HUMAN-COMPUTER INTERACTION RESEARCH
AT THE UNIVERSITY OF MARYLAND

Ben Shnelderman
Department of Computer Science and
Human-Computer Interaction Laboratory
Untversity of Maryland
College Park, MD 20742

QOctober 1985

The Human-Computer Interactlon Laboratory (HCIL)
is a unit of the Center for Automation Research at
the Unlversity of Maryland. HCIL s an Interdlscl-
plinary research group whose participants are faculty
in the Departments of Computer Sclence and Psychol-
ogy and the Colleges of Library and Information Ser-
vices, Buslness, and Education. In addition, stafl
sclentists, graduate students, and undergraduates con-
tribute to thls small, but llvely community that pur-
sues emplrical studles of people using computers.

Our support comes from Industrlal research projects,
government grants, the State of Maryland, and the
Unlversity of Maryland. Projects often become Inter-
related In surprising ways enabling indlviduals to
cooperate constructlvely. Some of our eflorts during
the past year are described below.

1) Programmer workstations

We have been exploring ways to attach three or more
separate screens to an IBM PC and use each screen as
a window. This glves a full 25/80 dlsplay space for
each window. We also have used a slngle very large
display, the IBM 3290 Plasma Dlisplay Workstation
with 62 llnes of 166 characters, to get the large win-
dow sizes we want.

We have conducted observatlonal studles and bullt
many varlatlons of multiple screen formats under sup-
port from IBM Federal Systems Dlvision in Bethesda,
Maryland. These studles have led us to the followlng
concepts:

Fuslon: Several screens are ‘fused’ together at the
bottom /top or right/left edge to form one, contlnuous
loglical screen. Fusing two screens at the bottom/top
gives a 50 llne, 80 column dlisplay. Fusing two screens
at the right/left edge gives a 25 llne, 160 column
display. We can dlsplay whole pages of code at once
or all of a spreadsheet.

Copylng: One central screen Is used like current single
screens. Several other screens are used to display
coples of text copled from the central screen. The
programmer can copy the entire central screen to one
of the copy screens or copy only part of the central
screen. This allows the programmer to save text for
later reference or, the programmers can save part of
an on-line manual or a directory listing. Copy screens
cannot be edited - they are strictly for reference.

Direet Selectlon: As the cursor moves from object to
object, Informatlon about the current oblect Is
displayed on the other screen. In one form of dlrect
selection the cursor position is combined with a selec-
tion button (on a mouse or on the keyboard). This
allows a programmer to move the cursor on to a vari-

January 1986 Volume 17 Number 3

able name, select 1t by pressing the buttons, and
recelve the data declaration on another screen.

Synchronized Scrolling: This 1s simllar to fusion of the
left /right edges. One file s displayed per screen. The
scroiling of the flles Is linked; the command up-one-
line moves all flles up one line. Thlis Is convenlent for
comparing flles with simllar lay-out, e.g. versions of
same program. Another use Is for scrolling the Input
to a document formatter and the resulting formatted
output to check and correct errors. Clever software
can make synchronized scrolllng even more useful by
supporting the scrolling of related items in several flles
even If the lay-out of the flles are not the same, e.g.
an Input flle to test cases and an output flle of results.

Independent Scrolllng: All screens can be controlled
separately. A programmer can look at arbltrary parts
of several flles or several parts of one flle. Indepen-
dence Is slmilar to logging on to several terminals at
once. The advantage 1s that you can copy from one
screen to another. This iIs the most general, least
structured way to use several dlsplays. The screens
are just there - avallable for whatever the user wants
to use them for. For the concept to be useful chang-
Ing screens must be simple and rapid.

These concepts can be applled In many program
development situatlons:

Input - Flliter - Output Sttuations: Using independent
screens the Input to a program, the program text, and
the output of the program can be displayed at once.
This makes a very powerful debugglng tool. An
advanced Implementation of synchronized scrolllng
would allow the programmer to step through the pro-
gram. As each ltem from the Input Is read, the pro-
grammer would see exactly which lines of code were
executed and what output was produced. Some Inter-
preters currently provide program tracing, but they
use overlapplng windows. All too often the output in
questlon 1s obscured by the window listing the pro-
gram. Programmers must work around these prob-
lems by pushing and shuffling windows.

