and computes a
relationship between two graphic objects. The ability to
map from general purpose functionality to various roles is
in many ways an advantage of using a device-level
algorithm strategy with pixel data access. Generic
functionality allows the programming system to be simple
and still be useful. A simple system is more likely to be
mastered by users, who are then more likely to use it. Also,
generic functionality has a chance to map to unanticipated
future use with no need to update the system. For example,
the techniques used above in the program for changing the
widget default would likely work for new widgets
developed in the future.

However, these advantages come with a necessary tradeoff.
While the system is simpler and requires less to be learned,
it requires more thought and skill to use. The primary
difficulty comes from the mapping of generic operators to
various roles, which introduces assumptions necessary to
make the mappings valid. The user must understand the
assumptions when writing and using the program. The user
must understand that introducing some assumptions into the
program is inevitable. The user’s goal is therefore not to
eliminate assumptions, but rather to verify that the
assumptions are reasonable for the specific task situation.

For example, the program to change the widget’s default
setting has several assumptions. Since the search area was
not adjusted after defining the pixel pattern, the pixel
pattern match will only look in one location for the pattern.
Therefore, the program assumes that the Web browser
window is not moved and the widget is displayed at the
same location on the page. The pixel pattern matching in
Triggers-III is exact, so the Web browser must always
display the widget using the exact same pixels. In addition,
since the pattern matching runs periodically, it must not
take away so much processing time that the computer runs
sluggishly.

In our experience, these assumptions are reasonable. The
Web browser does in fact display the widget with the same
pattern. We typically run the Web browser in full screen
mode, so the widget always appears in the same place.

Since the pattern is only tested for one location, the pattern
matching runs very quickly. When the assumptions are
reasonable for the specific intended use, pixel data access
can offer the ideal solution.

When the assumptions are not reasonable, a skillful user
can often make simple adjustments to a program to make
them reasonable. For example, the requirement that the
Web browser not move is clearly too restrictive for many
users. Changing the program so that it places the search
area relative to the front window would solve this problem.
(Triggers-III does not support this directly. However it is
currently possible to simulate using only pixel pattern
matching.) Enlarging the search area would also remove
this assumption, but brings in the tradeoff of increased
processing time. How to make full screen searches
efficient enough for programs such as this is a productive
topic for future research.

Another important skill is to recognize when use of pixel
data access is not appropriate. Some assumptions that are
reasonable in one situation may not be in another. One
important factor that can introduce unrealistic assumptions
is fractional width fonts that can make text appear with
different pixel patterns depending on where it is displayed.
Zoomable interfaces [2], animations, and configurable
interface styles are examples of other interface situations
that may make pixel data access less appropriate.

To put the issue of mappings and assumptions in a larger
perspective, all computer programs make assumptions
about the domain they will be used within. When programs
are used outside a well-defined domain, they may cease to
work. For example, if a formal interprocess communication
technique were used for the change widget default example,
it might assume that the company sponsoring the search
engine did not revise their page (which they have done
several times since the screen shot above was taken). In
this specific case, the ability to quickly redefine the
program with pixel data access could be more valuable than
robustness that turned out not to be the weak link.

USER STUDY
Use of pixel data access with the device-level algorithm
strategy requires that users have certain skills. Although a
programming system can provide tools to make
implementing the program easier and faster, ultimately
users must understand that the program is indeed
processing pixels. Users must have enough skill to choose
device-level operators that can process the pixels in a way
that maps to the higher-level task.

How difficult is it for users to acquire these skills? On one
hand, since users are able to use device-level keystrokes,
mouse actions, and pixels when doing tasks manually, it is
plausible that users will to a large extent already have the
necessary skills. On the other hand, users do not normally
reduce their actions to algorithms, nor are they restricted to

a few device-level operators. When shown the shorten
lines task, many people have remarked that they would
have never thought of the program that searches down the
edge of a line. Thus it is plausible that skills for using the
device-level algorithm strategy must largely be learned.

