
The Relationship Between
COBOL and Computer Science
BEN SHNEIDERMAN

For a computer scientist to write sympathetically
about COBOL is an act bordering on heresy. It requires
courage because academic colleagues and data proc-
essing professionals are both likely to be suspicious of
my motives. Therefore, I feel my first obligation is to
make clear my intention and orientation.

I believe that COBOL has had a strong and largely
positive influence on the emergence of computer
usage. The development of COBOL was a pioneering
effort that advanced the state of the art in practical
data processing and language design. COBOL clearly
had many flaws, some of which have been overcome
by revisions to the original language. Designers of
other languages have learned from the mistakes and
overcome the problems with novel constructs. This
paper offers three perspectives on the rise of COBOL
(historical, technical, and social/psychological) and
suggests directions for future cooperation.

My orientation is as a computer scientist whose
early work was in database systems and programming.

Based on interviews, reviews of the literature, and personal impressions, the
author offers historical, technical, and social/psychological perspectives on the
fragile relationship between COBOL and computer science. The technical
contributions of COBOL to programming language design are evaluated. Five
proposals for computer science research on COBOL and fourth-generation
languages are described.

Categories and Subject Descriptors: 0.3.0 [Genera/]-standards; 0.3.2
[Language Classifications]-cosoc K.2 [History of Computing]-coso&
software; K.3.2 [Computers and Education] Computer and Information
Science Education-computer science education

General Terms: Design, Languages, Standardization

More recently I have turned my attention to psycho-
logical or human-factors issues of programming,
database query facilities, and human-computer inter-
action (Shneiderman 1980). I have taught introduc-
tory PrOgramming coursesin FORTRAN,BASIC,&isCal,
COBOL, APL, and PL/~ and have written or coauthored
textbooks using the first three of these languages.

Historical Perspective

Five aspects of the historical development of COBOL
can be traced as important influences in the alienation
of COBOL from the computer science community. First,
academic computer scientists did not participate in
the design team. The developers of COBOL were from
the commercial community: the manufacturers and
users of large data processing systems in industry and
government (see the minutes in this issue for lists of
the participants).

0 1985 by the American Federation of Information Processing
Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib-
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publication and its date appear, and notice is
given that the copying is by permission of the American Federation
of Information Processing Societies, Inc. To copy otherwise, or to
republish, requires specific permission.
Author’s Address: Department of Computer Science, University of
Maryland, College Park, MD 20742.
0 1985 AFIPS 0164-l 239/85/040348-352$01 .OO/OO

In 1959-1960 very few academics could have been
classified as computer scientists, of course, and few of
them could have made useful contributions, but en-
gaging them might have been beneficial.

The developers of the Ada language realized this
possibility and made ambitious and successful efforts
to elicit the participation of academic and industrial
researchers. Computer scientists can do more than
contribute ideas; they are often effective in dissemi-
nating new concepts through their publishing, teach-
ing, and lecturing efforts.

348 . Annals of the History of Computing, Volume 7, Number 4, October 1985

The second historical aspect is that the COBOL
developers apparently had little interest in the aca-
demic or scientific aspects of their work. The May
1962 issue of the Communications of the ACM was
devoted to 13 papers describing COBOL and related
issues. Every article was written by an industry or
government person. These people did not have the
academic frame of mind that involves referencing
previous and related work; only four of the papers had
any references. Sociologists of science who use cita-
tions to trace the flow of ideas would recognize this
pattern as an indicator of intellectual separatism.

science. It is not surprising that they worked sepa-
rately and in parallel. The development of computer
science and data processing might have been substan-
tially altered if these communities had taken the time
to meet and work together.

Technical Perspective

The third aspect is the decision of the COBOL de-
velopers not to use the Backus-Naur Form (sometimes
called Backus Normal Form) notation as the metalan-
guage to describe COBOL. The COBOL developers were
unaware of this work, which appeared in a conference
report in June 1959. I don’t see the failure to use BNF
as central, but apparently the criticism at the time
was severe (Sammet 1981, p. 233). The COBOL style of
metalanguage has become widely used and might be
considered as an important contribution.

