
Touchscreen Field Specification for Public Access Database Queries:
Let Your Fingers Do the Walking

Andrew Sears
Yoram Kochavy
Ben Shneiderman

Human-Computer Interaction Laboratory
Department of Computer Science

University of Maryland
College Park, Maryland 20742

Abstract: Database query is becoming a common
task in public access systems; touchscreens can
provide an appealing interface for such a system.
This paper explores three interfaces for
constructing queries on alphabetic field values with
a touchscreen interface; including a QWERTY
keyboard, an Alphabetic keyboard, and a Reduced
Input Data Entry (RIDE) interface. The RIDE
interface allows field values to be entered with
fewer “keystrokes” (touches) than either keyboard
while eliminating certain errors. In one test
database, the RIDE interface required 69% fewer
keystrokes than either keyboard interface.

Introduction
Searching a database is a daily task. Looking up a

telephone number in the phone book or looking up an
item’s description and price in a store’s catalog are examples
of a database query.

The traditional input device for database queries is a
keyboard. Users formulate a queries by selecting a field, a
relational operator, and then values for the field, possibly
followed by additional specifications (i.e. another field,
operator, and value) (Ageloff, 1988; Date, 1988, Gittins,
1986). There are many places where it is easy to make an
error in a such a system. Users may type a field name that
is not valid (either not in the database or just misspelled),
select an operator that is not applicable at that point in the
query, or type a value for a field that is misspelled or
inappropriate such as a number when a person’s name is
required (Welty, 1985).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-348-5/90/0002/0001 $1.50 1

Touchscreen interfaces are becoming more common for
public access systems. The reasons for this success include
rapid performance, ease of learning, lack of moving parts,
and durability (Pickering, 1986; Shneiderman, 1987; Stone,
1987; Muratore, 1987; Priest & Pfauth, 1981).

Research has resulted in solutions for many of the
problems that plagued early touchscreens including a lack of
precision, high error rates, and arm fatigue. The lack of
precision has been addressed by both industry and academic
researchers. Elographics has developed touchscreens with
resolution as high as 4096*4096 (Elographics, 1983).
Further research has increased precision and enabled the
accurate selection of single pixel targets (Sears &
Shneiderman; 1989). Several researchers have also
addressed the problem of high error rates. Some solutions
explored the use of alternate selection strategies (Potter,
Weldon & Shneiderman, 1988; Potter, Berman &
Shneiderman, 1989; Murphy, 1986). A more recent
attempt involved smoothing the data received from the
touchscreen to compensate for the lack of stability in
hardware (Sears & Shneiderman, 1989). Arm fatigue was
reduced and difficulties with the reading angle were resolved
in a study by Weisner (1988). Weisner allowed users to
pivot the monitor to the angle they preferred.

These improvements have made the touchscreen well
suited to public access systems and it is becoming more
popular with designers of such systems. This paper
explores database query using a touchscreen as the sole
input device and concentrates on the problem of specifying
alphabetic values for fields.

Previous Research
Tennant and Ross (1983) proposed a menu driven

natural language interface for database queries. This system
presented users with a set of menus that contained only
valid entries at each stage of the query. Users selected items
with either a mouse or by using the arrow keys and
pressing return. This eliminated the selection of invalid
fields, operators, and in some cases, inappropriate data

values. Any query that could be formed, could be
interpreted by the system without errors. However, this
system did not address the issue of selecting a field value
when there were many possibilities (e.g. entering a person’s
name where all possibilities cannot be listed conveniently).