To better understand where the truth lies between these
extremes, we conducted a user study in which subjects were
given an hour-long tutorial, followed by four tasks to
automate. The subjects wrote programs that could
automate the tasks on paper, working unaided as if taking
an exam. We decided not to have the students implement
the programs with Triggers-III because we wished to
concentrate on the more fundamental conceptual issues, not
the specific interface choices made for the prototype.
Device-level functionality including pixel pattern match
was presented in a C-language syntax. The students were
then free to express their program using the functionality
using any syntax that expressed an unambiguous algorithm.

The five male subjects and one female subject were all
graduate students in computer science at the University of
Maryland. They reported a median of 8.5 years of
academic and 1 year of professional programming
experience. The median number of programming
languages in which they claimed to be fluent was 3 and
claimed to have used 3 different programming languages in
the previous year. All subjects had used the C
programming language in the previous year, so all were
comfortable with the C syntax used to explain pixel data
access in the tutorial. Five of the six had used a Macintosh
in the last year. A scripting language was used by three of
the subjects (Unix shell, TCL, or Perl). The other three
reported that they did not make use of any scripting or
macro languages. In total, the user study took
approximately three hours for each subject, for which they
received $30 compensation.

Tutorial
The tutorial was given in two parts. The first part presented
device-level data types and operators, which were
summarized on one sheet of paper. A separate 9-page
document illustrated each data type and operator and gave
an overview of the few parts of C’s syntax that would be
used in the tutorial. The document had no text for self
guidance, so the experimenter led the subjects through each
page and explained each data type and operator. The
subjects were told that they did not have to worry about
memorizing all the details because the details would be
revisited in the soon-to-come example programs. This first
part of the tutorial was completed in about 10 minutes.

The second part of the tutorial was structured around four
example tasks and the programs to automate them. Each
task was presented on paper with a paragraph description of
the task situation, the task description, and a screenshot of
the application with which the program would need to

communicate to automate the task.

The program for automating the task was presented in three
passes in order to emphasize the underlying simplicity of
the programs. The first pass showed the simplicity of the
program in English phrases. The second pass represented
the amount of detail the subject would be striving for when
working out programs in the exam part of the study. The
third pass represented a truly realistic program with details
that might be difficult to specify without tools to measure
pixel distances.

After presenting each task, the experimenter reviewed
general techniques that were summarized on another sheet
of paper. Those that applied to the task were emphasized. In
this way, the summary sheet returned focus to the general
issues after the example tasks provided realistic details. All
the materials used in the study are in [20].

Exam
For each task, the subjects received a task description, a
full-page screen shot, and several sheets of blank paper.
The experimenter set up a Macintosh PowerBook computer
to reflect the task situation so that subjects could explore
details of the task situation. The subjects read explanations
of the task situation and the task, which were written in the
same style as the tasks used for the tutorial. At this point,
timing was started for the subjects’ maximum of 15 minutes
for each of the first three tasks and 20 minutes for the final
task, which required a longer program.

The first task was the "Change Widget Default" task
discussed above. The second task was the "Next Article"
task, which was to provide a keyboard shortcut for a Web
page link. The third task was the "Shorten Lines" task
discussed above. The fourth task was to convert a text in a
document of the form B<arbitrary text>" to "arbitrary
text".

The subjects wrote the answers on paper. For each task the
subjects produced two programs and a list of assumptions.
The first programs were quick sketches whose purpose was
to capture the overall strategy in case the subjects ran out of
time. The second programs gave all the detail necessary for
the program to be unambiguous, except for pixel distances
that would be difficult to determine without special tools.
The assumptions were those upon which the programs
depended for the mapping between device-level data and
operators and the higher-level roles to be valid.

Results
The programs were classified into 4 categories according to
how well the subjects demonstrated the skills necessary to
automate the tasks. Category 1 programs were error free
and showed the subject had the necessary skills to automate
the task using pixel data access. Category 2 programs had
some errors, but still clearly showed the subjects had the

necessary skills. Category 3 programs did not clearly show
the subjects had the necessary skills, but showed no major
misunderstandings. Category 4 programs showed some
misunderstandings. Table 1 summarizes how the 24
programs were categorized. A total of six programs were
in category 1, eight programs were in category 2, nine
programs were in category 3, and one was in category 4.

