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The technique of batching searches has been ignored in the context of disk based online data 
retrieval systems. This paper suggests that batching be reconsidered for such systems since 
the potential reduct.ion in processor demand may actually reduce response time. An analysis 
with sample numerical results and algorithms is presented. 
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1. INTRODUCTION 

The technique of performing search and update requests on a file of records pre- 
dates the existence of computers. Librarians and commercial tabulating equipment 
record keepers recognized the obvious advantages of accumulating a number of 
requests before performing a single pass through the data records during which all 
requests were satisfied. It was natural for programmers of business data processing 
applications to adopt this strategy for the periodic updating of a key sorted “old 
master tape file” from a key sorted “transaction tape file” to produce a “new master 
tape file.” The impossibility of performing insertions and the difficulty of perform- 
ing in-place updates in sequential tape files only reinforced the utility of the batch 
processing concept. 

With the proliferation of disk based online systems and the demand for real-time 
response for individual retrievals, the use of batch processing has decreased. A few 
texts provide a general discussion of batching [l, 21, and Knuth’s encyclopedic 
review of search techniques [3] gives a cursory treatment. A few other sources rec- 
ognize the importance of batching [4-61, but there is no precise analysis of the bcne- 
fits of batching. Early research assumed processing was always performed in batches 
while later research ignored this method altogether. 

We present arguments for the reconsideration of batching, even in online real- 
time retrieval systems, and support these arguments with algorithms and mathe- 
matical analysis which demonstrate the practicality of batched retrievals in certain 
circumstances. 
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Developers of online retrieval systems argued that short response time was the 
primary goal and that each query should be dealt with as quickly as possible, even 
at the expense of additional memory requirements and inefficient retrieval tech- 
niques. This strategy eventually becomes counterproductive since the inefficiency 
of individual retrievals places a higher demand on the processor (or processors) and 
thereby potentially increases the response time for all queries. By using a somewhat 
more elapsed-time consuming but more machine efficient algorithm,, i.e. batching 
queries, it may be possible to reduce the average response time for the entire batch 
of queries. As a crude example, imagine that the time to respond to a single query 
for a serial processing algorithm is 1 sec. Should ten queries arrive at a processor 
within the first second, the last of the responses will be removed from the queue 
and completed after 10 set for an average retrieval time of approximately 5.5 sec. 
If the processor waits, say 1 see, ten queries have been made before beginning the 
retrievals, and if the batch retrieval time is only 3 set, then al1 the responses will be 
completed no later than 4 set after the queries were entered, thus producing an 
improved average response time and reducing the demand on the processor. 

The validity of this hypothetical situation must be ascertained, but it seems 
reasonable that if processor costs per query can be reduced system performance 
will be improved. The strength of our argument is increased by the appearance of 
very large online mass storage systems (10s-1012 bytes) which have relatively long 
access times of up to 15 sec. If the number of accesses can be reduced, then there 
is a possibility of a substantial reduction in response time and an improvement in 
system performance. 

While the hardware configuration strongly influences system characteristics, the 
data structures also play a central role. Of course, batching is most advantageous 
in sequential files, which are not the usual fundamental structure for online systems. 
However, sequential searches are often performed during searches of more complex 
structures, such as index blocks or hash table collision chains. Batching can also be 
used advantageously in searching tree structured files and multilevel indexes [7, 81. 
In these cases, the upper levels need be traversed only once for the batch of queries, 
thereby reducing the average search cost for the batch. 

For the remainder of this paper we will assume that files consist of records which 
are organized on the basis of a key unique to each record. We assume that there 
exists a linear lexical ordering of the keys. Queries, which are collected into a batch 
of size k, are made by simply specifying a key value. Key values may appear more 
than once in a batch. For simplicity of analysis we will assume that the key values 
in the batch are sorted and that the cost of sorting is negligible. This assumption is 
based on the fact that k is small (say 10 to 100) and that sorting of lc queries can 
be accomplished in the high speed storage with no disk accesses. The search cost 
metric is the number of accesses required, not the number of comparisons. 