Getting convergence on the technical successes and
failures of COBOL was a difficult task. I spoke to 30-
40 computer scientists and data processing profession-
als in trying to sort out the issues. The following
analysis is my own view guided by the interviews.

First the successes. The strongest point of agree-
ment was that COBOL contributed the record structure,
explicit file structure definition, and the separation of
data definition from procedural aspects. The COBOL
record and file structure certainly influenced the de-
sign of PL/~ and Pascal. The notion of an aggregation
of dissimilar items is a major advance over the FOR-
TRAN array. The Pascal notion of variant records can
be traced to the COBOL REDEFINES clause.

A fourth concern is the process of describing COBOL
to the academic and industrial community. Profes-
sionals could learn the language from programmer
reference manuals, but a well-written book emphasiz-
ing the conceptual foundations of COBOL would have
been an asset. It took a few years before successful
introductions were available (McCracken 1963; Saxon
1963) to teach COBOL to novices. Note the contrast
with the dissemination of Pascal. Niklaus Wirth pub-
lished a precise description of the language in Acta
Informatica (1971), an interesting book titled System-
atic Programming: An Introduction (1973), the widely
read Pascal User Manual and Report (1975), and a
forward-looking textbook Algorithms + Data Struc-
tures = Programs (1976).

Explicit file structure definitions that included a
hierarchy of names for fields and the separate DATA
Division were the predecessors of the database man-
agement system (DBMS) concept. DBMSs are a vital
part of computer science and are the source of a rich
theory that is still developing rapidly.

A search of the Library of Congress SCORPIO system
revealed 252 books indexed under COBOL, 529 under
FORTRAN, and 1054 under BASIC, demonstrating the
relatively lower rate of publication on COBOL. Pascal
is more recent, but already 208 books are indexed
under that programming language.

Another contribution was the diverse set of control
structures, which were quite sophisticated for the time.
The COBOL IF-THEN-ELSE, in spite of its awkward
scope delimiter rules, reduced the need for GOTOS and
permitted the creation of more comprehensible code.
The variety of PERFORM statements allowed conveni-
ent and powerful looping and some degree of modular
design. The ease with which paragraphs could be
created, named, and used facilitated hierarchical de-
sign.

The fifth historical aspect is that the people who
might have accepted the title of computer scientist in
1960 were not interested in the problem domain of
COBOL programs. The commercial file-processing
problems were remote from the concerns of computer
scientists, who generally dealt with numerical analy-
sis, physics, engineering problems, and systems pro-
gramming.

A popular feature of COBOL that has appeared in
other languages is the COPY statement. By including
groups of statements from a library, organizational
standards were easily enforced, programmers were
encouraged to cooperate, and reuse of code became
convenient.

Another interesting COBOL concept is the ENVIRON-
MENT Division, which allowed users to specify
machine or compiler dependencies. It permitted deli-
nition of separate host and target computers, thus
foreshadowing the idea of cross-compilers.

In summary, the people and the problems in the
COBOL world were very different from the people and
problems who were laying the basis for computer

Finally, the COBOL community demonstrated the
power of portability and standardization. In spite of
some local variations, COBOL is largely machine inde-
pendent. Programmers could successfully transfer
their knowledge and often their programs from one

Annals of the History of Computing, Volume 7, Number 4, October 1985 l 349

6. Shneiderman - COBOL and Computer Science

B. Shneiderman * COBOL and Computer Science

organization to another. Standardization also encour-
aged the development of software tools and reuse of
code.

