EVALUATING INTRODUCTORY PROGRAMMING TEXTBOOKS:
A GUIDE FOR STUDENTS, INSTRUCTORS, AUTHORS AND PUBLISHERS

Ben Shneiderman

Information Systems Management
University of Maryland
College Park, MD 20742

My father counseled me not to give advice to
others. Inspite of that admonition, I have an
irrepressible desire to make some highly sub-
Jective, potentially pompous remarks about
introductory programming language textbooks.

During the past nine years I have evaluated
dozens of manuscripts for eight publishers and
hundreds of books for teaching term-length
~introductory courses in FORTRAN, BASIC, PL/I,
PASCAL, COBOL and assembly languages. 1 have co-
authored two FORTRAN texts and developed two
independent study guides to programming. Each
time I see a text, I make judgments by reacting
to the material, rather than by comparing the
material to a pre-determined set of criteria.

In order to provide a "structured" review process
(no computer-science oriented paper is complete
without a reference to "structure"), I offer

the following criteria for evaluating texts.

This 1ist is far from complete, but it is a
beginning.

I. Basic Pedagogic Issues

Good sequencing of material - An acceptable
text must present the material in an orderly
way which is understandable to students.
Easy material should be presented first,
more complex material later. This obvious
rule is violated by a surprising number

of texts. More subtle violations are
"forward references" to concepts not yet
discussed and "invalid backward references"
to material or terminology not described
earlier. Ideas developed in Chapter X
should be used in Chapter x + 1.

Uniform progression - Each chapter should
have approximately the same amount of
material of equal difficulty. If, after
several easy chapters, students are hit
with extremely difficult material, they may
not realize the change and fail to invest
additional effort, thereby producing
frustration and anxiety.

Uniform technical level - Authors who attempt
to capture too wide an audience produce
confusing schizophrenic texts by laboriously
explaining the binary number system or
exponentiation in early chapters and using
sophisticated numerical analysis examples

56

or context free grammar productions in

later chapters. A text should focus on a
single, definable audience and be consistent
in technical level.

From semantics to syntax - Even though
introductory programming students concentrate
on syntactic details, the text should
attempt to present the semantics of
operations first, then the syntax. Texts
whose chapter titles are "The IF statement"
or "The PERFORM statement"--instead of
"Decision making" or "Program Modularity"
provide the wrong emphasis. Students must
be taught problem solving first - then
coding.

Page-one overkill - Too many introductory
texts begin with a moderate example of a
program and then say "Don't worry if you
don't understand all of this program, we're
just trying to show a sample"” make my angry.
Most introductory students are a bit worried
about computers and this kind of opening
really scares them off. The first program
should be completely comprehensible:

Pring "HELLO" or sum two numbers.

Writing style - While most authors can
produce grammatically correct prose, the
quality of writing in introductory texts is
atrocious. My favorite example is a text
by one of computer science's brightest
young men which used "let us note that"
eitht times on one page. Other nasties are
the excessive use of false connectives such
as "however", "thus", "therefore", "it is
clear that" and "having examined". Another
bad habit is the frequent use of "many",
"several”, "usually", "often", "most", and
"sometimes". It's shocking that algorith-
mically oriented thinkers can write such
fuzzy prose.

Advance organizers - Educational psycholigists
have clearly demonstrated the advantage of
having chapter introductions which attempt

to describe the forthcoming material in terms
which students already know. This organizes
their reading and establishes expectations
for their learning. Every chapter should
begin with an advance organizer.




IT.

Chapter summaries ~ A brief synopsis of the
chapter highlights emphasizes important issues
and reminds students of what facts they should
have acquired. These are different from

the advance organizers in style and function.

Example programs - There should be numerous
complete programs in the text. It is not
enough to have program fragments distributed
throughout the chapter - complete programs
should be shown.

Program output - Novice programmers do

not know what to expect as the output of

the programs in the text. You must show
them explicitly. I was shocked to find that
several introductory texts never showed
output from the example programs that were
presented.

Well motivated examples - Every example
should be reasonable and have some clear
application. Examples such as A =B + C or
PUT LIST BRTX, TRTLLS, X567(ITH), MMMM; are
useless. Every opportunity should be used

to show students that programming fits in
with their other courses. They will under-
stand the examples better, pay more attention
and become more motivated.

Good problems - The problems at the end of
the chapter provide another opportunity to
demonstrate to students that programming is
relevant to other courses and that computers
can be used to solve useful- problems.

Embedded problems - Short simple problems
should be embedded in the text. This gives
students an opportunity to try out their new
knowledge and it provides positive reinforce-
ment to their learning. Answers should be
provided.

Incorrect syntax should be isolated -
Because of their orientation towards
syntax rather than semantics, many authors
do not resist the temptation to show
incorrect syntax immediately after showing
correct syntax. Students will tend to
remember the incorrect syntax as often as
the correct syntax. Incorrect syntax and
other hints about debugging should be shown
at the end of each chapter, if they are
shown at all. French teachers teach only
correct syntax and correct errors later.

Presentation Issues

Line printer output - authors who include
output from a line printer or terminal
should make sure that the material is
readable. The printer should be aligned and
a new ribbon inserted. If the print is
still too light, arrange to have the printer
overprint three times.

Typeset programs - If programs are set by the
publisher, a typefont which has uniform
spacing should be used. Texts which use
variable spacing typefonts for showing pro-
grams are confusing to students and prevent

57

I1I.

an adequate discussion of spacing, indenting
and general program format issues. If sample
output is shown for programs, uniform

spacing is again essential to teach proper
formatting.

Line printer photo-offset - The availability
of text editors has tempted many authors

to produce texts on-line. Using line printer
output directly as input to photo-offsetting
results in an unpleasant book with unfamiliar
typefonts. Authors may feel comfortable

with this kind of a text, but novice

students find it one more anxiety producing
barrier. The extra cost and time of type-
setting is worth the effort for introductory
students.

I1lustrations - Introductory texts should
make the material appealing. One way of
producing a more friendly text is to create
pleasant graphics at each chapter intro-
duction. Static photos of computer hardware
are chilling, but people oriented photos or
drawings can help. Use diagrams to illustrate
the material. A picture is worth a thousand
words.

Supplementary Material

Language Reference Guide - A useful feature
is a thorough, precise and concise review
of the language. A pedagogically appealing
text may not be the best for reference
purposes: by creating a reference guide to
the language the book becomes useful for
debugging. Backward pointers to the text
might be useful.

Answers to questions and problems - A subset
of the questions and problems should be
answered in the back of the text. This
gives the author an opportunity to include
additional complete programs with output.

Comparison of compiler features - The
syntactic differences and implementation
details of several popular compilers for
the language might be given.

Keypunch guide or terminal introduction - A
quick introduction to the keypunch or to
terminals might be appropriate. If the
programming environment is anticipated, an
introduction to the text editor would be
worthwhile.

QOperating system control cards - Sample job
streams would help students in preparing
their assignments. If the language is
available through many systems, three or
four of the more popular approaches could
be shown.

Diagnostics - A Tist of diagnostic messages
produced by the compiler could be given.
This is essential if the messages from the
compiler are good.

Index - A good index is an important asset
to a text. Indexes are usually produced in




the last minute when authors are sick and
tired of proofing; however, effort invested
at this point pays off handsomely. Find a
good friend or pay somebody to assist in
index preparation.

58



