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Abstract. Rapid growth of digital data collections is overwhelming the
capabilities of humans to comprehend them without aid. The extraction of
useful data from large raw data sets is something that humans do poorly.
Aggregation is a technique that extracts important aspect from groups of data
thus reducing the amount that the user has to deal with at one time, thereby
enabling them to discover patterns, outliers, gaps, and clusters. Previous
mechanisms for interactive exploration with aggregated data were either too
complex to use or too limited in scope. This paper proposes a new technique for
dynamic aggregation that can combine with dynamic queries to support most of
the tasks involved in data manipulation.

1. Introduction

Current technologies have enabled massive collections of data. Newer and faster
algorithms for data analysis are always in demand to harness the flood. If the amount
of data can be reduced to a manageable size, then humans can find patterns that
automated algorithms may have missed. Dynamic Queries (DQ) is an interactive
technique for data exploration [1]. Users manipulate sliders to filter out data. Each
slider corresponds to an attribute of the data. A requirement of dynamic queries is that
the visualization must keep up with the user’s manipulation within 100 milliseconds.
Since a large portion of the computer’s computation is spent on visualization, when
the datasets grow, the time to complete drawing grows proportionately. Thus DQ isn’t
suitable for dealing with large amounts of data.

Large datasets poses two problems to interactive exploration. One is how to
represent the elements on the screen fast enough. Second is if you draw it on the
screen, can the user even understand it. Visual occlusion is a problem in general for
visualization. If the user can’t see the data point, then the time spent drawing the item
was wasted. This problem can be solved for small numbers of items.  The commercial
data analysis package, SpotFire (www.spotfire.com), randomly jitters the data points
continuously, so that clusters that occupy the same point can be seen. With larger data
sets, the occlusion problem grows even more pressing, due to the non-uniform nature
of most data sets.  The visual representation can deceive users by not showing clusters
that exist in the data.
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Aggregation is an effective way of managing large data sets. It summarizes groups
of similar data elements and can greatly reduce the number of glyphs that are shown
on the screen. Because users can specify how to aggregate the data, the important
aspects of the data will be preserved while the dataset size is reduced. Patterns that are
hidden within millions of data points can emerge dramatically when aggregation
reduces these into thousands of points. Fredrikson et al. [5] explored using aggregated
data in conjunction with SpotFire, and demonstrated the uses of different kinds of
aggregation with highway incident data. Hochheiser and Shneiderman [6] used
aggregation to interactively explore web log data. In their study, the aggregation was
done manually through SQL queries, though integration with an aggregation tool was
suggested as a future direction.

2. Related Work

Putting aggregation and Dynamic Queries together in one interface is not a new idea.
Goldstein et al. [2] proposed it in 1994. An interface mechanism called Aggregate
Manager (AM) was combined with DQ, which produced a powerful combination
(Figure 1). DQ is used to select a subset of the data set; this is transferred over to AM
as an aggregate group. AM can then do aggregation on different aggregate groups,
and pass the data back to DQ for display. This loop fulfills one of the lacking area of
DQ: providing conjunct of disjunctive groups. Using AM along with DQ provides
many possible combinations for data manipulation, which is powerful but can be hard
for users to understand and fully control.

           Fig. 1. The workspaces of AM with DQ               Fig. 2. SolarPlot showing a histogram

An alternative approach to user-controlled aggregation is automatic aggregation.
Chuah and Roth [3] used automatic aggregation in SolarPlot, a circular histogram
(Figure 2). Elements are mapped to a pixel on the circumference of a circle; the height
of a spike that emanates from the pixel represents the number of data values that fall
with in that pixel. This aggregation is intuitive and simple, the scale of the
aggregation depends on the diameter of the circle, and the aggregated value is easily
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understood. SolarPlot only encode one dimension of data in the visualization, thus any
correlations between fields are harder to find.

Fig. 3. Close up and zoomed out view of Aggregate Towers

Rayson’s [4] Aggregate Towers provide another automatic aggregation interface.
Data points are displayed as cubes on a 3d plane. As the user zoom in and out, data
points are clustered based on their geospatial location (Figure 3). Stacks pointing out
of the plane represent the aggregate groups. The cubes still retain their original color-
coding. This automatic technique alleviates 2D occlusion problem by forcing it in to
3D. These stacks of data towers will occlude each other in 3D, but is easily remedied
by allowing the user to freely rotate the view.