Converse et al. (1988) reviewed a keyboard based
computerized shopping mall directory. This system
allowed shoppers to locate stores by name, product or
location. With a single key press using a special keyboard,
shoppers could view a numbered list of stores in a particular
part of the mall, or stores that sold a particular type of
product. Once this list was presented, shoppers could then
select a store by pressing the corresponding numbered key
on a different section of the keyboard. This system reduced
the possibility of selecting an inappropriate entry by a
menu-like use of the keyboard. There are several
disadvantages associated with keyboard based systems. The
first is that there are extra keys on the keyboard that may
not valid at a particular stage of the query that may be
selected by users producing an undetermined result.
Another disadvantage is the additional cognitive load
required to translate an item on the screen into a specific
key press. Both of these problems can be solved by a
touchscreen interface. Touchscreen interfaces allow the
elimination of inappropriate keys and reduce the cognitive
load required to select an item by allowing the user to
simply touch the desired item.

Touchscreen Interfaces
Designing a user interface to take advantage of a

touchscreen is quite different than designing traditional
keyboard interfaces. Touchscreens allow the definition of
selectable regions to act as “keys.” Touchscreen interfaces
can be customized at each stage of the interaction; when a
key becomes unnecessary it can simply be removed from
the interface, eliminating the possibility of an inappropriate
selection of that key (Priest & Pfauth, 1981). Keys on a
keyboard can be inactivated, however users may still press
the key expecting some response.

Touchscreens allow a natural method for selecting
items from the screen (Shneiderman, 1987). Users simply
point to an item on the screen, and it is selected. Unlike
touchscreens, keyboards require items on the screen to be
mapped into sequences of key-presses. This requires
additional cognitive effort from users and may result in
higher error rates and slower performance.

The rapid selection and ease of use of touchscreens
often result in high user satisfaction. Other benefits include
a minimal learning time and the guidance a touchscreen
system can provide (Priest & Pfauth, 1981). However,
most touchscreens allow only a single touch at a time,
making resting your hand or fingers on the screen
impossible. This may have significant implications on
tasks that involve typing or precise selections.

Touchscreen interfaces can be customized easily for the
specific type of interaction. For example, selecting a
specific color can be a difficult task. Describing the color
you wish to select is not easy using words, however
touching the approximate color on a color chart is quite
simple. Another example is entering numbers. If the user
is entering a telephone number, a touch sensitive telephone
keypad could be presented. On the other hand, if users are
entering numeric values, a calculator-like keypad could be
presented.

Touchscreen Interfaces for Field Specification
In most database queries a field value must be specified.

For touchscreen interfaces for database queries three distinct
categories have been identified:

(1) N or fewer possible values,
(2) More than N possible values,
(3) Special field,

where N is the number of items that can be displayed on
and selected from the screen at one time.

The third category may include fields such as colors,
shapes, or numbers. Colors may be selected from a color
spectrum presented on the screen by simply touching the
desired shade. Shapes could be selected by having users
draw the desired shape on the screen with their finger.
Entering numbers could be done using either a calculator
like keypad or a telephone keypad, depending on which is
more appropriate for the task. Special fields may require a
unique interface for optimal interaction.

Fields that fit into the first category have a limited
number of possible values. All values can be presented on
the screen simultaneously in a menu like format, and users
simply touch the desired item. For fields in this category, a
menu like design is usually appropriate for entering values.

Fields that fit into the second category are the main
topic of the remainder of this paper. These fields have N+l
or more possible values. An example of such a field is the
author’s name on a library’s online catalog system. There
is no way that all possible names could be listed on the
screen at one time in a usable manner. Other solutions are
needed to enter values for fields that tit into this category.
Several possible solutions will be discussed in this paper,
including: a QWERTY keyboard, an Alphabetic keyboard,
and a Reduced Input Data Entry (RIDE) interface. For both
keyboard interfaces, the keyboard is presented on the
touchscreen surface and users “type” letters by touching the
appropriate selectable areas. The RIDE interface uses
successive approximation to reduce the number of possible
inputs at each stage of the interaction. The system uses
knowledge of the valid values in the database, and the data
entered up to that point in the interaction to eliminate
inappropriate options. This allows values to be entered

2

with fewer inputs and errors than is otherwise possible. In
some cases, the RIDE interface requires less than 31% of
the inputs neededby a keyboard interface (Table 6).

