
Fine grained parallelization of the Car-Parrinello ab initio
molecular dynamics method on Blue Gene/L

Eric Bohm, Abhinav Bhatele, and Laxmikant V. Kale
Department of Computer Science

University of Illinois, 201 N. Goodwin Avenue
Urbana, IL 61801-2302

Mark E. Tuckerman
Department of Chemistry and Courant Institute of Mathematical Sciences

New York University, 100 Washington Square East
New York, NY 10003

Sameer Kumar, John A. Gunnels and Glenn J. Martyna
IBM Thomas J. Watson Research Center, PO Box 218

Yorktown Heights, NY 10598

Abstract

Important scientific problems can be treated via ab initio based molecular modeling approaches,
wherein atomic forces are derived from an energy function that explicitly considers the electrons. The
Car-Parrinello ab initio molecular dynamics method (CPAIMD) which typically embodies a theoretically
exact ab initio technique called Kohn-Sham Density Functional Theory, evaluated using an approximate
functional and a finite basis set of plane-waves, is widely used to study small systems containing on the
order of 10-103 atoms. However, CPAIMD’s impact has been limited until recent efforts by ourselves
and others due to difficulties inherent in scaling the technique beyond processor numbers about equal to
the number of electronic states. CPAIMD computations involve a large number of interdependent phases
with high interprocessor communication overhead. These phases require the evaluation of multiple
concurrent sparse 3D-Fast-Fourier Transforms (3D-FFTs), non-square matrix multiplications and few
concurrent dense 3D-FFTs all of which are known to require large interprocessor data movement when
efficiently parallelized. Using Charm++, a parallel programming language and runtime system and the
processor virtualization techniques it enables, the phases are discretized into a large number of virtual
processors, which are, in turn mapped flexibly onto physical processors, thereby allowing interleaving of
work. Interleaving is enhanced through both architecturally independent methods and network topology
aware mapping techniques. Algorithmic and Blue Gene/L specific optimizations are employed to scale
the CPAIMD method to at least 30-times the number of electronic states in small systems consisting of 24
to 768 atoms (32 to 1024 electronic states) in order to demonstrate fine grained parallelism. The largest
systems studied scaled well across the whole machine (20480 nodes.)

1

Introduction

As the computational power of large parallel computers has increased [1], the efficiency of the model-
ing methods has improved correspondingly, placing increasing demands on parallel programming tech-
niques. Therefore, the development of strategies capable of scaling the algorithmically complex, multi-
phase methods of today’s scientifically important applications to large numbers of processors, is relevant.
Herein, we present, in form appropriate for the non-expert, a description of a fine grained parallel imple-
mentation of the Car-Parrinello ab initio molecular dynamics (CPAIMD) algorithm [2, 3, 4, 5, 6], which
has been used to address key chemical and biological processes as well as to examine important problems
in materials science, biophysics, nanotechnology, and solid-state physics [7, 8, 9, 10, 11, 12, 13, 14, 15,
16]. The term fine grained indicates that the implementation decomposes the computational work into
small parts such that small systems can scale to large numbers of processors. The study highlights the
ability of synergistic research in parallel algorithm, hardware design and methodological development to
generate fast applications that allow new scientific insights to be garnered.

CPAIMD can be intuitively understood as solving Newton’s equations of motion numerically using
forces derived from electronic structure or ab initio calculations performed as the simulation proceeds,
thereby permitting the examination of phenomena that require a model containing a representation of the
electronic states to describe them. Typically CPAIMD implementations employ an (in principle) exact ab
initio technique known as Kohn-Sham Density Functional Theory[17, 18], the practical implementation
of which requires the use of an approximate functional[19, 20, 21] and a finite basis set, e.g., plane-
waves[2, 3, 4, 5, 6]. It should be noted, however, that the quality of both the basis sets[22, 23, 24, 25]
and the functionals[26] employed are continually improving.

From a computational point of view, the CPAIMD method involves many phases, including multiple
concurrent sparse 3D-Fast-Fourier Transforms (3D-FFTs), non-square matrix multiplications and sev-
eral concurrent dense 3D-FFT computations that possess non-trivial dependencies quite different from
those found in a classical molecular dynamics computation [27]. The parallel 3D-FFTs are, themselves,
communication intensive due to all-to-all interprocessor communication patterns inherent in their com-
putation (e.g. all processors which have a portion of the data set to be transformed must communicate).
The efficient concurrent execution of hundreds of parallel 3D-FFTs introduces a further challenge. In
order to switch between phases, large data movement between processors that generates relatively little
computation must be orchestrated. In general, parallelization of CPAIMD’s phases necessitates complex
trade-offs between memory, load balance of work across processors, and interprocessor communication
costs. Basic MPI-based implementations of CPAIMD, such as that developed by two of the authors
several years ago [28] exhibit limited scalability, thus restricting the number of processors that can be
effectively employed to be roughly equal to the number of electronic states in the system. In contrast,
recent efforts by ourselves and others, have overcome the states equal processors barrier [29, 30, 31].