Integration And Reference Tasks: Many tasks requlre
referring to some text or comparing between texts.
Help screens are little help when they obllterate the
lines you need help wilth. Multiple screens can make
such tasks much easler. For example, a programmer
could display on-llne manuals and program text at the
same tlme, using Independent screens, to look up the
correct use of a procedure. Using synchronized scrol-
1ing a programmer could display the text of a program
on one screen and the documentatlon on another
screen.

SIGCHI Bulletin

27

28

Semantically linked parts of different flles can be
displayed together even If there Is no one-to-one
correspondence of lines between the files. Thus mov-
ing up one line on one flle may involve scrolling up
several lines on some other file so the llnked parts stay
together. For example, a programmer could put a
program’'s code In one flle and its comments In
another. Some method for linking comments to
specific parts of code would be provided. Thus, even
if comments are larger than the code both will

This glves more room on screen for both code and
comments. Also, the code can be read without the
distraction of the comments. Finally, the comment
file can serve as high-level documentation when read
without the code (thls requires carefully written com-
ments).

Direct selectlon Is used In readlng Pascal programs.
When the cursor 1s placed on a varlable (and the but-
ton Is pressed) the declaration for the varlable lIs
displayed. If the cursor is on a procedure name the
parameter list (or even the whole procedure) 1Is
displayed. Implementations were done by Ruly Arifin,
Judd Rogers, and Phill Shafer, with experlmental test-
ing conducted by Linda Weldon.

Multl-Screen Editors: New edlitors can be designed
with the extra viewlng space of the multi-screen
environment In mind. The space can be used to make
working with several flles at once very easy. This
makes the reading, comparing etc. of multiple flles
much easler as 1t presents the text In a natural for-
mat; not squeezed Into an unreadably small window.
Such editors make copylng parts of one flle to another
easler slnce the programmer sees both the source and
destination at once.

The edltor presents the program text In a cognltively
useful manner that does not resemble the format
requilred by the compller. For example, a procedure,
the types 1t uses and all its calls can be presented to
the programmer at once. By openlng several screens
for a single flle and putting parts of the program text
In each screen, all this Information 1s presented at
once. The compller enforced format can stlll be evl-
dent to the programmer if llne numbers (or some
other Indlcatlon of the actual sequence of the llnes)
are put In the display by the edltor.

Our two screen edlitor using a standard IBM PC with
a color and a monochrome display was Implemented
by Bob Poliachlk. It supports fuslon, Independent
scrolling, copying and synchronlzed scrolling.

Cooperatlve Problem Solving: Another use for multi-
ple screens Is to have programmers at dlfferent sites
vlew the common screens, with communication
arranged by a network. They can talk by phone and
use cursors to polnt at text or graphles.

There are several dlfferent levels of Interactlon avall-
able. Slmple talk programs are common on maln-
frames. These programs provide telephone like func-
tlon for people logged on to the computer. However,
talk programs are not as productive as a conference
telephone call. Short conversatlons are useful but the
medlum 1s Inherently too slow for extended conversa-
tlons (typed text is not as fast or rich as volce for con-
veying Informatlon). More productive Interactlon s
posslble If the people can do more than ‘talk’. With
several screens avallable, conversants can use one (or
part of one screen) to talk and the others to exchange

SIGCH! Bulletin

flles, send coples of screens, or watch a program run.
Gupta Pradeep conducted two experimental evalua-
tions of cooperation modes for program debugging and
comprehenslon tasks. Indlvidual varlation In abllity
dominated the differences, but useful deslgn guldellnes
emerged from observation of the subjlects.

Some Human Factors Issues For Multl-Screen
‘Workstations

Working with a multl-screen terminal Introduces a
number of new concepts as well as questions about the
best way to human factor the system. For example,
wlith several screens how does one refer to a particular
screen to dlrect Input to appear there or to copy infor-
mation from one screen to another? In a command
language one could refer to screens In the same way
that one refers to other peripherals. For example,

copy scra: scrb:
would copy the contents of Screen A onto Screen B.

Selection using lcons and menus of actlons mlight be
powerful but confuslng. How do you represent a
screen using an lcon and where do you put 1t (which
screen)! Nevertheless, some Interestlng and creatlive
solutlons to thls problem are no doubt possible. For
example, If a polnting device such as a mouse is used,
one could display mouse passageways (mouse holes) at
the sldes of the screen. Dragging the cursor through
one hole Jumps the cursor to another screen. Drag-
ging the cursor through another hole coples the con-
tents of that screen to another. Other passageways
invoke the operations of fusion, automatlc selection,
and Input-filter-output.

