
Reports and Articles

Experimental Investigations of the Utility
of Detailed Flowcharts in Programming
Ben Shneiderman, Richard Mayer, Don McKay, and Peter Heller
Indiana University

This paper describes previous research on flow-
charts and a series of controlled experiments to test the
utility of detailed flowcharts as an aid to program com-
position, comprehension, debugging, and modification.
No statistically significant difference between flowchart
and nonflowchart groups has been shown, thereby call-
ing into question the utility of detailed flowcharting. A
program of further research is suggested.

Key Words and Phrases: flowcharts, program com-
position, program comprehension, debugging, modifi-
cation, experimental testing, human factors

CR Categories: 1.5, 4.0

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

Authors' present addresses: B. Shneiderman, Department of
Information Systems Management, University of Maryland, College
Park, MD 20742; D. McKay and P. Heller, Computer Science
Department, Indiana University, Bloomington, Indiana 74701; R.
Mayer, Department of Psychology, University of California, Santa
Barbara CA 93106.

The experimental materials can be obtained from B. Shneider-
man.

373

Introduction

Flowcharts have been a part of computer program-
ming since the introduction of computers in the 1940s.
In 1947 Goldstein and von Neumann [7] presented a
system of describing processes using operation, asser-
tion, and alternative boxes. They felt that "coding
begins with the drawing of flow diagram." Prior to
coding, the algorithm had been identified and under-
stood. The flowchart represented a high level definition
of the solution to be implemented on a machine. Al-
though they were working only with numerical algo-
rithms, they proposed a programming methodology
which has since become standard practice in the com-
puter programming field.

Approximately a dozen texts are entirely dedicated
to teaching flowcharting. Farina, in his book Flow-
charting [6], expresses the opinion that flowcharting is
an art requiring practice and that a flowchart should be
developed before a program is coded. This opinion
is practiced in many professional and educational
institutions.

In Flowcharting Techniques [3], Bohl holds that
flowcharting helps "distinguish between the procedure
a computer program is written to express and the syn-
tactical details of the language in which the program is
writ ten." She feels the flowchart is "an essential tool in
problem solving" and states, "The person who cannot
flowchart cannot anticipate a problem, analyze the
problem, plan the solution, or solve the problem."

The acceptance of flowcharts has been so wide-
spread that a national standard was proposed in 1963.
However, the development of more powerful program-
ming language features necessitated revisions in the
original flowcharting schemas. For example, the For-
tran DO statement has caused many textbook authors
and programmers to create their own set of conventions
for this construct. Other flowcharting schemes have

Communications June 1977
of Volume 20
the ACM Number 6

developed, including the "structured flowchart" [12]
and its variants [5].

Programming language texts reflect differing opin-
ions about flowcharting. An examination of 45 Fortran
texts showed that 14 of them employed flowcharts
extensively and 19 texts used them occasionally. The
remaining 12 used no flowcharts. Another teaching
philosophy is seen in introductory "computer science"
texts. Being language-independent they teach only the
principles of programming. In these texts flowcharts
are the main vehicle with which ideas are expressed.
This nonsyntactic approach suggests that flowcharting
and programming can be separable independent tasks.

The introduction of computer-drawn flowcharts
produced from completed programs was intended to
greatly aid a future programmer 's comprehension of
the program when attempting debugging or modifica-
tion. However , the usefulness of such ex post facto
flowcharts is hotly disputed. In The Program Develop-
ment Process [2], Aron maintains that such flowcharts
are useless to a programmer when diagnosing errors. In
such cases " the most helpful data is the program listing
itself." Concurring with this opinion is Weinberg [19],
who states, "We find no evidence that the original
coding plus flow diagrams is any easier to understand
than the original coding i tself--except to the original
programmer ."

Brooks [4] is especially vehement in his criticism of
the flowchart as documentation, referring to it as "a
curse," "a space-hogging exercise in drafting" and "a
most thoroughly oversold piece of program documen-
tat ion." Ledgard and Chmura [9] believe that "pro-
gram flowcharts can easily suppress much useful infor-
mation in favor of highlighting sequential control flow,
something which distracts the programmer from
the important functional relationship in the overall
design."

Resolving the question of whether or not flowcharts
are an aid in programming could significantly affect the
manner in which programming is taught, documented
and practiced.