Section 2 contains the analysis for sequential searches, and Section 3 the analysis 
for multiway trees. Section 4 contains a summary and suggestions for further work. 

2. SEQUENTIAL SEARCHES 

In the following analysis we assume that retrieval requests are made randomly for 
records in a sorted sequential file of N records, so that each record is equally likely 
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to be requested. Then if a sequential search is performed, the search length or 
“cost” is a random numerical quantity. We will use the following fundamental 
formula for the mean or expected value of a bounded random integral quantity X. 

mean = E(X) = c zProb( X = z}. (1) 
--m<x<m 

A partial summation argument shows that also 

E(X) = c Prob(X >_ z). 
z E range of x 

(2) 

For example, if X denotes the random length of a simple sequential search, then 

Prob[X 2 j) = (N - j + 1)/N 

and hence 

One additional formula for E(X) involves condit.ional means. If there are two 
random quantities, X, Y (not necessarily independent!), then the occurrence of 
the event Y = c determines new probabilities for X since knowledge of Y may 
furnish additional information. Using the new probabilities in (1) we obtain the 
conditional mean of X given that Y = c; this quantity will be denoted by E(X ( Y = 
c). The following formula holds: 

E(X) = -mz<m E(X 1 Y = c)Prob( Y = c). (3) 

Our objective is to compute the expected cost savings in batching k requests as 
opposed to performing k sequential searches. Instead of computing each expected 
cost separately, we consider the difference between the number of accesses required 
for k batched random requests and k sequential searches. The expected value of 
this random quantity will be denoted by S(k, N), the average savings from batching 
k requests against a sequential file of iV records. Clearly, 

S(0, N) = 0, X(1, N) = 0, S(k, 1) = k - 1. 

Suppose k requests are distributed randomly among N + 1 keys. We introduce the 
random quantity Y = # requests for key 1. Then an elementary combinatorial 
argument gives 

Prob(Y = j) = ($)(Nk-‘/(N + l)k). 

Also, since Y = j is the condition that k - j requests are distributed among the 
keys 2, . . . , N + 1, we have E(savings 1 Y = j) = Ic - 1 + X(k - j, N). Hence, 
from (3) we obtain the recursive formula 

S(k, N + 1) = 2 (k - 1 + S(k - j, N))(f)(N%V + OkI, 

which reduces to 

S(k, N + 1) = U/W + Uk) gl S(r, NW(:) + k - 1. 
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One may verify directly (see Appendix) that the solution of (4) is 

S(b N) = w + l)(@ - 1) + r$l ww. (5) 

An accurate closed form estimate is obtained by estimating the last expression in (5). 
Since 

l/(k + 1) = 1’2 cl 2 < (l/N) 5 (r/N)” < I’2 dX + l/N = l/(k + 1) + l/N, 
r=l 

we have 

0 < S(k, iv) - [(gc - l)(N + 1) + N/(k + l)] < 1. 

A lower estimate of the average relative savings of batching k requests over k 
sequential searches is then 

(($k - l)(N + 1) + N/G + l)>/(MN + 1)) 

= 1 - 2/G + 1) - 2/(k(k + 1)W + 1)). 

Interpretation of these results leads to some interesting points. Clearly when k 
is large this analysis yields approximately the same results as the cruder technique, 
which assumes that a batched search requires the entire sequential file be scanned. 
For small batch size this analysis reveals that the entire file need not be scanned 
to satisfy the batch of queries. For a batch size of two, approximately the first 
two-thirds of the file needs to be traversed; for a batch size of three, approximately 
the first three-fourths of the file needs to be traversed. 

For an unsorted sequential file the average batched search length is the same as 
for a sorted sequential file if we assume that all keys in the batch of queries occur 
in the file. Should there be any unsuccessful queries, then the entire file must be 
scanned and the analysis is trivial. In the case of unequal request probabilities or 
of probabilistic sequential search the analysis would have to be repeated beginning 
from (3). 