In cases were the content of the screens Implles
differences In operations on the screen, some way of
slgnifying the difference is needed. For example, if
one screen 1s ‘llve’ and another s a copy screen, the
user needs visual feedback as to the state of each
screen. One posslbillty Is to change the shape of the
cursor. Another Is to change the background pattern
or the shape of a border around the screen. Experl-
ments must be run to declde on the best method.

An obvious human factors problem 1s the physlcal
separatlon between the screens. This can be
extremely dlsruptive In cases where one needs to com-
pare the contents of one sereen with another, llne-by-
line. When Information 1s linked, as in fusion, It may
be better to use a larger screen rather than multiple
screens. In cases where the Information is for refer-
ence (help screens) or of a different type (Input-filter-
output), the separation does not cause as much of a
problem.

Cognltive Layout in Multl-screen Workstations

The added Informatlon that can be displayed on
multl-screen workstatlons can elther be beneficial or
detrimental depending on the lay out. The surface
layout of the Informatlon on the screens should match
the user's expectation. We use the term cognltive lay-
out’ to Indlicate the user’s mental picture of the infor-
mation. WIth two screens, the user milght see the
informatlon as two pages Iln a book, the left page and
the right page. Text editlng using fusion and syn-
chronized scrolling is llkely to evoke this cognltlve lay-
out of a llnear array of Information.

January 1986 Volume 17 Number 3

On the other hand, when one screen 1s used as a copy
screen, a short term memory or notepad layout s
appropriate. One screen may be vlewed as a working
memory, while another Is viewed as a temporary
store. The memory storage layout 1s particularly
important for systems that transfer flles from one
application program to another using concepts such as
a clipboard or a scrapbook.

Such systems currently have llmlted screen space and
cannot afford to display temporary storage flles durlng
other processes. Consequently, users are not always
sure Just what it 1s on the clipboard and must trust
thelr own memory. The difficulty is that they have to
remember what's there whlle they are changing men-
tal gears to start a new task. Multl-screen worksta-
tions allow constant display of the temporary storage
file, relleving the user of the burden of remembering
the contents.

A hilerarchlcal or ‘blow up’ layout s useful when
searching for Information In a database or keepling
track of poslition In a lengthy manuscript. One screen
displays the bird’s eye view of the world; the next
zooms In on the detalls. For example, the left screen
shows the chapter titles with the current tltle
highlighted. The right screen displays the text of that
chapter. The user’'s cognitive model of the layout Is
one of progressively finer detall.

Putting the Concepts Into Actlon

We began our work on multl-screen workstations by
bullding a two screen system using the monochrome
and color displays on an IBM PC. This system, which
supports fusion, synchronized scrolling, copylng and
independent scrolllng, was used for several experimen-
tal studles.

Unfortunately, the fonts on the monochrome and
color displays are very different. The color display’s
font 1s Inferlor to the monochrome’s. Most users find
the color display hard to work with. We needed to
have all monochrome displays to do further research.
‘While 1t 1s possible to put more than onée monochrome
adaptor In an IBM PC, it Is not useful. Since the
monochrome adaptors are part of the memory map of
the PC and there is no way to make the adaptors
move t0 a dlfferent part of the memory map, all
monochrome adaptors on the expansion bus of an IBM
PC wlll display the same thing. Each adaptor has
four pages of memory that can each hold one screen
for display. Unfortunately, the current page displayed
Is set by writing a byte to a port on the adaptor.
Since all adaptors on the bus will respond to writing
the byte to the port, there Is no way to get one (and
only one) adaptor to swltch pages. The only way to
change thls unfortunate sltuation s to modify the
hardware on the monochrome adaptor. We are very
reluctant to do thls.

Since we could not get two useful monochrome
displays on one PC we declded to link two PCs
together. This glves us the two monochrome screens
displayling the different Information that we needed at
the cost of having to get the two machlnes communi-
catlng. We declded to use RS-232 ports for the com-
munication as the RS-232 technology 1s slmple to
work with and about as fast as we would need.

We made a null modem cable and purchased two RS-
232 cards. The null modem cable switches the RS-232

January 1986 Volume 17 Number 3

handshaking slgnals about so that It appears that
there 1s a palr of modems between the two RS-232
ports.