Some of the perceived technical failures of COBOL
might have been avoided by early consultation with
computer scientists, but other problems would not
have been recognized until the early 1970s. The most
serious omission is a function or procedure definition
facility with parameters and local scope of variables.
The original version of COBOL has only global vari-
ables; therefore a generic subroutine to sum the ele-
ments of an array, search a string, or print a bar chart
was not easy to write. Two programmers working
together had to coordinate carefully to ensure that
they did not inadvertently both use the same variable
name for different values. The lack of protected mod-
ule boundaries also allowed complex and sometimes
dangerous programming techniques. A DEFINE macro
feature was in the original language description and
appears to be the first such facility in a high-level
language. Unfortunately, it was never implemented
and was eventually dropped from the language. The
1974 revision to COBOL included the now-popular CALL
USING feature, which permitted parameters and run-
time creation of procedure names.

Computer scientists often complained about the
wordiness of COBOL statements and the clutter of the
optional noise words. The designers of COBOL appar-
ently believed that the English-like statements would
make programs readable by managers or other non-
programmers, but the semantics of programming are
at least as challenging as the syntax. Computer sci-
entists whose background emphasized mathematical
notation, which is precise and concise, felt that COBOL
was too wordy and somehow unscientific.

I found and was sympathetic to several complaints
about COBOL control structures. The scope of an IF-
THEN-ELSE is delimited by a period, which is often
missed by programmers when reading and even when
writing programs. It might have been better to have
used a keyword such as ENDIF. The PERFORM state-
ment cannot contain a list of statements, only the
name of a paragraph. Studying a program is tricky
because the reader must hunt for the body of the
PERFORM statement. With short loops, the overhead
is annoying, and confusion can increase.

Poor string-handling facilities were cited by several
people as a major weakness of early COBOL. Moving
and copying of strings was convenient, but insertion
and deletion of characters inside a string was difficult.
The EXAMINE verbandthe TALLYING and REPLACING
options were included in the early COBOL specifica-
tions to facilitate plans to write a COBOL compiler in
COBOL. The 1974 version of COBOL contained the

somewhat more powerful INSPECT command, plus
STRING and UNSTRING.

Several computer scientists complained about the
lack of recursion in COBOL, but I think that it hardly
would have made a difference in the use of the lan-
guage.

Knowledgeable COBOL programmers in my survey
had other small complaints, but I did not judge them
to be vital.

Social/Psychological Perspective

Now we move on to some more speculative areas that
reflect on the fundamental differences between the
computer science and business data processing com-
munities. The rejection of COBOL by most computer
scientists is a product of their desire to avoid the
business data processing domain, their pursuit of
mathematically oriented theory, and often their lack
of knowledge about COBOL.

When asked for his comments, one computer sci-
entist who is a widely respected expert in program-
ming languages boldly replied, “What’s COBOL?" His
world did not have a place for COBOL. In fact, several
programming language texts (e.g., MacLennan 1983)
do not include COBOL in the index. Another responded,
“It’s terrible . . . ugly,” but had difficulty explaining
why. I suspect this prejudice emerges from the bias of
many computer scientists against the problem domain
and the wordy, nonmathematical style of COBOL,
rather than from any serious consideration of the
technical weaknesses. Dijkstra (1982) wrote, “COBOL
cripples the mind,” but he was equally harsh on FOR-
TRAN (“infantile disorder”), PL/I (“fatal disease”),
BASIC, and APL. Tompkins (1983) sought to defend
COBOL, and Reid (1983) responded with many legiti-
mate criticisms.

The bias against the problem domain is stated ex-
plicitly in Pratt’s programming language textbook
(1975; 1984), which says that COBOL has “an orienta-
tion toward business data processing . . . in which the
problems are . . . relatively simple algorithms coupled
with high-volume input-output (e.g. computing the
payroll for a large organization).” Anyone who has
written a serious payroll program would hardly char-
acterize it as “relatively simple.” I believe that com-
puter scientists have simply not been exposed to the
complexity of many business data processing tasks.
Computer scientists may also find it difficult to pro-
vide elegant theories for the annoying and pervasive
complexities of many realistic data processing appli-
cations and therefore reject them.