Previous Experimental Research

In a series of experiments with naive programmers,
Mayer [11] demonstrated that providing a conceptual
hardware model of a computer and its operations dur-
ing instruction aided performance on postinstructional
test items which measured comprehension of programs.
Other subjects who utilized a flowchart or a flowchart
with the model performed well on test items which
required program composition but not as well as the
model group on "comprehension" items. This experi-
ment indicated that the use of flowcharts may assist
program composition but may hinder learning and per-
formance on comprehension tasks.

Flowcharts are not specific to computer program-

374

ming. Considerable research and investigation of flow-
charts as a tool for communication has been conducted
in the human factors field. Lewis, Horabin, and Gane
[10] discussed the utility of an "algorithmic approach"
to official rules and regulations. In most of their exam-
pies, the "algori thm" for a process was presented as a
flowchart which they claimed was less susceptible to
misinterpretation and less time consuming to execute
than a prose description.

Kammann [8] displayed remarkable results for a
telephone dialing task that required reference to a set
of instructions describing options for the use of internal
codes, tie-line codes, area codes, etc. Housewives and
Bell Telephone Laboratory professionals committed
fewer errors and the housewives expended less time
when using a flowchart diagramming the dialing proc-
ess than when supplied with the normal prose descrip-
tion from a phone book. Kammann gave the following
reasons for advocating the use of flowcharts for this
type of problem:

- - T h e y move major decision criteria forward in the
information sequence

- - T h e y reduce the complexity of the prose needed to
describe the contingent relations

- - T h e y distinguish more clearly between relevant and
irrelevant information for a given problem

- - T h e y reduce the amount of actual information to a
reasonable load.

Wright and Reid [20] reported similar success with
flowcharts over prose descriptions for an unfamiliar
"algori thm" to chose among several hypothetical
mechanisms for space travel. Decisions about costs,
time, and distance were encoded into a flowchart.
When subjects were required to solve the space travel
problems from memory, performance for a flowchart
group decayed over time while the performance for a
prose group increased. Wright and Reid suggested that
the flowchart representation of the "algori thm" was
encoded visually and subject to "becoming less distinct
over successive trials." The prose was encoded verbally
and it was possible for the subjects to continue memo-
rizing the material after it was removed [13, 18].

This human factors research, which produced inter-
esting results for flowcharts, is not directly applicable to
computer programming. First, programs are not ex-
pressed in vague prose but are algorithms represented
in a precisely defined language. Second, previous re-
search only measured performance on simple compre-
hension tasks, ignoring composition, debugging and
modification. Third, most of the flowcharts used were
limited to one page. Finally, subjects were not given
redundant information; they received either the flow-
chart or the prose, not both.

The basic tasks of programming have been delifie-
ated as program composition, comprehension, debug-
ging, and modification [16, 19]. For these tasks, de-
tailed flowcharts are often advocated as a useful picto-
rial representation of the program logic or flow of

Communications June 1977
of Volume 20
the ACM Number 6

control. Our goal was to determine the utility of de-
tailed flowcharts in these computer programming
tasks.

Experiment I (Composition)

group four subjects (15 percent) achieved a perfect
score and 17 (65 percent) out of 26 subjects scored 50
percent or above. The pilot study was run earlier in the
term with a simpler problem, but one which the sub-
jects found more challenging, given their shallower
background.

This first experiment was designed to study how the
creation of a detailed flowchart assisted the subjects in
composing a program. Much of the literature on
flowcharting claims that it is most helpful as a pro-
gram design aid which clarifies the problem to the
programmer.

Method

Subjects. The subjects were students in an introduc-
tory computer programming course using Fortran. The
textbook used flowcharts to illustrate program develop-
ment and flowcharts were used by the instructor. The
experiment was conducted by including the materials as
part of the second of three in-class examinations which
constituted the major part of the course grade.

Procedure and materials. Thirty-four subjects (flow-
chart group), received test instructions which indicated
that they were to write a flowchart and then a program
for a given problem. The flowchart counted for 15
points, the program 25 points. Twenty-eight subjects
(nonflowchart group) were instructed to merely write
the program, which counted for the full 40 points. The
subjects were given as much time as they wanted to
complete the test. The grading was done by a graduate
student with much experience in grading programs and
in consulting with students about programs. The results
were returned to the students at the next meeting of the
class.

Results
The scores on the program composition task were

normalized to 100 percent. The flowchart group mean
score was 94 while the nonflowchart group mean was
95. A t-test showed no significant difference between
the two groups. The flowchart group had a mean score
of 13.1 on the flowchart or 87.3 out of 100.

Discussion
The requirement to produce a flowchart seemed to

have no benefit or harm on the subjects ' ability to
prepare a program described by that flowchart. This
was in spite of the fact that the problem had been
chosen to favor the flowchart group by having a rela-
tively complicated branching pattern. The relatively
good scores indicate that all the subjects found the task
to be straightforward.