W1ith the hardware connected we proceeded to write
the software for the two machlnes to communlcate
and appear as one machine to the person using them.
A copy of the same program runs on each machine.
The coples communlcate to keep each other in step.

The programs for our experiments read commands off
of the keyboard and execute them. If one machline
reads the keyboard and sends the other the command
1t finds, and both programs then execute that com-
mand, nelther program can ever get out of step.

We needed a method to send characters from one
machine to the other. We deslgned a simple protocol
to exchange single characters across the RS-232 ports.
Simple for us meant easy to code and debug. We did
not worry about the effect of the protocol on speed of
transmisslon.

The protocol 1s for the two machines to indlcate to
each other that they are runnlng by exchanging DTR
and DSR signals. The machine that 1s writing (run-
ning the procedure that writes a character) Is the data
source. The wrlter sets RTS and walts for the reader
to set CTS. Once the wrlter recelves CTS the charac-
ter Is wrltten, sent to the reader by the hardware, and
read. The reader stops settlng CTS once 1t success-
fully reads the character. Both machlnes now clear
DTR and DSR and the exchange 1s over.

There 1s a provislon for parlty checking In the proto-
col. After the reader reads the character and clears
CTS, the parlty is checked. If there 1s an error the
reader clears DTR and the procedure exits. If the
character 1s correct the reader sets CTS, walts a bit,
clears CTS and then clears DTR and exlts. At the
same tlme, after the wrlter wrltes the character, 1t
walts for CTS to be cleared by the reader, and then
walts agaln for elther DTR to be cleared (an error) or
CTS to be set, then cleared, followed by DTR belng
cleared.

Although we Included parity checking in our protocol
we have never had a parity error. We have a short
length of cable and have the machines set up In a
bulldlng with no large electrical equipment so there 1s
11ittle chance for parlty errors.

All the code involved In moving a character from one
machline to another is In three procedures of 'C’ code.
The three procedures are about three pages long.

Once we had character-at-a-tlme communlcation 1t
was rather slmple to modify exlsting programs to
work In the new environment. A separate Implemen-
tatlon supports cooperatlve problem solving, using
two PCs also linked by the RS-232 ports. We are
conducting experlmental tests of team program debug-
ging, the Importance of a telephone volce llnk, and
different protocols for controlling cursors.

We find that these new environments are appeallng to
programmers and most users belleve that these con-
cepts are beneficlal. However, there 1s clearly a perlod
of accommodation to these novel approaches before
the productivity benefits accrue. We have attempted
to keep the commands simple and few In number, so
as to ease the learnlng process. Durlng 19868 we will
conduct several experlments to ascertaln the

SIGCHI Bulletin

29

30

effectlveness of these multl-screen concepts for pro-
gramming tasks and reflne the designs.

There are attractlve opportunitles for expanding the
horlzon of programmers. Multl-screen workstations
offer the potentlal of showlng more relevant Informa-
tlon concurrently. Multi-screen systems are relatively
cheap to bulld and offer provocative and novel ways
to develop software.

Another effort was the use of the IBM 3290 Plasma
Display Workstation. One Implementation under
XEDIT generated a two column dlsplay each having
80 lines of 80 characters. Seeing 120 lines of program
text on the screen at once leaves a dramatic Impres-
slon and changes the way programmers study pro-
grams.

A second prototype was for a hlerarchical browser
which shows the program's modular representation In
the upper half of the screen. By polnting at a module,
the user produces the code In a scrollable window on
the lower half of the screen. Thils allows the program-
mer to study the code In a more orderly way, easlly
Jumping through the code to vlew related modules.
We are enthuslastic about the hilerarchlcal browser
ldea and are planning emplrical tests to assess the
beneflts of several verslons.

There Is always the danger that more Information acts
as a distractlon and that extra commands can increase
confuslon. Careful attention must be pald to the user
interface deslgn.

Our goal 1s not to produce software or hardware pro-
ducts, but to develop ldeas and valldate thelr
effectiveness as we refine our cognitlve models of
human performance with computers.

2) Menu selection

Menu selectlon as a mode of user control over the
human/computer Interface has been the toplc of
research of a grant supported by Control Data Cor-
poratlon. This effort has been conducted In collabora-
tlon with Prof. Kent Norman of the Department of
Psychology. Although menu selectlon seems llke a
stralght forward method of interactlon for novice
users, our research indlcates that there are a number
of \mportant human factors conslderations that must
be taken Into account. A series of emplrical studies
have been conducted In which menu structures have
been implemented uslng a menu selection prototypling
system (MSPS) developed here at Maryland.