Table I shows the number of physical accesses saved and the percentage savings 
of batching as opposed to multiple sequential searches. 

Table I. Average Number of Accesses Saved by Batching Requests 
in a Sequential File and the Percentage Saving 

Batch 
size 

2 
5 

10 
20 
50 

100 

Number of records in sequential file 

100 1000 10000 

33.3 33.0 333.3 33.3 3333.3 33.3 
168.1 66.6 1668.2 66.6 16668.2 66.6 
413.1 81.8 4094.9 81.8 40913.1 81.8 
913.8 90.5 9056.6 90.5 90485.2 90.5 

2426.0 96.1 24043.6 96.1 240220.1 96.1 
4950.0 98.0 49658.9 98.0 490148.0 98.0 
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3. BATCHING IN I’-ARY SEARCH TREES 

We assume that retrieval requests are made randomly from a tree with 1 levels 
where each node contains j- 1 keys and j pointers. We also assume that the search 
cost within a node is zero. The expected cost savings from batching k requests 
against a j-ary tree with I levels is denoted by Si(k, 2). Since j will be fixed in the 
following discussion, we omit the subscript. 

We consider the expected cost saving due to those batch requests which appear 
in the subtree determined by the first node on level 1 (see Figure l), where the tree 
has Z+l levels. Given that there are n requests in this subtree, the expected savings 
is X(n, I). The number of keys in a j-ary tree with 1 levels is given by x:1\ 
(j - l)? = j” - 1. Therefore, 

Prob(a request falls within first subtree) = (j” - l)/(j”+’ - 1) = PL , 

and so 

Prob(exactly n requests fall within first subtree) = (kn)Pln(l - PJk-“. 

Then from (3), the expected cost savings due to the batched requests in the first 
subtree is given by 

Due to the symmetry of the tree, each subtree at level 1 has the same expected 
savings and thus we obtain the recursive equation 

Sj(k, I + 1) = k - 1 + j $I i$(n, z)(:MI”(l - Pl)? 

Clearly Xj(l, 1) = 0 and Sj(lc, 1) = Ic - 1. 
The algorithms for searching j-ary trees are more challenging. An elegant algo- 

rithm for batched searching of binary trees draws on the partitioning scheme used 
in quicksorting [9]. The root of the tree is used to partition the unsorted array of 
key requests so that the left-hand portion of the array contains values less than the 
root and the right-hand portion values greater than the root. Then by recurring 
down the left side of the tree with the left-hand portion of the array and down the 
right side of the tree with the right-hand portion of the array, the search can be 
carried out completely. As key requests are located in the tree, appropriate infor- 
mation can be returned. This algorithm can be generalized for j-ary trees. 

level 

level 

Fig. 1 
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Table II. Average Number of Accesses Saved by Batching Requests Against a 
Binary Tree and the Percentage Savings 

I 

Batch 
Number of levels in binary tree 

size 
2 

I 
5 10 

- 

2 1.2 36.6 1.8 21.2 2.0 11.0 
3 2.6 51.9 4.0 32.1 4.6 17.1 
5 5.6 6’7.2 9.4 45.1 11.2 24.8 

10 13.7 82.2 25.3 60.9 31.8 35.3 
20 30.3 91.0 61.6 74.0 82.2 45.6 
50 80.3 96.4 180.2 86.6 265.0 58.8 

- 

20 

2.0 5.3 
4.6 8.2 

11.3 11.9 
32.4 17.0 
84.5 22.2 

276.9 29.1 

Table III. Average Number of Accesses Saved by Batching Requests Against 
an 11-ary Tree and the Percentage Savings 

Batch size 

2 
3 
5 

10 
20 
50 

Number of levels in 11-ary tree 

2 3 4 5 

1.1 28.1 1.1 18.9 1.1 14.1 1.1 11.2 
2.2 38.7 2.3 26.2 2.3 19.6 2.3 15.6 
4.7 49.1 4.9 33.7 4.9 25.2 4.9 20.1 