3. A Simple User Driven Aggregation Interface

Automatic aggregation is useful as a way to reduce occlusion. However, having no
user control makes automatic aggregation of limited use for general datasets.
Goldstein’s AM is complex and hard to use because the user has complete control and
no automation. Our system represents a middle of the road approach.

SpotFire’s user interface was used as the starting point of our system. In SpotFire, a
scatter plot of two attributes of the data is at center of the screen. Combo boxes at the
edges of the axes select the fields being plotted. A panel on the right side displays DQ
controls and detail on demand. The entire interface is in front of the user. Our system
has similar characteristics as SpotFire. The aggregation controls are located on the left
side so that DQ can be placed on the right side. The primary aggregation control is a
combo box that can be enabled or disabled (Figure 4). Specifying a group of data
manually is easy using DQ. However, creating many such groups can be time
consuming and should be automated. The user only needs to select a field to group on,
by using the "Group by" widget, and have the program sort out the groups. The
default grouping algorithm used is equivalence grouping. For numerical data,
equivalence is when they represent the same value, thus 4 and 4.0 are the same and
belong in the same group. For categorical/string data, a case sensitive string
comparison is used to determine equivalence, thus "4" and "4.0" as string are not the
same. Should the user require a different grouping criterion, clicking on the "..."
button to the right of the combo box will bring up an options dialog. Here, the user
can choose which algorithm to use and to configure the algorithm to their liking.  If
the groups that are created are not specific enough for the user, they can be broken
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down into subgroups. E.g. in the case of census data, we can group the entries based
on gender, then subgroup based on age brackets, creating meaningful groups that can
be used in aggregation. Subgroups are also controlled by checkable combo boxes. A
combo box labeled "Subgroup by" will appear under the "Group by" widget after the
user has selected a field to group by.

Once the grouping computation is finished, the results are shown on the screen
with each dot now representing a particular group, the size of the dot is currently
coded to show the number of elements in that group. The secondary aggregation
controls are the aggregate method combo boxes. Those are located below the vertical
axes field selector, and to the left of the horizontal axes field selector. The user can
select different aggregation algorithms for each axis independently.

4. System Demonstration

The dataset used was extracted from web logs. The data is taken from University of
Maryland’s Computer Science web server. Only the requests that belonged to the
HCIL section of the website (www.cs.umd.edu/hcil) were extracted. This is similar to
the dataset that Hochheiser and Shneiderman [6] explored in their study. The data
have the following five fields:

• Client host
• time: timestamp of request
• url: the URL requested
• return code: the server response code to request
• bandwidth used: number of bytes transmitted for that request

Web log data is very large and has only a few data fields. Traditional web analysis
packages create tables of statistics and static graphs. The user merely feed the data to
the program, and it is the program that decides what to report back to the user.
Hochheister and Shneiderman argued in their paper that interactive star field
visualization, like SpotFire, is a valid way of analyzing web log data. However, in
order to find some of the interesting features involved preprocessing and aggregation.
Thus, using the same web data will be a good test of the flexibility and power of our
simple aggregation interface.

Since the web data consists of individual client requests, one logical grouping
would be to group by user. By viewing the size of the groups, one can detect
abnormally large numbers of requests from a particular user. We find that the Google
spider the most frequent visitor of HCIL. To find out how much bandwidth Google
consumed, we change the field we are viewing to “Bandwidth used” and set the
aggregator function to sum the field (Figure 4). We found that it isn’t Google, but
another crawler, EoExchange that is using the most bandwidth. To view the access
patterns of the clients, we can subgroup based on the time of access. Figure 5 shows
access patterns of users over days. The bandwidth hog EoExchange shows up in this
graph as well, while Google’s accesses are well hidden and spread out across days.
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Fig. 4. Finding the most frequent visitor by aggregating by client host

Fig. 5. User activity over days
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5. Conclusion

We have developed simple manual aggregation interface that we believe the users can
understand and use effectively. However, due to the inherent complicity of the
aggregation concept, users should have in mind a specific question they would like
answered. Unlike DQ, in which users can explore and experiment with data,
aggregation should be thought of as creation of a new dataset. This new dataset can
then be explored by DQ. A usability test should be conducted to test how readily users
understand using the interface and which grouping algorithm and aggregation
algorithm are needed to have a rich set of tools so the user can find answers to more
complex questions than what was considered in the paper.
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