Tucker’s programming language textbook (1977)
has this evaluation: “We judge COBOL's programming

350 - Annals of the History of Computing, Volume 7, Number 4, October 1985

features as fair and its implementation dependent
features as poor . . . its overall writing as fair to poor,
its overall reading as fair and its data processing
support as good. . . . [It has] tortuously poor compact-
ness and poor uniformity.” Not much to warm the
heart of a COBOL programmer.

Several computer scientists remarked about the
“trade school” nature of COBOL and that university
professors did not like dealing with current practice,
but sought to distinguish themselves with novel lan-
guages, theory, and an abstract, more mathematical
orientation. One professor commented that he was
“hostile to teaching what is used commercially,” while
a researcher sneered at the “folly of an English-looking
language.”

The desire to be aloof from current practice was a
common theme and leads me to the

Theory Conjecture: Computer scientists like pro-
gramming language theory, but find fault with any
widely used language.

The Theory Conjecture should be comforting to
COBOL supporters because it means that computer
scientists will express displeasure for almost any pro-
gramming language that is widely used. Since com-
puter scientists desire to be with the state of the art,
anything that is widely used must also be outdated.
Commercial usage lowers academic prestige.

A related principle might be expressed as the

Egocentricity Conjecture: Computer scientists appre-
ciate no programming language except the one that they
design.

The role of a scientist is to innovate, so comments
on other people’s work are often in the form of criti-
cism that lays the basis for a proposed improvement.

Summary

Jean Sammet’s book on programming languages
(1969) and her review of the history of COBOL (1981)
offer lists of contributions of COBOL that are close to
my own impressions:

l Readable language.
l Separate data declaration section with rich record

structure.
l Decent control structures.
l Machine-independent, portable, standardized

language.
l A useful alternative metalanguage.
l Creation of a successful and large community of

data processing programmers.

In her review, Sammet (1981, p. 239) writes: “I per-
sonally do not see much language development . . .

B. Shneiderman - COBOL and Computer Science

significantly influenced by COBOL," and goes on to
say, “Most computer scientists are simply not inter-
estedin COBOL."

I do feel that COBOL was a major influence on PL/I,
which was designed explicitly to include the popular
features of COBOL,FORTRAN, and ALGOL. COBOL also
had an impact on the use of record structures in
languages such as Pascal and on the creation of
database management systems.

Most important, COBOL greatly facilitated the enor-
mous expansion of computer usage in data processing.
The demand for programmers and computers bene-
fited the entire industry and stimulated further sci-
entific advances because there was such a large market
for new ideas.

The Future: A Challenge to Computer Scientists

The story of COBOL is not over. The continuing
changes to COBOL, refinements in design guidelines,
and improvements in teaching strategies mean that
the COBOL of today looks very different from the
COBOL of 1960. COBOL and the so-called fourth-gen-
eration languages will still be around in 25 more years,
and maybe computer scientists still have an opportu-
nity to influence their evolution.

Let me propose five areas of beneficial COBOL and
fourth-generation language research that might be of
interest to computer scientists.

Code Optimization: There is a grand opportunity to
apply traditional compiler optimization techniques to
COBOL. Even more provocative would be to explore
optimizations that are specific to the COBOL domain.
Instead of eliminating redundant mathematical sub-
expressions, the COBOL compiler writers could concen-
trate on eliminating redundant MOVE or file opera-
tions. Global dataflow analysis would be a challenge
in the COBOL context.

Formal Semantics: Precise descriptions of COBOL
syntax are available, but there are variations in the
semantics of some operations across implementations.
Creating a formal semantic description of COBOL
would be useful to implementors and might require
novel techniques that could be applied in many pro-
gramming language situations.

Maintenance Tools: The enormous and valuable li-
braries of COBOL programs are underutilized because
tools are not adequate for indexing, searching, inter-
preting, and modifying this code. Library-science and
expert-system concepts might be applied to making
the voluminous “literature” of COBOL more readily
available for reuse.

