
NDIVIDUAL USER INTERFACES FOR TEXT SEARCHING ARE OFTEN CONFUSING; AS

a group they are seriously inconsistent. We propose a four-phase framework

for user-interface design that provides common structure and terminology for

searching while preserving the distinct features of individual collections of

documents and search mechanisms.

Ben Shneiderman, Donald Byrd, and W. Bruce Croft

How to satisfy users whose searches return

mountains of irrelevant documents—or nothing at all?

Emphasize user-interface clarity and consistency.

Sorting Out Searching
A User-Interface Framework

for Text Searches

The ideal user interface is comprehensible, pre-
dictable, and controllable, but many current text-
search interfaces—especially on the World-Wide
Web—involve unnecessarily complex and obscure
features. The result is confusion and frustration for
advanced users as well as for beginners, scientists, and
students [8].

Even when a user interface’s design is improved,
inconsistencies can cause mistaken assumptions
and increase the likelihood of failure to find rele-
vant documents as users move from one search sys-
tem to another. For example, the search string
“Hall effect” could produce various searches,
including:

• Exact match for “Hall effect”
• Case-insensitive match for “hall effect”
• Best match for “Hall” and “effect”
• Boolean match for “Hall” and “effect”
• Boolean match for “Hall” or “effect”

Few systems spell out the interpretation they are
using. Furthermore, systems often use surprising
query transformations, unpredictable stemming algo-
rithms, and mysterious weightings for fields. And in
many systems, the results are displayed in a relevance
ranking whose meaning is a mystery to many users
(and sometimes a proprietary secret).

Our four-phase framework increases clarity and

S u p p o r t i n g T e c h n o l o g i e s

COMMUNICATIONS OF THE ACM April 1998/Vol. 41, No. 4 95

96 April 1998/Vol. 41, No. 4 COMMUNICATIONS OF THE ACM

user control while reducing inconsistencies in text-
search user interfaces. Similarly, in the automobile, the
driver/user interface is something we now take for
granted, but it took decades to reach today’s refine-
ment and standardization [5]—and holdover inconsis-
tencies, like left/right variations from country to
country, still cause problems for drivers. Cooperation
in interface design can spare text-search users millions
of conceptual fatalities.

Four-Phase Search Framework
The four-phase framework allows designers of specific
systems to offer a variety of features in an orderly and
consistent way. Users begin the search process by con-
sidering their information needs and clarifying their
search goals, after which they are ready to employ a

computer-based system for the four
phases: formulation (what happens
before the user starts a search); action
(starting the search); review of results
(what the user sees resulting from the
search); and refinement (what happens
after review of results and before going
back to formulation).

Formulation. The first phase is the
most complex, in that it involves multi-
ple levels of cognitive processing and
decisions of several types, including the
sources of the search, that is, where to
search; which fields in which documents
to search; which text to search for; and
which variants of that text to accept.
Some systems walk the user through
these decisions, but the decisions them-
selves cannot always be made in a prede-
termined order; nor do they exhaust the
query-formulation possibilities.

The first step in performing a search
is usually deciding where to search
(sources). The location is often a single
physical database but increasingly is
multiple and distributed databases,
accessed across a network. Even if it
were technically and economically fea-

sible, searching all libraries or all collections in a
library is often undesirable. When users know where
the relevant material is, they generally prefer to limit
their searches to that library, collection, or range of
documents.

Each document in a collection may have multiple
fields (sometimes called attributes, components, or
tags). Users may wish to limit their search to specific
fields or give a higher rank to documents whose titles
contain search terms (see, for example, the elaborate
weighting algorithm used by THOMAS, the Library
of Congress’s legislative-information system [1]).
Searches may also be restricted by structured fields,
such as year of publication, language, and publisher.

There are various ways to express what to search for
in full text; the most important are probably unstruc-
tured text, text with embedded operators, and text
with operators specified separately. Pure unstructured-
text interfaces are unusual; most popular Web search
services and other systems, such as the commercial
system InQuery, accept either unstructured text or
text with embedded operators. An example of the lat-
ter is the widely used syntax of ““city guide” +Boston”
(the words “city” and “guide” must appear very near

COMMUNICATIONS OF THE ACM April 1998/Vol. 41, No. 4 96

Figure 1. This NewsFinder prototype allows users to
see and control all aspects of a search. The conventional
interface here includes a button to start searching. But

with dynamic queries, the results window (bottom)
would be filled from the start and change whenever

anything changes in the query window, eliminating the
need for an explicit search button.

COMMUNICATIONS OF THE ACM April 1998/Vol. 41, No. 4 97

each other, and the word “Boston” is required).
Finally, the Web search services HotBot and Open-
Text offer text with separate operators. All three ways
can be effective, but only if used properly.