The first study Investigated training methods In learn-
ing a content free menu system. Sublects were
required to find target items In a menu tree with 3
cholces at each of three levels. The labels of the alter-
natlves at the top and mlddle levels were meaningless
words (simllar to many real world menu systems as
percelved by the novice user). The results Indicated
that users who studled the global tree of the menu do
somewhat better than users who (a) memorize
sequences of cholces, (b) study menu frames, or (c)
traverse the menu in a trial and error fashlon.

The second study Investigated tralnlng methods and
distinctlveness in searching for target ltems in a com-
merclal timesharing service. The entlre menu struc-
ture was Implemented on the MSPS in two forms.
One form was the orlglnal system. The other form

SIGCHI Bulletin

changed a number of the alternatives so that they
would be more distinctive. Agaln 1t was found that
the global tree method of tralning led to the best per-
formance. Distinctlveness had a marginal effect. In
cases where the user searched for a speciflc target
item, tlmes were faster than when searching for a ltem
to meet a requlrement or a functlon. In the latter
case, additlonal time 1is required to determlne If the
found item meets the needs of the user.

A third study Investigated the effect of menu struc-
ture on the search process. Previous work Indicated
that breadth 1s superlor to depth of the tree. Depth
tends to bury items and lengthen the path of selec-
tlons to get to an item. However, If the depth of the
menu 1s held constant does 1t matter If the breadth
varles along the way? A data base of 256 gift Items
was generated and clustered into 5 different structures
with four levels. The number of cholces at each level
in the 5 structures were as follows: 4-4-4-4, 2-2-8-8,
8-8-2-2, 2-8-8-2, 8-2-2-8. Results to date Indlcate a
superiority for the 4-4-4-4 and 8-2-2-8 structuress over
the others In terms of overall t!me to find items and
number of frames visited.

Other work along these lines has Involved the
development of a menu evaluatlon scale In which
users assess the degree to which the menu facllitates
or retards work by its clarity, speed, efficieny of path,
etc. In additlon a theory of user search behavior 1s
belng developed that relles on behavior cholce theory
and Information theory. It 1s hoped that thls theory
In conjunctlon with user assessments of the utllity and
meaningfulness of {tems will have predictive power in
terms of evaluating user performance over time.

Future work 1s planned along three lines. Flrst, 1t 1s
important to understand the efficlent use of menus by
experienced users. Studles are belng planned 1n which
users search behavior will be monltored over extended
perlods of tlme. Second, the transfer of tralning from
one system to another ls becomlng important as users
are having to learn a number of different systems.
Another study Is planned In which users will learn one
system and then transfer to another having lmlted
compatibility. Flnally, more and more systems are
using lcons In additlon to text. Since lcons are highly
recognlzable and discriminable they may greatly faclli-
tate the use of menu systems In which the user does
not need to recall the 1tem (icon) but merely recognize
it In a display of many lcons. Studles are planned in
which icons will be assessed In terms of recognizability
and connotatlon. An experlment will then be
designed In which we compare verbal, lconic, and
{conic plus verbal menus.

3) TIES and OLMM

The Interactive Encyclopedia System (TIES) has been
under development at the Unlversity of Maryland
since Fall 1983. It allows novice users to explore
information resources In an easy and appeallng
manner. They merely touch (or use arrow keys to
move a light bar onto) toplics that Interest them and a
brief deflnltion appears at the bottom of the screen.
The users may continue reading or ask for detalls
about the selected toplc. An artlcle about a topic may
be one or more screens long. As users traverse artl-
cles, TIES keeps the path and allows easy reversal,
bulldlng confldence and a sense of control. Advanced
features include the ablllty to view an index of articles
or print out articles of Interest.

January 1986 Volume 17 Number 3

TIES s attractive for instruction (and entertainment)
because the author’'s ideas and wrlting style are the
foeus of attention. Through careful human factors
deslign, the computer aspects have been trlmmed to
let the author communlcate to the students and to
allow the students to control thelr learning.