An earlier pilot study with the same design and
procedures had produced similar results. In the pilot
flowchart group two subjects (9 percent) achieved per-
fect scores and 14 (61 percent) out of 23 subjects
scored 50 percent or above. In the pilot nonflowchart

375

Experiment II (Comprehension)

A second often cited beneficial aspect of detailed
flowcharts is as an aid to comprehens ion of programs.
Flowchart proponents argue that if a detailed flowchart
is studied in conjunction with a program, comprehen-
sion can be improved. This experiment was designed to
test this hypothesis. Since experiment I had not shown
flowcharts to be useful for composit ion in a simple
program with novices, this experiment drew on more
complex program structures, but still with novice pro-
grammers as subjects.

Method

Subjects. The subjects were again students in an
introductory computer programming course using For-
tran and similar to the previous subjects. The experi-
ment was conducted by including materials as part of
the third of five in-class examinations which constituted
the major part of the course grade.

Procedure and materials. Sixty of the 100 points on
the examination were related to the experiment . Two
forms of the examination were prepared. The first form
contained two programs (27 and 24 Fortran state-
ments) with a flowchart for the first program only,
while the second form contained t h e same two pro-
grams but a flowchart for the second program only.
Twenty-five subjects received the first form, 28 re-
ceived the second form. The comprehension questions,
which were the same on both forms of the test, required
the subjects to determine the values printed for
various inputs and to trace the flow of execution. The
subjects were given as much time as they needed to
complete the test. Grading was simplified since the
answers were clearly correct or not correct. The re-
sults were returned to the students at the next class
meeting.

Results
An analysis of variance for the scores indicated that

the only significant result (at the 0.05 level) was that
problem 2 was more difficult than problem 1. Subjects
who had flowcharts did not perform differently than
those who did not have flowcharts. The mean per-
cent correct for each group and problem appear as
Table I (all tables appear on pp. 378-379) .

Discussion
The availability of a flowchart neither benefited nor

harmed the subjects in the comprehension task. This

Communications June 1977
of Volume 20
the ACM Number 6

was surprising since the programs had been designed
with a large number of transfers of control; precisely
the situation which is purported to be most advanta-
geous to the flowchart groups. Information observation
during the exam showed that most subjects were rarely
referring to the available flowchart but preferred to
study the program directly.

Experiment III (Comprehension and Debugging)

This experiment, which used subjects from an inter-
mediate experience level, measured the effect of flow-
Charts in debugging and comprehension of programs.

Method

Subjects. The subjects selected were basically from
one programming experience level. They were all in
intermediate Fortran programming courses but were
divided into two groups based on the flowcharting envi-
ronment they were learning in. The NFC group con-
sisted of 43 subjects who had had some previous in-
struction about flowcharts and presently were using a
book employing flowcharts but were under no obliga-
tion to use or turn in flowcharts with their assigned
programs. The FC group consisted of 27 subjects who
were required to write a flowchart before doing the
actual programming and to hand it in with their pro-
grams. The data from each group was analyzed sepa-
rately and later all data was combined and analyzed.
All subjects knew the experiment would have no bear-
ing on their course grade.

Design. The experimental design consisted of a con-
trol subgroup and two experimental subgroups for both
NFC and FC. The members of each subgroup were
randomly selected, each subgroup containing approxi-
mately equal numbers of subjects. The control sub-
groups received no flowchart. The first experimental
subgroups received a detailed four-page (micro)
flowchart while the second experimental sub-
groups received a more abstract single-page (macro)
flowchart.

Materials. All the subjects received the same com-
piled listing (with line numbers) and its corresponding
output. Depending upon which subgroup (experimen-
tal factor) they were being tested in, a subject would
also receive either a micro flowchart, a macro flow-
chart, or no flowchart at all. The program used was a
moderately difficult tic-tac-toe playing program written
in Fortran. The program consisted of an 81 line main
program with 43 and 23 line subroutines. The main
program was commented and had several DO loops as
well as a controlling IF loop. The program had three
nonsyntactic bugs placed in it. It produced incorrect
output which only reflected one of these bugs. Both the
program and the flowcharts were taken from Sturgul
and Merchant [17].

376

Procedures. The experiment took the form of a
three-part test. In the first part, once the subjects had
received a program listing and one of the three flow-
chart possibilities each subject was given a combination
instruction/answer sheet. In the instructions subjects
were told:

(1) They had been given a listing of a tic-tac-toe play-
ing program which was not supposed to lose.