In many situations, searches on meaningful phrases
are far more effective than searches on the words in a
phrase. For example, for someone searching for infor-
mation on air pollution, the phrase “air pollution” is
likely to find many fewer irrelevant documents
(greater precision) than the pair of words “air” and
“pollution”—though the search will tend to overlook
relevant documents referring to “air quality” and
“atmospheric pollution” (lower recall). It should be
easy for users to specify that a series of words should
be considered a phrase.

The unstructured-text approach, often called “nat-
ural language,” can be confusing. For example, many
systems treat “and” and “not” as stop words. In such
systems, the query “bees and not honey” means the
same thing as just “bees honey”; compared to the
query “bees,” “bees and not honey” is more likely to
retrieve information about honey, not less likely. The
traditional solution to such ambiguities is feedback to
users on how the system interpreted their queries, but
it is difficult to clarify such issues for novices.

In theory, the text-with-embedded-operators
approach can be completely unambiguous and still be
able to handle phrases and fields. However, our expe-
rience is that many users have trouble with this
approach. One reason is lack of standardization—the
syntax and meaning of embedded operators vary con-
siderably from one system to another, so the user can
easily get confused. Another problem is inadvertent
activation, as in, say, innocently using text the user
thinks of as unstructured but contains characters or
strings that will be interpreted as embedded opera-
tors. For example, in the AltaVista Web search
engine’s advanced search option, “*” indicates a
“wildcard” (matching anything); in Excite! and Hot-
Bot, “*” has no special meaning. These two problems
are related in that lack of standardization can confuse
users and lead to inadvertent activation. To experience
these problems and others first hand, just use several
Web search services to look for information on the
electronic-commerce company called E*Trade.

Other than embedded operators, the only way we
know to specify phrases unambiguously is text with
operators specified separately; the program considers
the contents of every text-entry box as a phrase and
clearly says so on the screen. Then multiple entry
boxes allow for multiple phrases. A text-entry box
must also accept a single word. If users can choose
among Boolean operations, proximity restrictions,
and other strategies for combining the boxes, they

should be able to express them. But regardless of
whether any choices are available, users must be told
what combining technique is being used. Ideally,
users and service providers should have control over
the contents of stop-word lists (such as common
words and single letters), and users should at least be
gently warned when they try to search for a stop word.

The basic issues are whether the program can inter-
pret the query the way the user intended it and—even
if it does—whether the user knows the program inter-
prets it that way.

Users are often unsure of the exact value of the
field they want. Indeed, there may be no single value
that is appropriate. In such cases, users may want
variants to be accepted. In structured fields of text
databases, as in traditional databases, these acceptable
variants may include a range on a numeric or date
field. In unstructured text fields, interfaces may allow
user control over:

• Capitalization (case sensitivity)
• Stemmed versions, so, for example, searching for

“teacher” finds words like “teach” and “teaching”
• Partial matches, so, for example, searching for “biol-

ogy” retrieves “sociobiology” and “astrobiology”
• Synonyms, so, for example, searching for “cancer”

finds “malignant tumor”
• Abbreviations and acronyms, so, for example,

searching for “Digital Equipment Corp.” finds
“DEC”

• Stop words, so, for example, common words, such
as “the” and “to” are excluded

Other possibilities include phonetic variants, like
those found by N-grams and Soundex-like methods,
and broader or narrower terms, presumably from a
thesaurus. In all cases, the user interface should make
it clear to the user how variants are handled.

Action. Searches may be started explicitly or implic-
itly. The typical process today is for users to click on a
Search button to initiate the search, then wait for the
results. But an appealing alternative is “dynamic
queries” in which there is no Search button, but the
result set is continuously displayed and updated as the
user changes the search. Such research prototypes as
FilmFinder and HomeFinder [7] and such commer-
cial systems as Folio Views apply this technique. The
dynamic-queries technique requires adequate screen
space and rapid processing, but the advantages are
great, allowing a user to broaden, narrow, and refocus
a search several times in as many seconds.

In situations in which it is not practical to re-run
the query and continuously update results—for

example, when the database and the user are con-
nected by a network with limited bandwidth—the
“query preview” approach is worth considering [2].
With this approach, changes to a query simply
update a display (perhaps just an estimate) of the
number of hits. The query is not actually run until
the user requests the full results, presumably when
satisfied the number of hits is neither zero nor so high
as to be cumbersome.

Review of results. Many information retrieval inter-
faces let users specify result set size (for example, a
maximum of 100 documents), contents (which fields
are displayed), sequencing of documents (such as
alphabetical, chronological, or relevance ranked), and,
occasionally, clustering (by field value and topics). All
of these capabilities can be valuable in trying to make
a list of documents easier to handle. But even with
these features, a query against a large database can
produce so many potentially useful hits that the result
is overwhelming—say, several hundred or more. For-
tunately, much more can be done to display results in
a useful form.

