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Multilevel indexes have long been used for accessing records in sorted files. 
Given the access cost at each level, the total cost of retrieving a record from 
the file can be substantially reduced by selecting the proper size of the index 
at each level. Organizations involving a variable number of levels are covered 
and binary searching is compared to sequential searching. 

t .  I N T R O D U C T I O N  

The literature on the organizat ion o f  file structures is largely qualitative, 
rather than quantitative, in nature. A number  o f  books  and survey articles 
give thorough  discussions o f  possible indexed file organizat ion strategies 
(e.g., Refs. 1-4). However ,  the development  o f  techniques for  compar ing  
the efficiency of  two structures or  search strategies for  a part icular  applicat ion 
is poor ly  covered. The goal o f  this paper  is to p romote  a more mathemat ica l  
approach  to file organizat ion analysis. Hopefully,  the reader will profit by 
applying similar techniques to the analysis o f  other  strtictures. 

In  the past  few years several at tempts have been made to develop a 
theory  o f  data  structures. The set-theoretic model  o f  Childs, tS} the relational 
model  o f  Codd,  <6} or  the g r a m m a r  product ion  model  o f  Fleck m are con-  
cerued with the logical relationship a m o n g  data  items and exclude discussions 
o f  implementat ion efficiency. Rosenberg ' s  algebraic analysis o f  da ta  
graphs Cs-l~ is more  useful but  limited by his considerat ion o f  only highly 
uniform structures. The graph-theoret ic  models o f  Hsaio  and Ha ra ry  m} 
and Earley a~} are able to  describe the access paths  and are also useful 

Department of Computer Science, Indiana University, Bloomington, Indiana. 

93 
�9 1974 Plenum Publishing Corporatio.n, 227 West 17th Street, N e w  York, N.Y. 10011. No part of this 
publicaUon may be reproduced, stored m a ~ e v a t  system, or ~ n s t m t t e d ,  in any form or by any means, 
electroruc, mechanical, photocopying, zmcrofilmmg, recording, or otherwise, w2thout writgen permission of  
the publisher. 



94 Shneiderman 

abstractions of implementations. Consequently, they provide useful models 
for analyzing efficiency. 

2. G R A P H - T H E O R E T I C  M O D E L  

The use of graph theory to represent the access paths enables the 
designer to compare the efficiency of several possible structures. Heller and 
Shneiderman Iz3.1~1 developed the formal notions for describing data 
structures as directed graphs called the well-formed list structures (WFLS). 
For  this paper we consider only the unlabeled WFLS's,  which are specified 
as a triple L = (D, E, G), where D is a set of  data nodes, E is a nonnull set of 
entry nodes, and G is a mapping function (G: D u E --~ D) which describes 
the access paths for searching the structures. The entry nodes (squares in 
the figures) represent immediately accessible data items. These might 
correspond to pointers that are available in the processor storage, file names. 
or addresses in the processor storage. All searches must begin at the entry 
nodes and data nodes may not point to entry nodes. The data nodes (circles 
in the figures) contain the information that is sought and may be physically 
implemented as words in the processor storage, tape blocks, or disk regions. 
The graph-theoretic model is a logical view of the data structure for which 
there may be several physical implementations. The data nodes must be 
reachable from the entry nodes, that is, there is at least one directed path 
from at least one of the entry nodes to each of the data nodes. The structure 
must also be connected, in the sense that if the edges were undirected, then 
there would be a path between any two nodes. The notions of reachabilitv 
and connectedness are independent. 

The WFLS model is a formalization of our intuitive notions of what 
data structures should be if they are to be useful in a computer environment. 
To evaluate a structure, the model must be enhanced by atfixing a numerical 
value to each edge indicating the cost (in units of time or money) of traversing 
that edge. A further enhancement, not explored in this paper, would be to 
assign a probability of request for each node. We assume that the i~robability 
of request is the same for each node. For  a given search strategy we can 
evaluate the average search cost and other measures such as the variance or 
worst-case search cost. 