(2) The program had at least one bug in it which was
apparent in the output.

Next they were instructed to:
(1) Study the listing and output in conjunction with any

flowchart they had received (or on its own if one
was received).

(2) Find the bug(s) and explain how to repair them.
(Bugs were reported by referring to the line num-
ber and writing the necessary revision.)

For this task the NFC subjects were given 40 minutes
and the FC subjects were allowed 50 minutes after
which the answer sheets were collected. (The subjects
retained the listings and flowcharts.) After a short
break the second part of the test was administered.

In the second part the subjects were first informed
of the bugs and told to make the corrections in their
listings. Next they were instructed to answer 11 multi-
ple-choice questions for which the NFC and FC group
subjects were allotted 20 and 30 minutes, respectively.
The questions which were designed to measure pro-
gram comprehension tested basic programming knowl-
edge, hand simulation of the (corrected) program, and
other problems necessitating knowledge of the pro-
gram. (The subjects still had their listings and flow-
charts for references while answering the questions.)

Finally, the subjects were asked to respond to ques-
tions concerning their feelings about how well they had
done in a questionnaire. In each of the questionnaire
questions the subjects responded on a scale of 0 to 9.
All subjects were asked how well they thought they
understood the program. Any subject who had re-
ceived a flowchart was further asked to respond to
questions concerning the usefulness of the flowchart in
their understanding of the program and in finding the
bugs.

Results
The data gathered from the two separate subject

groups is shown in Table II. The two groups were from
entirely separate subject pools tested under different
conditions and therefore the magnitude of the scores
cannot be compared between groups. However , the
trends within each group can be compared.

The NFC data (those who do not normally use
flowcharts) reflects the subjects' background: the sub-
jects not given flowcharts had the highest mean scores
for both the debugging and comprehension tests, micro
next, and macro last. The FC data (those who do use
flowcharts) reflects a quite different orientation. The
subjects given micro flowcharts had the highest average

Communications June 1977
of Volume 20
the ACM Number 6

scores for both tests in the FC group, macro subjects
had the next best scores, and the nonflowchart subjects
came in last.

This would seem to indicate a correlation between a
person's background with flowcharts and their useful-
ness in programming. However , an analysis of variance
showed none of the three combinations of experimental
conditions (none, micro, or macro) for the three test
results (debug score, comprehension score, and total)
for both NFC and FC to be statistically significant even
at the 10 percent level.

As stated before, one bug caused an obvious error
in the output and this bug was the most easily found of
the three. Nearly 70 percent of the subjects found and
corrected it. In contrast, 12 percent of the subjects
found two bugs and only three subjects out of 70 found
all three bugs. Of these three, two also answered all the
comprehension questions correctly. This suggests that
if one successfully debugs a program one must have a
thorough comprehension of it. This relationship holds
for those finding two bugs but breaks down for those
finding only one or no bugs.

The comprehension test results parallel the debug-
ging test for both NFC and FC. For both groups the
flowchart subgroup which had the highest average de-
bug score also had the highest mean for comprehen-
sion. An item analysis of the individual comprehension
questions was inconclusive and no important results
could be drawn from it. The subjects perceived very
accurately how well they understood the program. To
show this, the subjects were grouped by the number of
questions they answered correctly. The average ques-
tionnaire response to how well they thought they un-
derstood the program was obtained for each level of
"correctness." At each increment in the number of
correctly answered questions the average response
would generally increase suggesting that the subjects
were in tune with their performances.

The questionnaire responses yielded an unexpected
result as to how useful subjects found the flowchart in
debugging. For both the macro and micro flowchart
subjects in both subject groups those who found only
one bug (of three) felt the flowchart helped most in
debugging. Those who found zero, two, or all three
bugs rated the flowchart 's usefulness at a lower level.
Perhaps this was because the one bug which mani-
fested itself in the output was traceable through the
flowchart, while the less obvious ones had to be found
by hand simulation using the listing itself.

Discussion
These results are strong evidence in favor of the

contention that flowcharts do not aid a p rogrammer in
comprehending or debugging a program. Depending
on the programmer ' s background, flowcharts may help
or hinder performance, but the results show any differ-
ence is not at a significant level, that is, could have been
produced by chance.

377

The trend of the scores in favor of flowcharts for
those who use them (FC group) and away for those who
do not (NFC group), was expected. The result that the
differences were not significant warrants further exper-
imentation (see conclusion).