The current verston of TIES Is belng produced at the
Unlversity of Maryland for the U.S. Holocaust
Memorlal Museum and Educatlon Center under con-
tract from the Department of Interlor. This version
will Include:

- Novice user browsing software
- Database of approximately 110 articles (100-
500 words each) on "Austria and the Holocaust
1933-1945", written by Dr. Marsha Rozenbllt of
the History Department.
- Authorlng software for composing new artlcles
and editing
TIES 1s appeallng to authors because of the explicit
Instructlonal model, the reduction of computer-related
concepts, the focus on content, and the llvely user
Interface. It 1s an engagling challenge to reformulate
pedagogic plans Into the network of related articles
that TIES supports, There Is a great sense of satisfac-
tlon in composing articles and seelng the linkages
come to life as they are used by students In novel
ways.

TIES allows authors to create a network of conceptual
knowledge In which concepts are llnked assoclatlvely
and the learner is free to explore pathways based on
thelr needs and Interests. Potentlal

guldes for any discipline, travel guldebooks, annotated
Shakespeare or the Bible, and malntenance manuals
for equlpment, Each visitor suggests Intriguing and
novel applications.

TIES was Implemented by Dan Ostroff under the
directlon of Ben Shnelderman and Dr. Janls Morariu
of the College of Library and Informatlon Services. It
runs on a standard IBM PC (monochrome or color)
and on IBM PCs equlped with touchscreens. We are
attracted to the possibllity of ellminating the key-
board whlle still providing substantial exploratory
power. TIES was first written In APL and has been
rewrltten in the C programmlng language. A brlef
user's gulde and a more extensive author’s manual are
avallable In paper form and as TIES databases.

Three experlmental studles have been conducted to
test out certaln deslgn alternatives (such as demon-
strating the advantage of arrow keys over the mouse
for this system) and observe user behavior. More
than 180 subjects participated In these controlled
experlments. In additlon, more than two hundred
novices and experts have tried and commented 1nfor-
mally on the current design.

In the study comparing the arrow Keys (maybe better
termed "Jump” keys because the cursor would Jump
to the closest target In the dlrectlon pressed) to the
mouse, the arrow keys proved to be and average of
156% faster and preferred by almost 909 of the sub-
Jects. We conjecture that when there are a small
number of targets on the screen and when Jump Keys
can be Implemented, they provide a rapid, predict-
able, and appealing mechanism for selectlon.

In a second study using the TIES technique, subjects
traversed a database with 42 artlcles about the

January 1986 Volume 17 Number 3

Unlverslty of Maryland Student Unlon. The embedded
menus technlque reduced the number of screens
viewed when compared with an expllclt menu stra-
tegy. There were slgnlficant reductlons In the tlmes
for task performance, and the sublective preference
was strongly for the embedded menus.

The embedded menus ldea was also used for two
experiments with onllne malntenance manuals
(OLMM), conducted by Larry Koved and supported
by IBM Federal Systems Dlvislon. A tree structured
and llnear form of a 52 page malntenance manual was
prepared for screen presentation and In paper form.
Experimental subjects had to perform 12 tasks usling
one of the manuals. Slgnificant differences were found
showing that time was reduced using the paper ver-
slons. No significant differences were found between
the tree and linear verslons for speed or error rates.
When a pruning algorithm was applied to the text to
allow users to trim text unrelated to thelr task, the
tilme was cut In half. This latter experiment used
only the computer conditlon and demonstrated one of
the advantages of screens over printed text. This Is
important, since for many appllcations printed manu-
als are still easler to use and approximately 309% fas-
ter to read than computer displays.

A fleld trlal was conducted for a week In the B'nal
Brith Klutznlick Museum in Washlngton, DC usling the
touchscreen and arrow key verslons. Visltors from 7
to 77 years explored the Austria database and pro-
vided comments on subjlective evaluatlon forms.
Reactlon was generally very posltive with a strong
preference for the touchscreen verslon.

TIES 1s complete, but there are small refinements and
many potential extenslons which we would llke to
pursue. The software needs further documentation
and the authoring guide could be expanded.

Major extenslons Include support for graphics, video-
dise, or Infegration with other software. Further test-
ing I1s needed to select the optimum touchscreen or
other Input devices and to test alternate screens. We
are also Interested In further testlng wlth the screen
mounted horizontally inside a nlcely bullt wooden
table. We hope to attract the large fraction of the
populatlon that Is anxlous about uslng computers, but
could beneflt from the Informatlon resources of a com-
puter system.