3. I N D E X E D  STRUCTURES W I T H  F IXED N U M B E R  
OF LEVELS 

As a first example, we consider indexed sequential fries. There are one 
or more indexes, at one or more levels, containing a variable number of  
fields each containing the address of  a lower-level index or of  a record. The 
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records are arranged in ascending order by key value. Figure 1 depicts a 
one-level indexed sequential file. Entry node ez is the starting point for 
searches through the index and is used to access a record with a specified 
target key. Entry node e~. is for a sequential search beginning with the first 
record. Figure 2 contains the graph-theoretic description of this structure, 
The index is a one-way list which is searched sequentially until the proper 
range of keys is found, then a search of a sublist of the records is made till the 
target key is matched. The cost of searching a single field of the index is b, 
while the cost of searching a single record of the file is a. The cost of accessing 
the index is c and the cost of entering the file is d. In this case we assume that 
the probability of request for each record in the file is equal and that the 
length of each sublist of records is equal. If there are N records in the file and 
if the length of the index is n, then the length of each sublist of records is N/n. 
If we are searching for a record with a specified target key, we must, on the 
average, access the index, search half of the index, enter the file, and search 

I = (D, E, G) 

D = {• = l...n} , {djl j = I..,N} 

E = {e I , e2} 

Ge I =Ill} 

Ge 2 ~{dll 

{ij+ 1 , d(j_l),(N/n)+l} J < n 
Gij = 

{d(j_l)*(N/n)+ I} ~ = n 

{d j+ I }  j < N 
Gdj ", 

J = N 

Fig. 2 



96 Shneiderman 

half of  a particular sublist of  the file. We assume, of course, that both the 
index and the records are sorted in ascending order by key values. Thus, the 
average search cost ,~ is 

g -~ c -? �89 - -  d -k �89 

The size of  the file N is given, but we can control the size of the index n, 
and thus the size of the sublist of  records that is to be searched. The goal is 
to minimize the search cost by selecting the opt imum value for n. We can 
accomplish this by taking ttie derivative of  S and setting it equal to zero. We 
note that the conversion f rom the discrete to the continuous analysis is 
appropriate since the/ 'unction is reasonably smooth: 

dS/dn  = �89 - -  �89 = 0 

Solving for n, we get 

n = [(a/b)N] z/~ 

The noninteger result can be rounded up to the ceil(n), to account for 
possible additions to the file. 

I f  we consider the case where the entire index and file are kept in the 
high-speed storage, then we can set a = b = c - -  d = 1 and we find that 
opt imum index size is n ---- x/N. I f  the index is kept in the high-speed storage 
but the file is stored on a disk, we migh t se t  a = 100b, in which case the 
opt imum index size is n = 10 x/_N. 

Next, consider a two-level indexed sequential file with access times, as 
indicated in Fig. 3. We assume that the sublists at each level are of  equal 
length, that there is an equal probability of  request for any of the records, and 
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that the records are sorted in ascending order by key value. The average 
search cost is 

S = d. + �89 § dl + �89 § do § �89 

Taking partial derivatives with respect to n 1 and n. and setting to zero, we get 

~g/?n 1 =�89 - -  �89 ) = 0 

6g/On 2 = �89 - -  �89 = 0 

Solving the equations, we get 

nl = (N2a2/bc) I/3, n2 = (Nab~c2) 1/~ 

If all the access times are equal (the case when the entire index and file are in 
the high-speed storage, for example), the results are 

n 1 = N 2/3, n~ ~-  N 1/3 

We can use these results to determine the size of the index and the average 
access time ~. 

The technique can be generalized for a d-level indexed sequential file 
where c~ is the cost of  an access within level i, n~ is the number of nodes at 
level i, and d~ is the cost of going from level i to level i § I. The average 
search cost is 

~ (1 , y _ _ L + d O  

i=0 

with no = N and na+ 1 = 1. We are left with a system of nonlinear equations 

[Og/On~ = 0], i = 1 ..... d 

o r  

1 C i 1 n i_ l c i_  1 
n i§  2 n~ z 

= 0], i = 1 ..... d 

nt = e~ c~ i N a-i+l , i =  1 .... , d  

The foregoing analyses are general and can be modified to reflect 
constraints imposed by hardware considerations, such as fixed size disk 
sectors. The methodology can deal with extremely complex hierarchical file 
strategies. For  instance, in a three-level indexed sequential organization the 

The solution of  this system of equations is 
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level three index might be kept in the high-speed storage, the level two 
indexes on a drum, and the level one indexes on a disk or data cell with the 
file of  records. For a given N the values of  n l ,  n2, and n3 could be determined 
to minimize the access cost. 