Touchscreen Interfaces for Fields with Many
Values (Category 2)

In this section, three solutions to entering values for
fields with more than N possibilities (Category 2) will be
discussed. To simplify the discussion, a representative task
of locating a person’s phone number in an electronic phone
book was chosen.

Three possible interfaces were identified: a QWERTY
keyboard, an Alphabetic keyboard, and a Reduced Input Data
Entry (RIDE) interface. Other possibilities include
scrolling through a complete list of values, or using an
auto-completion strategy that presents additional letters
when there is no ambiguity. Scrolling through a list of
values may be sufficient when there is a limited number of
possibilities. When there are many possible values, such
as last names in a telephone book, this solution would
require extra work on the part of users. Auto-completion
strategies could assist users in reducing the number of
possibilities, however, these strategies require complete
unambiguity before benefiting users. Strategies could also
be devised that used a keyboard to start entering a value and
once enough information has been specified the possible
values could all be presented simultaneously, as they would
for a Category 1 field.

QWERTY Keyboard Interface
The QWERTY keyboard interface resembles the

standard keyboard on most computers and typewriters,
having the Q,W,E,R,T, and Y keys across the top row of
keys, but is presented on the touchscreen. This keyboard
was originally designed to place frequently typed letters far
apart in order to prevent manual typewriters from jamming.
This design has persisted, even with the introduction of
more efficient, faster keyboards (Montgomery, 1982;
Grudin, 1989). The main advantage of the QWERTY
keyboard is that it is well known by computer users and
typists.

Using the QWERTY interface (Figure l), users would
simply type (touch) the desired value on the touchscreen,
followed by the “done” key to indicate the string is
complete. To input a ,string of length L, L+l inputs are
required; one input per character followed by the “done” key.
Inputting a string of length L using a QWERTY keyboard
requires the following:

l minimum inputs = L+1+(2*n*e),
l maximum inputs = L+1+(2*n*e),
l average inputs = L+1+(2*n*e),

where e = the number of errors made, and n = the average
number of letters typed after an error before users realize
that the error was made (including the incorrect letter). For
each of these n letters two inputs are necessary to correct
the error. The first is the incorrect letter, and the second is
the “back up” that is necessary to remove the error.

There are several problems with using a QWERTY
keyboard interface. The first is that inexperienced users
must search the keyboard for the appropriate key, the
location of a key is unpredictable. Novices are forced to
search the keyboard to locate each key as they need it
(Nicolson & Gardner, 198.5). In addition, a QWERTY
keyboard interface does not prevent misspellings or
inappropriate values from being entered.

Issues that must be addressed when using a QWERTY
keyboard layout include color and size coding of keys.
Color coding could be used to distinguish vowels (A, E, 1,
0, and U) or common keys (S, N, T, R, and L). These
keys could be in a different color making them easier to
locate. Size coding could be used to distinguish commonly
used from rarely used keys. Common keys could be larger
than average, making them easier to locate and touch, while
uncommon keys (Q, X, and 2) could be smaller, making
them less likely to be selected by accident.

Alphabetic Keyboard Interface
An Alphabetic keyboard interface has the keys arranged

in alphabetical order typically in two to five rows on the
touchscreen. The main rationale for alphabetic keyboards is
the consistency and predictability they provide. Everyone
learns the alphabet in the same order, making an
alphabetical layout consistent with prior knowledge,
reducing the amount of new information that needs to be
learned. Many studies have been performed to compare
alphabetic and QWERTY keyboards. Nicolson and Gardner
(1985) provide an example where novices perform better
with an alphabetic keyboard, while other researchers have
indicated that an alphabetic arrangement may never be
advantageous (Norman & Fisher, 1982; Potosnak, 1988).