Recent work in information retrieval interfaces,
capitalizing on general information-visualization
research, has dramatically expanded the palette of dis-
play techniques. For example, LyberWorld [3] dis-
plays document icons inside a circle, with terms
around the circumference “pulling” the documents
toward themselves; the terms can be moved and the
strength of their pulls varied. Such techniques as tile-
bars, perspective walls, cone trees, and document
lenses are described in [6].

Search interfaces should also provide helpful mes-
sages to support progressive refinement. For example,
if a stop word or a misspelling is eliminated from a
search input window, or if stemmed terms, partial
matches, or variant capitalizations are included, users
should be made aware of these changes to their query.

Refinement. Relevance feedback is one of the most
important ways current information retrieval technol-
ogy supports progressive refinement. An empirical
study confirmed that users produce superior searches
and are more satisfied when they can see and manipu-
late the words relevance feedback adds to their query
[4]. Another aspect of refinement is support for suc-
cessive queries. As searches are made, the system
should keep track in a history buffer, allowing review,
alteration, and resubmission of earlier searches.

Conclusions
The sample Web interface in Figure 1 requires noth-
ing more advanced than HTML tables and forms, but

in some cases, applying our four-phase framework suc-
cessfully over the Web may require additional tools,
such as Java. On the other hand, while we have con-
centrated on text situations, we suspect the framework
will prove appropriate for multimedia as well as for
some traditional database management applications.

Finding common ground for search interfaces is
difficult, but not finding it would be tragic. While
early adopters of technology are willing to push ahead
to overcome difficulties, the middle and late adopters
are less tolerant. In particular, the future of the Web
as a universal tool may depend on interface develop-
ers’ ability to reduce frustration and confusion for the
masses of users while enabling them to reliably find
what they need. Some progress has been made; much
more remains to be done.

References
1. Croft, W., Cook, R., and Wilder, D. Providing government information

on the Internet: Experiences with THOMAS. In Proceedings of Digital
Libraries ’95 (Austin, June 11–13), ACM Press, New York, 1995, pp.
19–24.

2. Doan, K., Plaisant, C., and Shneiderman, B. Query previews for networked
information systems. In Proceedings of the 3d Forum on Research and Technol-
ogy Advances in Digital Libraries (ADL) ’96 (Washington, D.C., May
13–15), IEEE Computer Science Press, Los Alamitos, Calif., 1996, pp.
120–129.

3. Hemmje, M., Kunkel, C., and Willett, A. LyberWorld—A visualization
user interface supporting full-text retrieval. In Proceedings of the 17th Annual
International Conference on Research and Development in Information Retrieval
(SIGIR’94) (Dublin, July 3–6), W. Croft and C. van Rijsbergen, Eds.
Springer-Verlag, London, 1994, pp. 249–257.

4. Koenemann, J., and Belkin, N. A case for interaction: A study of interac-
tive information retrieval behavior and effectiveness. In Proceedings of CHI
’96, Human Factors in Computing Systems (Vancouver, B.C., Apr. 13–18),
ACM Press, New York, 1996, pp. 205–212.

5. Oliver, S., and Berkebile, D. The Smithsonian Collection of Automobiles and
Motorcycles. Smithsonian Institution Press, Washington, D.C., 1968.

6. Rao, R., Pedersen, J., Hearst, M., Mackinlay, J., Card, S., Masinter, L.,
Halvorsen, P.-K., and Robertson, G. Rich interaction in the digital library.
Commun. ACM 38, 4 (Apr. 1995), 29–39.

7. Shneiderman, B. Dynamic queries for visual information seeking. IEEE
Software 11, 6 (Nov.–Dec. 1994), 70–77.

8. Somerson, Paul. Web coma. PC Comput. (Aug. 1996), 57.

Ben Shneiderman (ben@cs.umd.edu) is a professor in the
Department of Computer Science and director of the
Human-Computer Interaction Laboratory at the University of
Maryland, College Park.
Donald Byrd (dbyrd@cs.umass.edu) is a researcher in the Center
for Intelligent Information Retrieval in the Computer Science
Department of the University of Massachusetts at Amherst and president
of Advanced Music Notation Systems, Inc., in Williamsburg, Mass.
W. Bruce Croft (croft@cs.umass.edu) is a professor in the
Department of Computer Science and director of the Center for
Intelligent Information Retrieval, University of Massachusetts at
Amherst.

This work is supported in part by the National Science Foundation,
Library of Congress, and Department of Commerce under cooperative agreement
EEC-9209623; by NRaD Contract Number N66001-94-D-6054; by NASA contract
NAG-528-95; and by NSF contract IRI-96-15534. Any opinions, findings,
conclusions, and recommendations expressed here are those of the authors and
may not reflect those of the sponsors.

© ACM 0002-0782/98/0400 $3.50

c

98 April 1998/Vol. 41, No. 4 COMMUNICATIONS OF THE ACM