4. V A R I A B L E  N U M B E R  O F  LEVELS 

In these examples we have fixed the number of  levels and allowed the 
size of  the indexes to vary. Consider the more complicated case in which 
we fix the size of  the indexes to be the same at each level and make the 
number  of  levels variable (see Fig. 4). This is a reasonable model of  the case 
in which each index is considered as a "bucket ."  The problem is to optimize 
the size k (and therefore the number  of  levels) of  the bucket based on the time 
to access a bucket, a. In the first case we assume a sequential search through 
each bucket and later compare this to the more complicated case where the 
buckets may be searched using the binary search technique. 

I f  the index is to have v levels, then we have 

and 

N = k ~ (1) 

v = (in N)/(ln k) (2) 

I f  the time to access a record from the lowest level index is d, then the average 
search cost is 

g =d+vb+�89 

b 

Fig. 4 
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Table I. Sequential Search of Indexes a 

b/a k v ( N  = 10 5 ) v ( N =  10 6 ) v (N = 107) 

99 

I0 I2.9 4.5 5.4 6.3 
50 37.9 3.2 3.8 4.4 

100 63.5 2.8 3.3 3.9 
500 226.2 2. l 2.5 2.9 

1000 400.6 1.9 2.3 2.7 
i 

= a is the cost of a sequential search step within the same level; b is 
the cost of going to the next level; k is the number of index entries 
per block; and v is the number of levels required for the given value 
of N. 

Tak ing  the der ivat ive  with respect  to k, we find tha t  

k ( l n  k - -  1) = 2b/a 

It is interest ing to  note  that  the  resul t  is i ndependen t  o f  the file size N. 
Brief  cons ide ra t ion  will reveal  the val id i ty  o f  this s i tua t ion;  for  a given N the 

n u m b e r  o f  levels necessary m a y  be de te rmined  f rom (2). Tab le  I gives the 
numerica l  results in some typical  s i tuat ions .  

I f  each o f  the buckets  is to be searched by a b ina ry  search then our  
g raph  mode l  is as in Fig. 5, where each node  is as in Fig. 6. We  assume tha t  
each step o f  a b inary  search costs c and  tha t  the cost  o f  going to the next level 
of  buckets  is b. F o r  the analysis  we assume tha t  each bucke t  conta ins  k fields, 
where k is one less than  a power  of  two. I f  v is the number  of  levels and  N the 

J 

Fig. 5 
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number of records in the file, we again have (1) and (2). The average search 
time is 

[b 2(b + c) 4(b + 2c) 8(b + 3c) 2~(b + re.)] 
$ = d + v  'r ~ +  k + k + ' " +  k " 

= d + ~ -  U ( b + i c )  
i = 0  

where 

It can be shown that 

r = log2(k+ 1)- -1  

• i2 ~ = ( r - -  1) 2 ~+1+2 
i = 1  

Applying the above formula and substituting for v, we get 

S = d +  b l n N  c l n N  [ [ l n ( k +  1) 2 ) ( k +  1 ) + 2 ]  
Ink r kln--------ktt M 2  

Taking the derivative with respect to k and setting the result equal to zero 
yields 

0 = - - b k - - c ( 1  + l n k )  [ (k-+ 1) In(k-+- 1) _ 2 k ]  
In 2 

kc In k[1 + 2 In 2 + ln(k -}- 1)] 
+ In 2 
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Table II .  Binary Search of Indexes ~ 

b/c k v(N = 10 3 ) v(N = l0 n ) ~, (N = 10 7) 

t01 

5 3.3 9.6 11.6 13.5 
10 10.2 5.0 6.0 7.0 
20 99.2 2.5 3.0 3.5 
30 1117.1 1.6 2.0 2.3 
40 13396.0 1.2 1.4 1.7 

c is the cost of  a binary search step within the same level; b is the cost of 
going to the next level; k is the number of index entries per block; and 
v is the number of levels required for the given value of N. 