Subject Change
Widget
Default

Next
Article

Shorten
Lines

Bold
Text

1 2 1 3 2
2 2 1 1 3

3 2 2 3 3

4 3 3 3 4

5 2 1 1 1

6 2 2 3 3

Table 1: The 24 programs created by the six
subjects were put in four categories. Only one
program was rated as category 4, showing
misunderstanding.

Discussion
The most encouraging result of the user study was that the
subjects showed little or no confusion about pixel data
access, its power or limitations. They considered various
alternatives and accepted only those possible with the few
data types and operators provided. The subjects also were
able to identify the important assumptions necessary for
their programs to work. This indicates that with time and
patience, a significant number of users could be successful
with pixel data access even if support is minimal from the
programming environment.

While the subjects showed little confusion, many of their
programs did have errors. At least some of the errors can
be attributed to the design of the study. There was little or
no time for proofreading. The subjects had limited time and
some were unfamiliar with the applications. One subject
used up 10 of his 15 minutes struggling with MacDraw to
learn how to shorten lines manually. He asked if he could
ask questions about MacPaint, but the study format was that
all subjects would work unaided so the experimenter could
not clear up the fact that he was working with MacDraw,
not MacPaint. Another subject produced programs that
were too sketchy, and based on the fact that he completed
every program in less than 10 minutes, he probably took
the instruction "not to get too distracted on details" too
generously.

One way to explain many of the errors is the fact that the
subjects had no programming tools. Few people write out
programs on paper and expect them to be perfect. Testing
is part of most program development. The programs
classified in Category 2 were those that were judged to

contain only the sort of errors that could be removed during
testing. One mistake made by several subjects was not to
include the "25" in the pixel pattern for the "Change Widget
Defaults" task. When asked to explain the program the
subjects correctly explained how it would change the
setting to 100. When asked what the program would do
next, they quickly saw that the program would repeatedly
click on the popup menu, even though 25 was no longer
showing. Then they quickly realized what the correct
pattern should be. This is the sort of error that would be
obvious upon running the program, and that would have an
easy solution. With this in mind, 14 of the 24 programs
were essentially correct.

Errors in the other 10 programs suggest that pixel data
access and the programs in which it will be used have an
inherent complexity that must be addressed. For programs
that offer great benefit, extra effort from users may be an
acceptable solution. For other programs, better tools may
allow users to comfortably deal with the complexity with
less effort.

The subjects showed a variety of solutions indicating that
they could use pixel data access in creative ways.
Programming systems that support an exploratory approach
to programming could give users more freedom to apply
their creativity by allowing them to quickly try out various
solutions. Of the 10 programs that had significant errors, 9
were pursuing solutions that were using pixel data access in
a practical way. Better tools could have allowed the
subjects to complete the programs and work around the
errors quickly.

The subjects’ comments during the study indicated that they
clearly understood pixel data access and at times enjoyed
working out solutions that used it. During the tutorial,
subjects were quick to say that they understood each point.
During the tutorial tasks, the subjects often anticipated
points about the programs. While doing the exam part of
the study, the subjects’ comments and actions showed they
were actively engaged in the programming process. They
considered different alternatives and understood the goals
well enough to confidently judge their progress. For some,
the experience seemed like solving a fun puzzle. One
subject said the techniques were becoming "second nature."

SUMMARY AND CONCLUSIONS
Triggers-III shows that useful programs that use pixel data
access can be created quickly. The user study contributes
to understanding the skills necessary to use the device-level
algorithm strategy and verifies that it is possible to learn
these skills quickly.

Triggers-III give evidence that pixel data access can be
useful in a simple programming system that could be added
to any graphical user interface. Though the low-level
techniques are useful independently, we expect they will be
more useful when combined with other interprocess

communication such as OLE Automation and Apple
Events, and higher-level pixel data access techniques.

ACKNOWLEDGMENTS
This research was partially funded by Apple Computer, Inc.