The questionnaire results give insights into the sub-
jects ' thoughts about the flowcharts. Somewhat surpris-
ingly, the answers given by both NFC and FC subjects
are nearly identical in all respects. For both there was a
pronounced positive correlation between the number
of questions answered correctly and how well the Sub-
jects thought they understood the program in every
experimental condition.

The detailed micro flowchart listed nearly all the
statements from the program (as they should have
been), so anyone who had directly compared the listing
and flowchart would have found the flowchart very
useful in debugging. But even the FC group rated the
micro flowchart unprofitable if they found two or more
bugs.

Experiment IV (Modification)

The focus of this experiment was the use of flow-
charts as a program documentat ion tool. Since it is
claimed flowcharts describe the logic of a program, the
task of discovering the placement of a modification
should be easier when the p rogrammer has a flowchart
of the program. This experiment compared the per-
formance of intermediate programmers in a modifica-
tion task in which some subjects received flowcharts
and others did not. Two levels of flowcharts were used:
a detailed, s tatement by statement micro flowchart and
a higher level macro flowchart.

Method

Subject . The subjects for this experimen t were stu-
dents of a second semester programming course at
Indiana University and Purdue University. The experi-
ment was conducted during a regularly scheduled class
meeting. Subjects from Indiana University were 33
students who were not required to design flowcharts as
part of their assignments. These subjects were exposed
to flowcharts by the textbook used for the course. The
37 subjects from Purdue University who participated in
the experiment were required to turn in flowcharts with
their programming assignments.

Materials. The booklet given to each subject con-
tained a set of instructions, a Fortran program, a loader
map, sample output, a set of three modification de-
scriptions, and a biographical questionnaire. The 75-
line Fortran program produced semester grade reports
for a fictitious college. The program had 48 lines of
Fortran code and 27 lines of comments of which 23
appeared as a comment block at the beginning of the
program. The output from the program was a set of

Communications June 1977
of Volume 20
the ACM Number 6

semester grade reports for all student records input.
There were three separate program listings for the
subjects to indicate their modifications.

In addition to the booklet, one-third of the subjects
received a one-page macro flowchart, another third
were supplied with a three-page micro flowchart, and a
remainder were given no flowchart.

Procedures . The subjects were instructed to peruse
the instructions, program, and flowchart for approxi-
mately five minutes. Each subject was asked to make
the modifications to the existing program according to
the modification description provided. A total of three
modifications were to be attempted in the 45-minute
period allowed for the experiment. Subjects were told
their modifications would be graded on correctness and
runability. At Indiana University, each subject was
timed individually by the experimenters for each
modification. At Purdue, each subject was respon-
sible for recording the amount of time spent on each
modification.

Results
To simplify the analysis, the data obtained from 12

subjects was not included in the following analysis. Of
these subjects, five did not finish and seven had GPAs
of 2.5 or below on a 4.0 scale, where 4.0 is an " A . "
The results reflect the data from 60 subjects, 30 from
each university, and ten in each of the six groups. Also,
most subjects did not finish modification III and it was
not included in these results. At Indiana University, no
one finished modification III ; six subjects from the
micro flowchart group, eight subjects from the macro
group, and seven subjects from the nonflowchart group
started modification III. In the Purdue groups, one
subject from each of the groups finished modification
III. Of those who did not finish, seven from each of the
groups had started the problem.

Modifications I and II were graded by an experi-
enced Associate Instructor who assigned a correctness
percentage score and kept track of error types such as:

- - Incor rec t formatting of output
- - Incor rec t placement of modification, within the ex-

isting program
--Violat ion of the modification description
- -Viola t ion of Fortran syntax
mEr ro r s of omission.

The mean percent correct for each group is dis-
played in Table III . An analysis of variance for the
scores showed that the University factor (Indiana vs.
Purdue), the modification factor (modification I vs
modification II), and the interaction of University and
modification factors were all significant. These results
indicate that the Purdue groups made fewer errors,
modification II was more difficult than modification I,
and the Purdue groups performed better than the Indi-
ana groups on both modifications.

An analysis of the types of errors made showed that
the second type of error listed, "incorrect placement of

378

Flowchart Utility Data

Table I. Mean Percent Correct for Experiment II.

Problem

1 2

Flowchart on 1
Flowchart on 2

94.4 89.6
97.0 94.4

Table II. Results for Experiment III.