This unwieldy result can be solved numerically~ Typical  values are shown in 

Table  II. Notice tha t  the cost for one step of a b inary  search, c, is larger than  

the cost of one step of a l inear search, a. The ratio of a to c must  be kept  in 

mind  in deciding which technique to adopt .  Compar ing  Tables I and  II again 

demonstra tes  the overwhelming advantage of b inary  searching. 

Assuming  a system based on  auxiliary storage devices, the model  can be 
refined fur ther  by taking into account  the higher cost associated with a larger 

bucket  size. The time to go one level lower in the index is b 4- ek, where b is 

the seek cost (or latency) and  e is transfer rate per field. Thus,  larger values of 

k yield larger cost values. 

For  the sequential  search we now get 

k(ln k - -  I) = 2b/(2e 4- a) 

Table I I I .  Sequential Search of Indexes Including Transfer 
Rate Cost a 

b/a k v(N= 10*) v ( N =  10 6 ) v ( N =  10 7 ) 

10 7.0 5.9 7.1 8.3 
50 17.8 4.0 4.8 5.6 

100 28.4 3.4 4.1 4.8 
500 94.1 2.5 3.0 3.5 

1000 162.9 2.3 2.7 3.2 
5000 614.8 1.8 2.2 " 2.5 

" Assume a = e (single field search cost = single field transfer cost). 
a is the cost of  a sequential search step within the same level; b is the 
cost o f  going to the next level; k is the number of  index entries per 
block; and v is the number of levels required for the given value of N. 
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Table IV. 

b/c 

Shneiderman 

Binary Search of Indexes Including Transfer Rate Cost < 

k v(N = 10 5 ) v(N = l0 s ) v(N = 10 7 ) 

10 6.3 6.3 7.5 8.8 
50 44.2 3.0 3.6 4.3 

100 89.5 2.6 3.1 3.6 
500 396.4 1.9 2.3 2.7 

1000 736.0 1.7 2.1 2.4 
5000 3089.8 1.4 1.7 2.0 

Assume e = c/5 (single field transfer cost = I/5 single field search 
cost), c is the cost of a binary search step within the same level; b is the 
cost of going !o the next level; k is the number of index entries per block; 
and v is the number of levels required for the given valueof N. 

and for  the binary search the new result is 

0 = - -  b k  4-  e k 2 ( l n k  - -  1) --  c(1 4- I n k )  [ ( k  
+ 1) ln(k 4- 1) 

In 2 ' 

k c  In k[1 § 2 In 2 4- ln(k 4- 1)] 
4- In 2 

- 2k] 

Tables I I I  and [V give typical values for sequential search and binary 
search when the transfer rate is considered as a factor. Reasonable values for 
b, c, and e were chosen and then the optimal size k was computed.  

5. C O N C L U S I O N  

Although the noninteger results must  be rounded to obtain integer values, 
the method  of  analysis does produce reasonable results on which to base the 
implementat ion o f  an indexed file system. The costs o f  performing a sequential 
search or  a binary search must  be obtained th rough  software measurement.  
The cost o f  performing the various accesses on differing hardware  devices 
must  also be determined. Having obtained these fixed parameters,  it is 
possible to determine reasonably opt imal  estimates o f  the variable parameters,  
such as the number  o f  index entries at each level or  the bucket  size. 

Similar techniques can be adapted to study numerous  indexed file 
organizat ion problems, such as: the effect o f  addit ions or  deletions on file 
access cost, the increase in efficiency obtained by batching requests in 
ascending order  so that  not  all searches start f rom an entry node  but  use 
indexes accessed in the previous search, and the opt imizat ion o f  index 
structures and searches when the probabil i ty o f  request is no t  equal fo r  all 
records. 
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