Most studies that have shown superior performance for
the QWERTY layout have used tasks that are normally
performed by touch-typing on a keyboard. Long typing

tasks, such as entering a sentence, paragraph, or entire
paper, may be slow on a touchscreen for several reasons.
Fast typing typically requires that typists keep their fingers
on or near a “home row” of keys without having to watch
them. This is difficult on a touchscreen for two reasons;
resting your fingers on the screen is not possible with most
touchscreens, and there are no key edges on a touchscreen,
making it difficult to know when your hand has slipped
from the “home row.” Since we are dealing with a
touchscreen and tasks that involve entering relatively short
strings, most studies do not apply to these tasks.

The second interface proposed used an alphabetic layout
for entering alphabetic characters (Figure 2). Using this
interface, users would simply type (touch) the desired value
on the touchscreen, followed by the “done” key to indicate
the string is complete. To input a string of length L, L+l
inputs are required; one input per character followed by the
“done” key. Inputting a string of length L using an
alphabetic keyboard requires the following:

l minimum inputs = L+l+(2*n*e),
l maximum inputs = L+1+(2*n*e),
l average inputs = L+1+(2*n*e),

where e = the number of errors made, and n = the average
number of letters typed after an error before users realize
that the error was made (including the incorrect letter). For
each of these n letters two inputs are necessary to correct
the error. The first is the incorrect letter, and the second is
the “back up” that is necessary to remove the error.

Enter Family Name:

Figure 2 -Alphabetic keyboard layout

There are several problems that occur when using an
alphabetic keyboard interface. The first is that users who
are familiar with typewriters or computer terminals must
adjust to the new layout. However, the layout of the
keyboard is consistent with prior knowledge of the
alphabet, making it possible to predict where a key is
located. One additional disadvantage of an alphabetic
keyboard interface is that it does not prevent misspellings
or inappropriate values from being entered.

Other issues that must be addressed when using an
alphabetic keyboard layout include the number of rows and
columns of keys, color and size coding of keys. Color and
size coding effects have been discussed in the section about
the QWERTY keyboard interface.

There are many possibilities for the number of rows
and columns of keys. There could be two rows of thirteen
keys, three rows with eight or nine keys, or five rows with
five or six keys. Several factors may determine which
layout is superior. Items at the end of each row of keys
may act as “anchors” when searching for a particular key.
These items would be located faster, and if there are fewer
keys between anchors (as there are in the 5x5+1 layout)
these items should be distinguished faster. On the other
hand, having many rows of keys may disturb users who are
familiar with the standard QWERTY keyboard. The
similarity of the three row layout to the standard QWERTY
keyboard may result in a negative transfer of knowledge of
key location resulting in increased scan time and error rates.
Of course when designing an alphabetic keyboard layout the
position of the backspace and done or return keys must also
be considered.

Reduced Input Data Entry (RIDE) Interface
The typical way of entering values when there are

many possibilities (Category 2) is to type them. A RIDE
interface reduces entering values from a typing task to a
menu selection task.

The RIDE interface initially presents users with a list
of all possible one letter prefixes (Figure 3a). Users select
the first letter for the desired input, and the system then
presents a list of all possible two letter prefixes (Figure
3b). Users then select the two letter prefix for the desired
input value, and so on. If at any stage in the process RIDE
can expand more than one character, while producing N or
fewer possibilities, it will do so (Figure 3~). This process
continues until the number of possible values is N or less
(N = number of items that can be displayed on and selected
from the screen at one time) (Figure 3~). Although this
could be done with either keyboard interface, users typically
type the entire value once they start on a keyboard. Having
the interface change in the middle of entering a value may
make users uncomfortable. With the RIDE interface, it
would be expected that at some point a list of valid values
would be presented. This may occur as early as the first
selection if there are N or fewer values (Category 1). If at
any point, the leading string for the desired value is not
presented as an option, users can determine that the desired
value is not contained in the database. Users can back up at
any time in the process. Instead of backing up a single
character, RIDE backs up to the previous stage in the
process. This may only be a single character, or the entire
string.