4) Direct manipulation and DMDOS

Certaln computer systems generate feellngs of
enthuslasm, confldence, desire for exploration, clarity,
competence, and predlctability. These posltlve experl-
ences seem to emerge when the user Is presented with
a visual dlsplay of the world of action with the objects
of Interest clearly avallable for Intultlively obvlous
manlpulation. Operatlons are accomplished by physi-
cal actlons, such as speclal buttons, Joystick, mouse,
or touchscreen, rather than by typlng commands or
making menu selectlons. These operations are gen-
erally rapld, Incremental (that is, smooth or continu-
ous), and reversible.

Famlllar examples of direct manlpulation systems
Include full screen dlsplay editor-formatters (What
you see 1s what you get - WYSIWYG), video games,
VisiCalce and its descendants, some educational games,
alr traffic control dlsplays, and the Macintosh, Lisa,
and XEROX STAR environments. TIES might also

SIGCHI Bulletin

31

32

be seen as a direct manipulation system for pursuing
\deas in textual databases.

To explore the deslgn Issues In direct manlpulation
systems Osamu Isek! (Visitlng Scholar for Nippon
Electric Company in Japan) implemented a dlrect
manlpulation verston of the IBM PC-DOS commands.

Called DMDOS (for Direct Manlipulation DOS), 1t
displays both the A and B directorles slmultaneously.
Directory flles are selected by polnting and clicking.
The dlrectory can be sorted, sub-directories can be
traversed, and the display can be swltched from
WIDE to FULL mode.

Operations supported are comparison of two files,
copylng to a file, copylng from a flle to the screen,
copying from the screen to a flle, copylng from a flle
to the printer, comparison of two flles, erasing of files,
execution of programs, and online help.

To copy a file from one disk dlrectory to another,
merely polnt (uslng arrow keys or the mouse) at the
file, and click (press RETURN or the mouse button).

Then polnt and click on the COPY button. Flnally,
polnt at the free space on the second dlrectory and
click once. Now, you may type the new file name or
Just click a second tlme to use the same name. Your
flle 1s copled.

Design refilnements have been based on usage experl-
ence, comments from dozens of knowledgeable users,
and the reactlons of 24 sublects In an experimental
comparison. In this experlment noen-programmers
were taught elther PC-DOS or DMDOS and required
to carrled out a benchmark set of tasks. The subjects
were struggling to absorb the concepts In DOS, such
as flles, disks, dlrectorles, copylng, etc.,, and DMDOS
users were faster but not at a statistically slgnificant
level.

We are continuing to reflne and test DMDOS to
understand the relatlve merits of speclfic changes. A
macro faclilty which allows creatlon of batch flles by
merely carrying out operations Is belng added. An
emplrical test with the mouse and wIith more
knowledgeable users iIs being considered.

SIGCHI Bulletin

. . Date i
Directory Display Controls []\ [Tam<
X X{
D05 2.10 06-05-1985 12:15.30
DRIVE A | volume name SUB-DIR SORT WIDE DRIVEB | work disk SUB-DIR SORT FULL
DIR: \ DIR : \BINA
T 1> DMDOSSUB BAT 52 05-21-85 f 1> JUDOD BAT 2> TEXTFILT EXE
2> DMDOS BAT 99 05-21-85 3> PRINT coMm 4> RECOVER COMm
3> DM_DOS BAN 975 05-21-85 5> ASSIGN COM 6> TREE com
4> DM_DOS PRM 1620 05-21-85 7> GRAPHICS COM 8> FIND EXE
5> DM__DOS TBL 5504 05-21-85 9> EXE2BIN EXE 10> LINK EXE
6> DM_DOS MSG 15542 05-21-85 11> DEBUG COM 12> BACK BAT
7> DM__DQS COM 65024 05-21-85 13> PROGFILT EXE 14> BASICA com
8> DM_DOS 000 42240 05-21-85 15> BUF128 EXE 16> IC oM
9> DMINTR TXT 7552 05-21-85 17> DBASE BAT 18> 123TUTO BAT
10> DMHELP TXT 13696 05-21-85- 19> 123 BAT 20> FDISK com
[! -more { | -more
11 File(s) 162816 bytes free 36 File(s) 80896 bytes free
COPY || cOMP || EXEC ERASE || viEw || PRINT [| KEYN || FORMAT
............ B N
Prompt and Error Message Area MACRO || HELP || EXIT l
.. A
Commands Commands Personal Special
requiring requiring Commands pecia
2 arguments 1 argument Commands
DMDOS Screen

January 1986

Volume 17 Number 3