Annals of the History of Computing, Volume 7, Number 4, October 1985 l 351

B. Shneiderman * COBOL and Computer Science

Programming-Style Research: Because COBOL is so
widely used, we would see a substantial benefit if
empirically tested style guidelines were available.
Questions abound about the choice of mnemonic
variable names, nesting of control structures, use of
indentation, page formatting, modular design,
commenting techniques, data structure design, etc.
Empirical studies of program composition, compre-
hension, debugging, and modification by professional
programmers would be valuable in resolving some of
these issues and formulating a cognitive model of
programmer behavior.

Software Engineering: In some ways COBOL is a
convenient language as the target for a compiler or
preprocessor. Indeed, numerous preprocessors at-
tempt to offer higher-level control structures or data
structures. How might procedural or data abstraction
concepts be molded to fit the COBOL context? Can
computer scientists offer an interesting theory of pre-
processors to parallel the theory of compilers? Does
large-system design in COBOL have features that are
distinct from FORTRAN or Ada?

This list is only a starting point. COBOL and fourth-
generation languages present many provocative chal-
lenges to computer scientists. Also, electronic spread-
sheets such as VisiCalc and Lotus l-2-3 are exciting
innovations that have yet to be properly acknowledged
in the computer science community.

Acknowledgments

In addition to the people I interviewed, I was greatly
helped by knowledgeable reviews of early drafts by
Robert Dewar, John Gannon, Rick Linger, Daniel
McCracken, Terrence Pratt, Edward Reid, and Jean
Sammet. My first consideration of this topic was
stimulated by Hank Tropp and Jean Sammet’s invi-

tation to give a talk at the 1979 .National Computer
Conference’s Pioneer Day celebration of the 20th an-
niVerSary Of COBOL.

REFERENCES

Dijkstra, Edsger W. May 1982. How do we tell truths that
might hurt? ACM SIGPLAN Notices 17, 5, pp. 13-15.

Jensen, Kathleen, and Niklaus Wirth. 1975. Pascal User
Manual and Report. Second Edition, New York, Springer-
Verlag.

MacLennan, Bruce J. 1983. Principles of Programming Lan-
guages: Evaluation and Implementation. New York, Holt,
Rinehart and Winston.

McCracken, Daniel D. 1963. A Guide to COBOL Program-
ming. New York, Wiley.

Pratt, Terrence W. 1984. Programming Languages: Design
and Implementation. Second Edition, Englewood Cliffs,
N.J., Prentice-Hall.

Reid, E. October 1983. Fighting the disease: More comments
after Dijkstra and Tompkins. ACM SIGPLAN Notices 18,
10, pp. 16-21.

Sammet, Jean E. 1969. Programming Languages: History
and Fundamentals. Englewood Cliffs, N.J., Prentice-Hall.

Sammet, Jean E. 1981. “The Early History of COBOL.” In
Wexelblat, R. (ed.), History of Programming Languages,
New York, Academic Press, pp. 199-243.

Saxon, James A. 1963. COBOL. Englewood Cliffs, N.J.,
Prentice-Hall.

Shneiderman, Ben. 1980. Software Psychology: Human Fac-
tors in Computer and Information Systems. Boston, Little,
Brown.

Tompkins, H. E. April 1983. In defense of teaching struc-
tured COBOL as computer science (or, Notes on being sage
struck). ACM SIGPLAN Notices 18, 4, pp. 86-94.

Tucker, Allen B. 1977. Programming Languages. Reading,
Mass, Addison-Wesley.

W&h, Niklaus. 1971. The programming language Pascal.
Acta Informatica 1, 1, pp. 35-63.

Wirth, Niklaus. 1973. Systematic Programming: An Intro-
duction. Englewood Cliffs, N.J., Prentice-Hall.

Wirth, Niklaus. 1976. Algorithms + Data Structures = Pro-
grams. Englewood Cliffs, N.J., Prentice-Hall.

352 * Annals of the History of Computing, Volume 7, Number 4, October 1985