The third interface, RIDE, offers many advantages.
RIDE leads users along a path to entering only valid
values. Misspelled values are limited to alternate spellings
that appear in the database, and inappropriate values, such
as numbers for an alphabetic field, cannot be entered.
Inputting a string of length L using a RIDE interface
requires the following:

l minimum inputs = 1+(2*n*e),
- maximum inputs = L+1+(2*n*e),
l average inputs = varies from database to database,

where e = the number of errors made and n = the average
number of inputs after an error before users realize that the
error was made (including the initial incorrect input). For
each of these n inputs two inputs are necessary to correct
the error. The first is the incorrect input, and the second is
the “back up” that is necessary to remove the error.

0
vo

0 vu

Figure 3~. One Leltcr Figure 3b -Two Lelter
Refixes Prenxes

FL$urr 3c - Aflcr Two

SelectionsEntIre Names
Cm be LIsted

There are many factors that influence the average
number of inputs necessary to select an item using the
RIDE interface. These include the length of the desired
string, the size of the database (how many possible values),
and the uniqueness of the leading substrings of the data.
The influence of these factors will be discussed in the
following section. The average number of letters typed
after an error before the user realizes that the error was made
should be less for the RIDE interface than it would be for
either keyboard. This is due to the fact that users are only
presented with valid options at each stage when using the
RIDE interface, making it easier for users to realize that an
error has been made.

There are several problems with using the RIDE
interface. First, users who are familiar with typewriters or
computer terminals must adjust to the new interface.

Although the interface is consistent in placing all valid
items on the screen in alphabetical order, users can not
predict the location of the desired item and have to visually
scan each screen.

The time to scan the screen slows performance when
using the RIDE interface. Variables that influence this scan
time include size of the keys and the arrangement of the
options on the screen. The size of the keys must be
appropriate, allowing users to easily touch the key, while
not being so large that they increase scan time. There are
many factors that determine the arrangement of the options
that may also influence the visual scan time. These factors
include the number of rows and columns of keys (3~9.5~5,
2x13, etc.), the order that options are placed on the screen
(top to bottom or left to right), whether the arrangement of
the keys remains constant with unavailable keys removed or
all available keys are displayed with no gaps. Displaying
the available keys without gaps reduces the area that the
user must scan, however, it also decreases the consistency
of the layout.

When the database being accessed is static, or changes
infrequently, indices can be calculated into the database
while users are not using it, resulting in fast search times.
This will make the time the system needs to search the
database for a prefix insignificant compared to the time
users spend thinking or entering information.

Discussion
Each of these interfaces has been implemented and

informally evaluated with a database of approximately 2500
names. The maximum number of names displayed on the
screen at one time, N, was set to nine, allowing all names
to be presented in a single column on the screen. Due to
the significant time necessary to redraw the screen for the
RIDE interface, the QWERTY keyboard was slightly faster
than RIDE, while the Alphabetic keyboard was the slowest.
Preliminary calculations indicate that if the time necessary
to redraw the screen were reduced, the RIDE interface would
require slightly less time than the QWERTY keyboard. In
addition, the RIDE interface appears to result in
significantly fewer errors than either of the other interfaces,
as was predicted. Preprocessing of the data allowed rapid
searches on prefixes, making the time the computer spent
searching the database insignificant,

Each of the three interfaces we discussed has advantages
and disadvantages.While both keyboard interfaces provide
feedback indicating what users have just selected, the RIDE
interface provides more direct feedback. The feedback from
a keyboard interface is located at a point different than where
the selection is made. RIDE provides feedback where the
next selection will be. At each point in the interaction all
possible inputs indicate exactly what has been entered up to
this point.

The power of the RIDE interface is best demonstrated
when entering multiple fields for a particular entry in the
database (e.g. last name then first name). After the last
name has been specified the number of possible first names
has been significantly reduced. This will typically result in
first names (or other additional fields) being entered with a
minimum of inputs.