Mean Percent Correct (Comprehension)

Flowchart used

none macro micro

group NFC 52 34 46
FC 53 55 76

Mean Percent Correct (Debugging)

Flowchart used

none macro micro

group NFC 12 11 4
FC 29 26 45

Mean Percent Correct (Total Score)

Flowchart used

none macro micro

group NFC 34 23 27
FC 42 42 62

modification within the existing program," was as fre-
quent in each of the six groups. The type of flowchart
a i d - n o n e , macro, or m i c r o - was not a significant fac-
tor in these results.

An analysis of variance for the time measure indi-
cated that neither the type of flowchart nor any of the
possible interactions was significant. The mean times
are displayed in Table IV. While the means reflect that
some groups did perform better than others, the vari-
ance in these groups was extremely large.

Discussion
The results from this experiment showed no advan-

tage for groups receiving flowcharts in a program modi-
fication task for either time or percent correct meas-
ures. An analysis of the types of errors made indicated

Communications June 1977
of Volume 20
the ACM Number 6

Flowchart Utility Data (continued)

Table III. Mean Percent Correct for iExperiment IV.

Univ. Flowchart aid Mod I Mod II

Purdue none 73 85
macro 88 77
micro 87 81

Indiana none 77 64
macro 77 71
micro 77 59

Table IV. Mean Time per Modification in Minutes.

Univ. Flowchart aid Mod I Mod II

Purdue none 15.5 15.3
macro 16.1 14.2
micro 14.0 14.1

Indiana none 15.6 16.7
macro 15.4 13.9
micro 16.0 17.9

Table V. Mean Percent Correct for Experiment V.

Type of question

Gl:oup execution interpretation

flowchart 48.5 51.2
program plus

flowchart 56.9 50.0
program 57.8 62.4

that most were errors which flowcharts may not de-
crease, such as coding errors and errors of omission.
After discarding these types of errors, no significant
difference can be reported 'between the flowchart and
nonflowchart groups for incorrect positioning of the
modification within the existing program. These results
contrast with the human factors research in prose and
"algorithmic" representations of rules and regulations
in which flowcharts have been shown to aid compre-
hension. As stated previously, there were several task
differences between the present experiment and the
human factors research.

Part of this experiment was designed to test the
utility of detailed micro flowcharts in a program modifi-
cation task. The intermediate programmers who were
given both the program and the micro flowchart of the

379

program did not perform better in the modification task
than those who received only the program. This indi-
cated that a micro flowchart and a program do provide
equivalent information for a modification task and that
the micro flowchart does not provide any additional
information.

Another part of this experiment dealt with higher
level or macro flowcharts. Again, the subjects who
were given both a macro flowchart and a program did
not perform differently from those who were supplied
with just the program.

The critical factor in program modification might be
understanding the existing program at a macro level,
which allows identification of where to incorporate the
modification and what effects the proposed modifica-
tion will have on the remainder of the program. A
similar statement could be made for program debug-
ging. The macro flowchart or at least some general
presentation of the program seems intuitively useful.
Since this experiment did not show any significant re-
sults for the macro flowchart group, the question of the
utility of macro flowcharts as a vehicle of expression
remains confused. Perhaps even the macro flowchart is
equivalent to the program it describes in the same
manner as the micro flowchart and thus provides no
additional information.

For both macro and micro flowchart groups, their
failure to outperform the other group could be attrib-
uted to several experimental variables. It is possible
that a replication of the current experiment with a
significantly longer and more complex program may
show different results, especially for the macro flow-
chart since it is viewed as an organizer which facilitates
the "chunking" of the program into logical modules.
Results for the micro flowchart group in such an experi-
ment would not be expected to differ from the nonflow-
chart group, except for a task which required hand
simulation and little overall understanding. Second, the
topic of the program might have been familiar to both
groups of college students; however, the Purdue groups
were possibly not as familiar with the grading system
since it was modeled after the Indiana University sys-
tem. Finally, the program had a comment block at the
beginning which explained the general workings of the
program and this may have been enough information
on which to base a modification.

Experiment V (Comprehension)

The previous experiments reported here have not
shown what information about an algorithm can be
obtained from a flowchart representation. Experiment
V investigated the information content of detailed
flowcharts in a comprehension task. Two types of com-
prehension items were presented: hand simulation
(low level) problems and interpretation (higher level)
problems.

Communications June 1977
of Volume 20
the ACM Number 6

M e t h o d

Subjects. The 58 subjects for this experiment were
students of an eight-week summer session introductory
course in computer science at Indiana University. The
experiment was conducted as the third quiz of the term
at the beginning of the sixth week of the course. Sub-
jects were familiar with Fortran and flowcharts.

