
EVALUATING INTRODUCTORY PROGRAMMING TEXTBOOKS:
A GUIDE FOR STUDENTS, INSTRUCTORS, AUTHORS AND PUBLISHERS

Ben Shneiderman
Information Systems Management

Un ivers i t y of Maryland
College Park, MD 20742

My fa ther counseled me not to give advice to
others. Insp i te of that admonition, I have an
i r rep ress ib le desire to make some h igh ly sub-
j e c t i v e , p o t e n t i a l l y pompous remarks about
in t roduc to ry programming language textbooks.

During the past nine years I have evaluated
dozens of manuscripts for e ight publ ishers and
hundreds of books fo r teaching term-length

i n t r o d u c t o r y courses in FORTRAN, BASIC, PL/ I ,
PASCAL, COBOL and assembly languages. I have co-
authored two FORTRAN texts and developed two
independent study guides to programming. Each
time I see a t ex t , I make judgments by react ing
to the mater ia l , rather than by comparing the
material to a pre-determined set of c r i t e r i a .
In order to provide a "s t ruc tured" review process
(no computer-science or iented paper is complete
wi thout a reference to " s t r uc tu re ") , I o f f e r
the fo l low ing c r i t e r i a fo r evaluat ing tex ts .
This l i s t is fa r from complete, but i t is a
beginning.

I . Basic Pedagogic Issues

Good sequencing of material - An acceptable
tex t must present the material in an order ly
way which is understandable to students.
Easy material should be presented f i r s t ,
more complex mater ial l a te r . This obvious
ru le is v io la ted by a surpr is ing number
of tex ts . More subt le v i o l a t i ons are
"forward references" to concepts not yet
discussed and " i n v a l i d backward references"
to mater ial or terminology not described
e a r l i e r . Ideas developed in Chapter X
should be used in Chapter X + I .

Uniform progression - Each chapter should
have approximately the same amount of
mater ial of equal d i f f i c u l t y . I f , a f t e r
several easy chapters, students are h i t
w i th extremely d i f f i c u l t mater ia l , they may
not rea l i ze the change and f a i l to invest
add i t iona l e f f o r t , thereby producing
f r u s t r a t i o n and anx ie ty .

Uniform technical level - Authors who attempt
to capture too wide an audience produce
confusing schizophrenic texts by labor ious ly
exp la in ing the binary number system or
exponent iat ion in ear ly chapters and using
sophis t icated numerical analysis examples

or context free grammar productions in
l a t e r chapters. A tex t should focus on a
s ing le , def inable audience and be consis tent
in technical l eve l .

From semantics to syntax - Even though
in t roduc to ry programming students concentrate
on syn tac t i c de ta i l s , the t ex t should
attempt to present the semantics of
operations f i r s t , then the syntax. Texts
whosechapter t i t l e s are "The IF statement"
or "The PERFORM statement"- - instead of
"Decision making" or "Program Modular i ty"
provide the wrong emphasis. Students must
be taught problem solv ing f i r s t - then
coding.

Page-one o v e r k i l l - Too many in t roduc to ry
texts begin wi th a moderate example of a
program and then say "Don't worry i f you
don ' t understand a l l of t h i s program, we're
j us t t r y i ng to show a sample" make my angry.
Most in t roduc to ry students are a b i t worried
about computers and th i s kind of opening
r e a l l y scares them o f f . The f i r s t program
should be completely comprehensible:
Pring "HELLO" or sum two numbers.

Wr i t ing s t y le - While most authors can
produce grammatical ly correct prose, the
qua l i t y of w r i t i n g in in t roduc to ry texts is
a t roc ious. My favo r i t e example is a t ex t
by one of computer science's b r igh tes t
young men which used " l e t us note that"
e i t h t times on one page. Other nast ies are
the excessive use of fa lse connectives such
as "however", " thus" , " there fo re" , " i t is
c lear that " and "having examined". Another
bad habi t is the frequent use of "many",
"severa l " , "usua l l y " , "o f ten" , "most", and
"sometimes". I t ' s shocking that a l g o r i t h -
m ica l l y or iented th inkers can w r i t e such
fuzzy prose.

Advance organizers - Educational psycho l ig i~s
have c l ea r l y demonstrated the advantage of
having chapter in t roduc t ions which attempt
to describe the forthcoming mater ial in terms
which students already know. This organizes
t h e i r reading and establ ishes expectat ions
fo r t h e i r learn ing. Every chapter should
begin wi th an advance organizer.

56

Chapter summaries - A b r i e f synopsis of the
chapter h igh l i gh ts emphasizes important issues
and reminds students of what facts they should
have acquired. These are different from
the advance organizers in style and function.