There are many tasks for which the RIDE interface may
allow users to perform faster and with fewer errors than
either keyboard. These include tasks where there are a
limited number of valid values, values have unique leading
substrings, and value lengths are long and unique.

Using the RIDE interface for a limited number of
values significantly reduces the number of inputs necessary
to select a value, and eliminates the possibility of entering
an invalid values. When there are a limited number of
values, the RIDE interface narrows the possibilities faster,
allowing values to be selected with fewer inputs (Table 6).

Another factor that can drastically improve the
performance of RIDE is the uniqueness of the possible
values. If the last K characters of a string of length L are
identical, the maximum number of inputs necessary to
select a value becomes L-K+l. If on the other hand, the
first J characters of all of the strings are identical, the first
strings that are presented to the user will be of length J+l,
reducing the maximum number of inputs to L-J. This
factor is a major consideration when evaluating the
efficiency of the RIDE interface for a specific task.

A third factor that effects performance of the RIDE
interface is the length of the strings being selected. If the
strings are relatively long, the RIDE interface significantly
reduces the number of inputs necessary. There is a strong
interaction between these three factors.

To compare the number of inputs necessary using each
interface, statistics for three databases containing the last
names of students at the University of Maryland were
calculated. The first database contained approximately
16000 names (Tables 1 and 2), the second contained
approximately 1600 names (Tables 1 and 3), and the third
contained 160 names (Tables 1 and 4). The maximum
number of names that could be displayed on a single screen,
N, was set to nine allowing all names to be presented in a
single column. These databases provide some insight into
how the RIDE interface will perform compared to a
keyboard for various size databases. This data assumes that
there were no errors made when entering the names. It is
anticipated that if errors were made the results would prove
even more favorable for the RIDE interface.

The data in Tables 2, 3, and 4 clearly indicates that
the RIDE interface requires significantly fewer inputs to
enter a name on average. The average number of inputs
necessary for the RIDE interface is only 58% of the number
required for the keyboard interfaces for the database of
16000 names, 47% for the database of 1600 names, and

31% for the database of 160 names. The minimum and
maximum number of inputs necessary for the RIDE
interface are also significantly less than for the keyboard
interfaces. For the database of 160 names the maximum
number of inputs users would ever have to make is 4 with
the RIDE interface compared to 14 with either keyboard. It
is clear that as the database size decreases the benefit from
the RIDE interface increases. Entering additional
information about a student, such as the first name, would
result in an even greater benefit when using the RIDE
interface. In most instances the first name could be
specified in one or two inputs.

Performance statistics can be calculated using these
formulas when deciding which interface to use for accessing
a particular database. These statistics guide designers in
predicting user performance with each interface.

Name Length (L)
3 or less
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 or more

Size of Database
15818 1583 160
Number of Names of Length (L)
0 0 0
1197 125 12
2621 260 29
3556 357 33
3416 355 42
2333 226 28
1379 118 8
788 80 5
306 33 1
116 14 1
49 5 1
26 5 0
20 3 0
4 0 0
4 0 0
3 1 0
0 0 0

Table 1 - Number of Names by Length

Database 1 - 15818 names
Innuts ner name OWERTY RIDE Alphabetic
Average 4.55 7.85 7.85
Minimum 2 5 5
Maximum 7 19 19

Table 2 - Inputs per Name by Interface

6

Database 2 - 1583 names
Inouts oer name RIDE OWERTY Aluhabetic
Average 3.70 7.84 7.84
Minimum 2 5 5
Maximum 5 19 19

Table 3 - Inputs per Name by Interface

Database 3 - 160 names
Inputs per name RIDE QWERTY Alphabetic
Average 2.35 7.67 7.67
Minimum 2 5 5
Maximum 4 14 14

Table 4 - Inputs per Name by Interface

Conclusion
This paper explored three possible interfaces for public

access database queries in a touchscreen environment.
Touchscreen versions of keyboard interfaces have some
advantages, and the QWERTY design seems superior to the
Alphabetic for most tasks and users. Refinements are
possible for all three versions, but the Reduced Input Data
Entry interface reduces the number of inputs, at the expense
of increased perceptual and cognitive load. The advantage of
the RIDE interface increases as the database size decreases.

