
SIGPLAN Notices

	

46

	

1975 July

Cognitive Psychology and Programming Language Desig n

Ben Shneiderma n
Indiana University

Computer Science Department
101 Lindley Hal l

Bloomington, IN 47401

Researchers and language developers appear to have finally begun to accep t
the importance of the human element in the programming process . However, at the
same time, language designers are not studying the relevant disciplines to gai n
their background, are not using the appropriate techniques to assess the validit y
of their work and are still focused on computing rather than programming .

As early as 1965 Dijkstra had acknowledged that programming was a purel y
human activity and that languages had to be designed for ease of use by people .
The utility of this decomposition of human-centered concerns from the machine -
centered efficiency issues should be obvious to any student of "structure d
programming", but the orientation of language designers is still often geared t o
ease of implementation and efficiency of object code . Weinberg's text, The
Psychology of Computer Programming was a step in the right direction, but thos e
doing research in programming have only recently begun to take the hint that the y
should be studying the psychological literature . The psychologists quickl y
recognized the advantages of using computers to conduct their experiments and d o
their statistics, but computer scientists are only beginning to grasp the importanc e
of applying psychology to the study of programming .

The cognitive psychologists have been analyzing human thought processes ,
learning, memory, perception and problem solving for several decades and hav e
developed the experimental techniques necessary for such research . Much of thi s
work is directly applicable and relevant to the study of programming . After all ,
programming and programming language design is the study of problem solving, bu t
at a level unexplored by psychologists . Program composition, comprehension ,
debugging and modification are complex tasks which are more sophisticated tha n
the relatively simple task studied by psychologists . Still, controlle d
psychological experiments which minimize the number of variables and focus o n
precise issues can be extremely helpful in guiding the programming languag e
development process[l] .

The participants in Tony Wasserman's session on "Issues in Programmin g
Language Design" each independently had some notion of the programmer as th e
intermediary between the problem and the program (as expressed in the syntax o f
a particular language) . They properly focused on the transformation that th e
programmer effects from the problem to the program and generally avoided question s
of parsing ease, efficiency of execution, or character sets . Charles T . Zah n
coined the phrase "conceptual distance" to describe the remoteness of the proble m
from the program, but gave us no clues on how to measure the distance or even a
suggestion of whether we needed a ruler, laser rangefinder, thermometer, o r
analytic balance . Jack Dennis commented that "the closeness of the language to



IGPLAN Notices

	

47

	

1975 Jul y

the problem domain affects the ease with which the programmer may express a
problem solution", but offered no ideas on how to gauge "closeness" . Tim Standis h
remarked that paraphrase was an "easy" extension to a language for users, whil e
orthophrase and metaphrase were "hard" extensions, but his scales were equall y
intuitionistic and vague . Tony Wasserman got closest to acknowledging the huma n
factors issues by indicating that the goal of a good programming language was t o
minimize the programmer's "cognitive stress" during the transformation from proble m
to program .

These remarks indicate that the speakers recognize the importance of th e
cognitive issues in program development but programming language researcher s
have much to do in this direction . A first step would be to develop a practica l
cognitive model of the programming process, which would be verified by a progra m
of experimental testing . The immediate goal of such research would be th e
improvement of programming languages, the development of sound standards fo r
stylistic issues (such as mnemonic variable names, commenting, indentation, etc . )
and the validation or refutation of the multiplicity of proposed design techniques .
These studies could be conducted as controlled comparative experiments, b y
introspective protocol analysis or by the non-interfering case study approach . A
number of researchers, including myself, have begun such studies . Longer range goal s
would include the development of accurate, reliable programmer aptitude tests ,
programmer ability measures, the improvement of the teaching/learning or programming ,
problem and program complexity measures and recommendations for entirely ne w
programming languages (for example, facilities for the casual user of compute r
utilities) . These experimental techniques become particularly important when
developing facilities for the naive user whose experience and background ar e
radically different from that of the programming language designer .

In summary, programming language designers can no longer be content with a
thorough knowledge of computer science, but must become familiar with the idea s
and techniques of the cognitive psychologist . Communication between compute r
scientists and cognitive psychologists will be helpful in the development of th e
next generation of programming languages . It will also facilitate more widesprea d
computer literacy .

Referenc e

[1] Shneiderman, B . "Experimental Testing in Programming Languages, Stylisti c
Considerations and Design Techniques," Proceedings of the 1975 NCC ,
pp . 653-656 .