Example programs - There should be numerous
complete programs in the tex t . I t is not
enough to have program fragments d i s t r i bu ted
throughout the chapter - complete programs
should be shown.

Program output - Novice programmers do
not know what to expect as the output of
the programs in the tex t . You must show
them e x p l i c i t l y . I was shocked to f ind that
several in t roductory texts never showed
output from the example programs that were
presented.

Well motivated examples - Every example
should be reasonable and have some c lear
app l i ca t ion . Examples such as A = B + C or
PUT LIST BRTX, TRTLLS, X567(ITH), MMMM; are
useless. Every oppor tun i ty should be used
to show students that programming f i t s in
wi th t he i r other courses. They w i l l under-
stand the examples bet te r , pay more a t ten t ion
and become more motivated.

Good problems - The problems at the end of
the chapter provide another oppor tun i ty to
demonstrate to students that programming is
re levant to other courses and that computers
can be used to solve usefu lprob lems.

Embedded problems - Short simple problems
should be embedded in the text. This gives
students an opportunity to try out their new
knowledge and i t provides positive reinforce-
ment to their learning. Answers should be
provided.

Incorrect syntax should be iso la ted -
Because of t h e i r o r i en ta t i on towards
syntax rather than semantics, many authors
do not r es i s t the temptation to show
incor rec t syntax immediately a f t e r showing
correct syntax. Students ~ i l l tend to
remember the incor rec t syntax as often as
the correct syntax. Incorrect syntax and
other h ints about debugging should be shown
at the end of each chapter, i f they are
shown at a l l . French teachers teach only
correct syntax and correct errors l a te r .

I I . Presentation Issues

Line p r i n te r output - authors who include
output from a l i ne p r i n te r or terminal
should make sure that the material is
readable. The p r i n te r should be al igned and
a new ribbon inserted. I f the p r i n t is
s t i l l too l i g h t , arrange to have the p r i n te r
overpr in t three times.

Typeset programs - I f programs are set by the
publ isher , a typefont which has uniform
spacing should be used. Texts which use
var iab le spacing typefonts fo r showing pro-
grams are confusing to students and prevent

an adequate discussion of spacing, indenting
and general program format issues. I f sample
output is shown for programs, uniform
spacing is again essential to teach proper
formatting.

Line p r i n t e r photo-of fset - The a v a i l a b i l i t y
of tex t ed i tors has tempted many authors
to produce texts on - l i ne . Using l i ne p r i n te r
output d i r e c t l y as input to pho to -o f fse t t ing
resu l ts in an unpleasant book wi th un fami l ia r
typefonts. Authors may feel comfortable
wi th th is kind of a t ex t , but novice
students f ind i t one more anxiety producing
bar r ie r . The extra cost and time of type-
se t t i ng is worth the e f f o r t fo r in t roduc tory
students.

I l l u s t r a t i o n s - In t roductory texts should
make the material appealing. One way of
producing a more f r i e n d l y tex t is to create
pleasant graphics at each chapter i n t r o -
duct ion. S ta t ic photos of computer hardware
are c h i l l i n g , but people or iented photos or
drawings can help. Use diagrams to i l l u s ~ a t e
the mater ia l . A p ic tu re is worth a thousand
words.

I I I . Supplementary Mater ial

Language Reference Guide - A useful feature
is a thorough, precise and concise review
of the language. A pedagogical ly appealing
tex t may not be the best fo r reference
purposes: by creat ing a reference guide to
the language the book becomes useful fo r
debugging. Backward pointers to the tex t
might be usefu l .

Answers to questions and problems - A subset
of the questions and problems should be
answered in the back of the tex t . This
gives the author an oppor tun i ty to include
addi t iona l complete programs wi th output.

Comparison of compiler features - The
syn tac t ic d i f ferences and implementation
de ta i l s of several popular compilers fo r
the language might be given.

Keypunch guide or terminal in t roduc t ion - A
quick in t roduc t ion to the keypunch or to
terminals might be appropr iate. I f the
programming environment is an t ic ipa ted , an
in t roduc t ion to the tex t ed i to r would be
worthwhi le.

Operating system control cards - Sample job
streams would help students in preparing
t h e i r assignments. I f the language is
ava i lab le through many systems, three or
four of the more' popular approaches could
be shown.

Diagnost ics - A l i s t of d iagnost ic messages
produced by the compiler could be given.
This is essent ia l i f the messages from the
compiler are good.

Index - A good index is an important asset
to a tex t . Indexes are usua l ly produced in

57

the last minute when authors are sick and
tired of proofing; however, effort invested
at this point pays off handsomely. Find a
good friend or pay somebody to assist in
index preparation.

58