11.8 61.4 12.5 43.1 12.6 32.4 12.6 25.8 
28.3 73.7 30.1 53.0 31.2 40.0 31.3 31.9 
84.0 87.6 95.2 65.6 97.6 50.0 97.9 40.0 

Table IV. Average Number of Accesses Saved by Batching Requests 
Against a lOl-ary Tree and the Percentage Savings, 

Assuming Root Node Is Kept in Storage 
I 
I Number of levels in lOl-ary tree 

Batch size 
2 3 

10 .4 2.1 .4 1.4 
50 10.2 10.3 10.5 7.0 

100 35.7 18.0 36.8 12.3 
150 70.6 23.6 72.8 16.2 

Tables II and III show the numbers of accesses saved and the percentage savings 
for batched searches as opposed to multiple serial searches, for binary and 11-ary 
trees, respectively. 

In any realistic implementation of a tree structured file, the root node would 
usually be kept in the high speed storage at all times, thereby reducing the advan- 
tage of batched searching. This implementation assumption would eliminate the 
k-l term in (6) and reduce the values in Tables II and III. Table IV shows the 
number of accesses saved and the percentage savings for a lOl-ary tree, assuming 
that the root node is always in the high speed storage. 

As the number of levels 1 in the tree increases, the number of accesses increases, 
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since the initial shared paths are longer, but the percentage saved decreases. As 
the degree of the tree j increases, the benefit of batched searching decreases since 
there is a smaller probability that two queries will follow the same path in the tree. 
As the batch size k increases the advantage of batched searching increases. 

If the probabilities of request for the nodes are not equal, then more searches 
will be concentrated in one portion of the tree and batched searching will be more 
appealing. The equal probability of request assumption is the least favorable en- 
vironment for batched searching. 

4. SUMMARY 

Batching of search or update requests can produce substantial savings over mul- 
tiple serial searches when the number of accesses is the criterion for performance. 
Sequential files and tree structured files provide the most obvious cases for analysis, 
but other data structures should be studied as well. Although insertions can clearly 
be batched for sequential files, tree structured files present a greater challenge when 
insertion is considered. This is particularly true in the case of B-trees where the 
node splitting strategy complicates the problem. 

This paper focuses on complete trees where each node requires a disk access. We 
also assume that each key is equally likely to be requested. Additional analyses are 
required for arbitrary j-ary trees, for the case of nonequal request probabilities and 
for other storage strategies. 

It would be useful to analyze batched searching for structures which are main- 
tained entirely in the high speed storage. In this case the cost should be estimated 
by the number of comparisons required. Batching requests against a binary searched 
array of keys would be especially important since this strategy is so frequently 
used. 

The batching of requests can be generalized to other searchable structures such 
.as digital trees, digital tries, hash tables, etc. Another application is in the batching 
of substring match requests against a search string. This idea has been applied by 
Aho and Corasick [lo] to scan journal article titles for occurrence of any one of a 
number of keywords. 

APPENDIX 

A verification that the solution of (4) is 

S(k, N) = (N + l)(gc - 1) t g (n/Av 

The formula clearly holds when N = 1 or k = 1. The substitution of this expression 
into t.he right-hand side of (4) gives 

(W + 1)/W + l>? 2 (:)[W’ - N’l + (W + U/W + OkI 2 (:I &+ k - 1. 

From the identity (1 + a)” = X:=0 (:)a’, we obtain 

& (:)rd = a $(l + a)” = ak(1 + a)? 
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The expression in (4) may then be written as 

(l/(N + l)“-‘>[$kN(l+ NY - (1 + N)L + 11+ (l/W + 1)‘“) 5 2 m + k - 1 
n=l r=l 

= +kN - (N + 1) + (l/(N + l)“-‘) + ll(N + 1)” $ [(l + n)” - 11 + k - 1 

= $k(N + 2) - N - 2 + l/(N + l)k-’ + (l/O’ + Uk) go (1 + 4” 

- l/(N + 1)” - N/(N + l)k 

= W + 2)Gk - 1) + U/W + l)? go (1 + 4”. 
Thus the formula is valid. 
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