Materials. Each subject received a quiz booklet .
Three different booklets were used. Each contained an
algorithm and a set of questions about the algorithm.
The algorithm used was a two-way array merging algo-
rithm. The subjects first exposure to the algorithm was
the quiz. One group of subjects received a 23-line
Fortran program of the algorithm, another group was
given a one-page detailed flowchart of the algorithm,
and the last group was provided with both the detailed
flowchart and the Fortran program. The quiz questions
were of two types: hand simulation problems and inter-
pretation items. The two hand simulation items asked
for the algorithm's output given a set of inputs values.
The three interpretation questions were concerned with
the operat ion and propert ies of the algorithm.

Procedures. Each subject received a quiz booklet
and was given general instructions for the quiz. The
subjects were given 25 minutes for the quiz.

Resul ts
The subjects ' quizzes were graded on a 100-point

scale with each problem worth 20 points. Seven sub-
jects were not included in the results; three dropped the
course and four had class averages below " D " level.
The mean percent correct for each group and the type
of question appear in Table V. An analysis of variance
indicated that all groups per formed equally well. The
means for each group suggested that the group which
had only the program per formed the best. Again, the
variance within each group was large and the difference
were not statistically different.

Discuss ion
The results of this experiment indicated, as argued

in experiment IV, that the type of information obtained
from a detailed flowchart and a program appear to be
equivalent. The most interesting result is the compari-
son of the program group versus the other two groups
for the two types of questions. For the execution items
the program group scored the highest and the flowchart
group scored the lowest. This result, although not sta-
tistically significant, suggests that a program may be
more understandable than a flowchart for hand simula-
tion type problen.3. For the interpretation items, again
the program group per formed the best, suggesting the
program representat ion may be supplying additional
information which a flowchart cannot. The perform-
ance of the program group versus the program plus
flowchart group suggests that the presentation of re-
dundant information may hinder understanding neces-

380

sary for a general understanding of an algorithm. The
results of this experiment support the work of Mayer
[11], who demonstrated different learning outcomes
for flowchart groups and that of Wright and Reid [20],
who showed different results for flowchart and prose
descriptions that were memorized by subjects.

Conclus ions

Although our original intention was to ascertain
under which conditions detailed flowcharts were most
helpful, our repeated negative results have led us to a
more skeptical opinion of the utility of detailed flow-
charts under modern programming conditions. We re-
peatedly selected problems and tried to create test
conditions which would favor the flowchart groups, but
found no statistically significant differences between
the flowchart and nonflowchart groups. In some cases
the mean scores for the nonflowchart groups even sur-
passed the means for the flowchart groups.

We conjecture that detailed flowcharts are merely a
redundant presentation of the information contained in
the programming language statements. The flowcharts
may even be at a disadvantage because they are not as
complete (omitting declarations, s tatement labels, and
input/output formats) and require many more pages
than do the concise programming language statements.

The advent of top-down design techniques and
structured control structures may reduce the utility of
detailed flowcharts, since p rogrammers are now learn-
ing to use higher level concepts than those represented
by standard detailed flowcharts. This suggests that fur-
ther experiments might be done with macro flowcharts
and structured flowcharts [12].

Our results should be replicated with a wide variety
of programmers and problems. Especially valuable are
experiments with professional p rogrammers which put
flowcharting and programming in competi t ion. One
such experiment would be to require one group of
programmers to flowchart a program and another
group to write the program without a flowchart. Next,
those who had written flowcharts would be given time
to code up their programs. Both groups would be t imed
and compared on how quickly they could get their
programs running. This experiment would reveal
whether flowcharts aid or delay program development .
Also important are studies on large complex programs.

Another important research direction would be to
study professional p rogrammers who feel that flow-
charts are essential in their work. Is their dedication to
this technique well-founded or would their t ime and
energies be bet ter spent in more careful program design
or documentat ion? It has also been suggested that de-
tailed flowcharts are more meaningful than program-
ming language statements for managers and nonpro-
grammers . This possibility should be investigated.

Experiments focusing on the use of macro flow-

Communications June 1977
of Volume 20
the ACM Number 6

charts with substantially larger programs would be im-
portant to the commercial programming industry.
Comprehension, debugging, or modification questions
could be given to two groups of subjects, only one of
which was given macro flowcharts. We conjecture that
macro flowcharts may alleviate anxiety and confusion
when subjects are given large programs (at least 1000
lines of code). Subjects with macro flowcharts may
waste less time in trying to locate particular sections of
code.

