SIGPLAN Notices 46 1975 July

Cognitive Psychology and Programming Language Design

Ben Shneiderman
Indiana University
Computer Science Department
101 Lindley Hall

Bloomington, IN 47401

Researchers and language developers appear to have finally begun to accept
the importance of the human element in the programming process. However, at the
same time, language designers are not studying the relevant disciplines to gain
their background, are not using the appropriate techniques to assess the validity
of their work and are still focused on computing rather than programming.

As early as 1965 Dijkstra had acknowledged that programming was a purely
human activity and that languages had to be designed for ease of use by people.
The utility of this decomposition of human-centered concerns from the machine-
centered efficiency issues should be obvious to any student of "structured
programming”, but the orientation of language designers is still often geared to
ease of implementation and efficiency of object code. Weinberg's text, The
Psychology of Computer Programming was a step in the right direction, but those
doing research in programming have only recently begun to take the hint that they
should be studying the psychological Titerature. The psychologists quickly
recognized the advantages of using computers to conduct their experiments and do
their statistics, but computer scientists are only beginning to grasp the importance
of applying psychology to the study of programming.

The cognitive psychologists have been analyzing human thought processes,
learning, memory, perception and problem solving for several decades and have
developed the experimental techniques necessary for such research. Much of this
work 1s directly applicable and relevant to the study of programming. After all,
programming and programming language design is the study of problem solving, but
at a level unexplored by psychologists. Program composition, comprehension,
debugging and modification are complex tasks which are more sophisticated than
the relatively simple task studied by psychologists. Still, controlled
psychological experiments which minimize the number of variables and focus on
precise issues can be_extremely helpful in guiding the programming language
development process[1].

The participants in Tony Wasserman's session on "Issues in Programming
Language Design" each independently had some notion of the programmer as the
intermediary between the problem and the program (as expressed in the syntax of
a particular language). They properly focused on the transformation that the
programmer effects from the problem to the program and generally avoided questions
of parsing ease, efficiency of execution, or character sets. Charles T. Zahn
coined the phrase "conceptual distance" to describe the remoteness of the problem
from the program, but gave us no clues on how to measure the distance or even a
suggestion of whether we needed a ruler, laser rangefinder, thermometer, or
anatytic balance. Jack Dennis commented that "the closeness of the language to



IGPLAN Notices 47 1975 July

the problem domain affects the ease with which the programmer may express a

problem solution", but offered no ideas on how to gauge "closeness". Tim Standish
remarked that paraphrase was an "easy" extension to a language for users, while
orthophrase and metaphrase were "hard" extensions, but his scales were equally
intuitionistic and vague. Tony Wasserman got closest to acknowledging the human
factors issues by indicating that the goal of a good programming Tlanguage was to
minimize the programmer's "cognitive stress" during the transformation from problem
to program.

These remarks indicate that the speakers recognize the importance of the
cognitive issues in program development but programming language researchers
have much to do in this direction. A first step would be to develop a practical
cognitive model of the programming process, which would be verified by a program
of experimental testing. The immediate goal of such research would be the
improvement of programming languages, the development of sound standards for
stylistic issues (such as mnemonic variable names, commenting, indentation, etc.)
and the validation or refutation of the multiplicity of proposed design techniques.
These studies could be conducted as controlled comparative experiments, by
introspective protocol analysis or by the non-interfering case study approach. A
number of researchers, including myself, have begun such studies. Longer range goals
would include the development of accurate, reliable programmer aptitude tests,
programmer ability measures, the improvement of the teaching/learning or programming,
problem and program complexity measures and recommendations for entirely new
programming languages (for example, facilities for the casual user of computer
utilities). These experimental techniques become particularly important when
developing facilities for the naive user whose experience and background are
radically different from that of the programming language designer.

In summary, programming language designers can no longer be content with a
thorough knowledge of computer science, but must become familiar with the ideas
and techniques of the cognitive psychologist. Communication between computer
scientists and cognitive psychologists will be helpful in the development of the
next generation of programming languages. It will also facilitate more widespread
computer literacy.

Reference
[1] Shneiderman, B. "Experimental Testing in Programming Languages, Stylistic

Considerations and Design Techniques," Proceedings of the 1975 NCC,
pp. 653-656.