REFERENCES
1. Apple Computer, Inc. Inside Macintosh:

Interapplication Communication. Addison Wesley,
Reading, MA, 1993.

2. Bederson, B., Hollan, J., Perlin, K., Meyer, J., Bacon,
D., and Furnas, G. Pad++: A zoomable graphical
sketchpad for exploring alternate interface physics
Journal of Visual Languages and Computing, 7, 3-31,
1996.

3. Bier, E., Stone, M., Fishkin, K., Buxton, W., and
Baudel, T. A taxonomy of see-through tools. In
Proceedings of ACM CHI’94 Human Factors in
Computing Systems (1994), pp. 358-364.

4. Bier, E., Stone, M. Snap-dragging. In Proceedings of
ACM SIGGRAPH ’86 (1986), pp. 233-240.

5. Brockschmidt, K. Inside OLE. Microsoft Press,
Redmond, WA, 1995.

6. Cypher, A. Eager: programming repetitive tasks by
example. In Proceedings of ACM CHI’91 Human
Factors in Computing Systems (1991), pp. 33-39.

7. Cypher, A., ed. Watch What I Do: Programming by
Demonstration, MIT Press, Cambridge, MA, 1993.

8. Kosbie, D, Myers, B. A system-wide macro facility
based on aggregate events: a proposal. In Watch What I
Do: Programming by Demonstration. MIT Press,
Cambridge, MA. 1993.

9. Kurlander, D., Bier, E. Graphical search and replace.
In Proceedings of ACM SIGGRAPH ’88 (1988), pages
113-120.

10. Kurlander, D., Feiner, S. A history-based macro by
example system. In Proceedings of the ACM
Symposium on User Interface Software and
Technology (1992), pages 99-106.

11. Libes, D. Exploring Expect: A Tcl-Based Toolkit for
Automating Interactive Programs. O’Reilly &
Associates, Cambridge, MA, 1994.

12. Lieberman, H. Integrating user interface agents with
conventional applications. In Proceedings of ACM
Intelligent User Interfaces ’98. (1998), pp. 39-46.

13. Masui, T., Nakayama, K. Repeat and predict-two keys
to efficient text editing. In Proceedings of ACM
CHI'94 Human Factors in Computing Systems (1994),
pp. 118-123.

14. Maulsby, D., Witten, I. Inducing programs in a direct-
manipulation environment. In Proceedings of ACM
CHI'89 Human Factors in Computing Systems (1989),
pp. 57-62.

15. Modugno, F., Corbett, A., Myers, B. Graphical
representation of programs in a demonstrational visual
shell-an empirical evaluation. ACM Transactions on
Computer-Human Interaction, 4(3):276-308,
September 1997.

16. Myers, B. Creating user interfaces using programming-
by-example, visual programming, and constraints.
ACM Transactions on Programming Languages and
Systems, 12(2):143-177, April 1990.

17. Potter, R. Guiding automation with pixels: a technique
for programming in the user interface. Technical
Report HCIL 1992 Video Reports, Department of
Computer Science, University of Maryland, College
Park, MD, 1992. Also appears in the INTERCHI '93
Video Program.

18. Potter, R. Triggers: guiding automation with pixels to
achieve data access. In Watch What I Do:
Programming by Demonstration. MIT Press,
Cambridge, MA. 1993.

19. Potter, R. Graphical macros: a technique for
customizing any application using pixel pattern
matching. Technical Report HCIL 1994 Video Reports,
Department of Computer Science, University of
Maryland, College Park, MD, 1994.

20. Potter, R. Pixel Data Access: Interprocess
Communication in the User Interface for End-User
Programming and Graphical Macros. Ph.D. thesis.
University of Maryland Department of Computer
Science, May 1999.

21. Zettlemoyer, L and St. Amant, R., A visual medium for
programmatic control of interactive applications. In
Proceedings of ACM CHI'99 Human Factors in
Computing Systems (1999), pp. tbd.

22. Yamamoto, K. A programming method of using GUI
as API. Transactions of Information Processing
Society of Japan: Programming, pp. 26-33, December
1998.