Finally, a deeper understanding of the cognitive
processes used in programming may be developed as a
result of these and other human factors experiments.
Such an understanding may lead to an explanation of
why flowcharts are or are not helpful in specific situa-
tions. The internal semantic structure concept devel-
oped by Shneiderman [15] suggests that since the de-
tailed flowchart may be merely an alternative represen-
tation of the syntax of a program, it should not be
helpful to programmers familiar with a programming
language. Having a French recipe in addition to an
English version of the same recipe would not be helpful
to a cook knowledgeable in both languages. The syn-
tactic/semantic model of p rogrammer behavior offered
by Shneiderman and Mayer [16] provides a broader
theoretical f ramework, but more experiments must be
done to validate the model and make it viable as a
predictive tool.

In summary, our experiments have not demon-
strated the utility of detailed flowcharts in program
composition, comprehension, debugging, or modifica-
tion. Further work is necessary to replicate the results,
especially with professionals, to explore other areas
where flowcharts may be helpful, to study other forms
of flowcharting and to contribute to a more thorough
understanding of the cognitive skills required in com-
puter programming.

Acknowledgments. We would like to express our
appreciation to Carl Landwehr of Purdue University
for his assistance in running some of the experiments on
his students. We are indebted to the many students at
Indiana and Purdue Universities for their participation
as subjects in these experiments. The detailed
comments of the referees have greatly improved the
presentation.

References
1. American Standards Institute. Proposed American standard
flowchart symbols for information processing. Comm. ACM 6, 10
(1963), 601-604.
2. Aron, J. The Program Development Process," The Individual
Programmer. Addison-Wesley, Reading, Mass., 1974, pp. 104-106.
3. Bohl, M. Flowcharting Techniques. Science Research Associ-
ates, Chicago, 1971, p. 53.
4. Brooks, F.P. The Mythical Man-Month. Addison-Wesley, Read-
ing, Mass., 1975.
5. Chapin, N. New format for flowcharts. Software: Practice and
Experience 4, 4 (1974), 341-357.
6. Farina, F. Flowcharting. Prentice-Hall, Englewood Cliffs, N.J.,
1970, iii.

381

7. Goldstein, H.H., and von Neumann, J. Planning and coding
problems for an electronic computing instrument, part II, vol I. Rep.
prepared for the U.S. Army Ordinance Dept., 1947. Reprinted in
von Neumann, J. Collected Works, Vol. V, A.H. Taub, Ed., Mc-
Millan, New York, pp. 80-151.
8. Kammann, R. The comprehensibility of printed instructions and
the flowchart alternative. Human Factors 17, 2 (1975), 183-191.
9. Ledgard, H., and Chmura, L. COBOL with Style. Hayden,
Rochelle Park, N.J., 1976.
10. Lewis, B.N., Horabin, I.S., and Gane, C.P. Flowcharts, Logical
Trees and Algorithms for Rules and Regulations. Her Majesty's Sta-
tionary Office, London, 1967.
11. Mayer, R.E. Different problem-solving competencies estab-
lished in learning computer programming with and without meaning-
ful models. J. Educ. Psych. 67, 6 (1975), 725-734.
12. Nassi, I., and Shneiderman, B. Flowcharting techniques for
structured programming. SIGPLAN Notices (ACM) 8, 8 (1973),
12-26.
13. Shiffrin, R.M. Memory search. In Models of Human Memory,
D.A. Norman, Ed., Academic Press, New York, 1970.
14. Shneiderman, B. Experimental testing in programming lan-
guages, stylistic considerations and design techniques. Proc. AFIPS
NCC, 1975 AFIPS Press, Montvale, N.J., 1975, pp. 653-656.
15. Shneiderman, B. Exploratory experiments in programmer be-
havior. Int. J. Comptr. and Inform. Sci. 5, 2 (June 1976), 123-143.
16. Shneiderman, B., and Mayer, R. Syntactic/semantic interac-
tions in programmer behavior: a model and experimental results
(unpublished).
17. Sturgul, J.R., and Merchant, M.J. Applied Fortran IV Program-
ming. Wadsworth, Belmont, Calif., 1973.
18. Tulving, E. Subjective organization in free recall of "unrelated"
words. Psych. Rev. 69 (1962), 344-354.
19. Weinberg, G.M. Tile Psychology of Computer Programming.
Van Nostrand, Princeton, N.J., 1971.
20. Wright, P., and Reid, F. Written information: some alternatives
to prose for expressing the outcomes of complex contingencies. J.
Appl. Psych. 57, 2 (1973), 160-16¢5.

Communications June 1977
of Volume 20
the ACM Number 6