Acknowledgements
We would like to thank Christine Van Eseltine and

Richard Doyle Jr. for performing the initial experiment
providing insight into the performance of the three
interfaces we discussed. We would also like to thank NCR
for partial support of this work.

References
Ageloff, R. (1988), A Primer on ,SQL, Timer

Mirror/Mosby College Publishing, St. Louis.
Converse, S., Fedorko, M., Hammontree, M., Montero,

C., Thornton, C., & Zwaga, H. (1988), Where can I
Find . . . ? An Evaluation of a Computerized Directory
Information System, Unpublished manuscript.

Date, C.J. (1988), A Guide to The SQL Standard, Addison-
Wesley, Reading, MA.

Elographics, Inc. (1983), Model E271-60, Oak Ridge, TN.
Gittins, D. (1986), Query Language Systems, Edward

Arnold, Baltimore, MD.
Grudin, J. (1989), The Case Against User Interface

Consistency, Communications of the ACM V32,
October, 10, 1164-1173.

Montgomery, E. (1982), Bringing Manual Input into the
20th Century: New Keyboard Concepts, IEEE
Computer V1.5, March, 3, 11-18.

Muratore, D.A. (1987), Human Performance Aspects of
Cursor Control Devices, MlTRE Corporation Working
Paper 6321, Houston, TX.

Nicolson, R. and Gardner, P. (1985), The QWERTY
keyboard hampers schoolchildren., British Journal of
Psychology V76,525-531.

Norman,D. and Fisher, D. (1982), Why alphabetic
keyboards are not easy to use: Keyboard layout doesn’t
much matter., Human Factors V24, 509-515.

Pickering, J. (1986), Touch-sensitive screens: The
Technologies and their applications,Znternationai
Journal of Man-Machine Studies V25,249-269.

Potter, R., Weldon, L., and Shneiderman, B., (1988).
Improving the accuracy of touch screens: An
experimental evaluation of three strategies,
Proceedings of the Conference on Human Factors in
Computing Systems, ACM SIGCHI, New York, 27-
32.

Potter, R., Berman, M., and Shneiderman, B., (1989). An
experimental evaluation of three touch screen strategies
within a Hyperties database, International Journal of
Human-Computer Interaction VI ,I, 4 1-52.

Potosnak, K., (1988). Keys and Keyboards, In Handbook
of Human-Computer Interaction (Helander ed.),
Elsevier Science Publishers, North-Holland, 475494.

Priest, J. and Pfauth, M. (1981), Touch Screen Devices:
Industrial Engineering Considerations of an Emerging
Technology.

Sears, A. and Shneiderman, B. (1989), High Precision
Target Selection: A Comparison of Touchscreens and a
Mouse, University of Maryland Computer Science
Technical Report Number CS-TR-2268.

Shneiderman, B. (1987), Designing the User Interface:
Strategies for Effective Human-Computer Interaction,
Addison-Wesley, Reading, MA.

Stone, M.D. (1987), Touch-Screens for Intuitive Input,
PC Magazine, August, 183-192.

Tennant, R. and Ross, K. (1983), Usable Natural Language
Interfaces Through Menu-Based Natural Language
Understanding, ACM CHI’83 Proceedings, 154-160.

Weisner,S. (1988), A Touch-Only User Interface for a
Medical Monitor, Proceedings of the Human Factors
Society, 435-439.

Welty, C. (1985), Correcting user errors in SQL,
International Journal of Man-Machine Studies V22,
463-477.