In this paper, we present an overview for the non-expert of fine grained parallelization strategies for the
CPAIMD method. Parallel scaling on processor numbers greater than 30 times the number of electronic
states in small systems consisting of 24 to 768 atoms (32 to 1024 electronic states) is achieved. The 768
atom/1024 state system scaled well on all 20480 nodes of the Blue Gene/L torus network supercomputer
at the IBM T. J. Watson Research Center. Our implementation employs the Charm++ parallel program-
ming language and runtime system [32]. Charm++ offers the benefits of over-partitioning via migratable
objects a concept whose implementation involves decomposing the problem into many more discretiza-
tions than available processors and placing these parallel objects on available processors at startup and
allowing the runtime system the freedom to adjust their position as the system evolves. This approach
allows us to obtain high scalability and low per-iteration CPU times on the small problem sizes of inter-
est here. Performance is notably enhanced by exploiting Charm++’s ability to enable the interleaving

2

of computation and communication and to simplify the effective, topologically cognizant mapping of
work to processors which is key to the efficient use of Blue Gene/L’s torus network architecture. This
case study illustrates the competing objectives that must be balanced in the parallelization of a complex
multiphasic application and demonstrates a series of useful strategies and techniques that can be applied
to optimize a wider class of problems on large parallel supercomputers whether with or without a torus
network.

This short paper is organized as follows: The basic CPAIMD algorithm [2, 3, 4, 5, 6] is briefly reviewed
for completeness so that its parallelization can be understood. We highlight new Euler Exponential Spline
(EES) based approaches to basic elements [33, 34] of the CPAIMD technique that are key to our parallel
scaling, allow improved scalar performance, and have not been discussed in previous reviews [2, 3, 4, 5,
6, 29]; one of the EES based approaches has not been described previously in the literature. It is stressed
that the adoption of a CPAIMD method based on Ref. [35] permits the use of many highly efficient
routines and, furthermore, allows our non-standard but effective CPAIMD equations of motion to be
derived from a simple Hamiltonian formalism. Next, the parallelization of the serial algorithm is given
following the approach outlined in an earlier paper [29] which led to scaling on 1k processors of a 32
water molecule system. Significant extensions of our earlier work including the use and parallelization of
EES based techniques and the improved parallelization of many of the other phases of the computation,
in particular the 3D FFTs and matrix multiplications under Charm++, are discussed. The architecture of
Blue Gene/L is then described followed by a discussion of the CPAIMD optimizations motivated by Blue
Gene/L’s design. The mapping of the CPAIMD’s parallel objects to physical processors in the 3D torus
network is then given. Established Charm++ techniques proven effective in scaling classical molecular
dynamics on Blue Gene/L have been applied where appropriate [36]. Last, scaling results are presented
for liquid water in system sizes consisting of from 8 to 256 molecules under 3D-periodic boundary using
standard parameters and a generalized gradient approximate (GGA) functional, specifically, the BLYP
functional [19, 20].

The computation

The ground state electronic energy can be calculated by minimizing a functional of the electron density
following the principles of Density Functional Theory (DFT), a formally exact theory [17, 18]. In the
Kohn-Sham (KS) formulation of DFT used here which is also formally exact, the electron density, ρ(r) =
ρ(x, y, z), a probability density in three spatial dimensions, is expressed as the sum of the modulus
square of a set of single particle KS-electronic states (hereafter referred to simply as “states”). Typically,
two electrons are said to occupy each state. Unfortunately, the exact functional is not known and an
approximate functional must be employed. In this work, support is provided for an arbitrary generalized
gradient corrected approximate functional of the type given in the following references [19, 20, 21].
Furthermore, a finite set of plane-waves is used to describe the single particle states of the theory as
described in more detail below. Last, only the valence electrons of the atoms are treated. Thus, a single
water molecule or H2O which contains 10 electrons of total charge -10e, an oxygen ion of charge +8e and
a two hydrogen ions of charge +1e, is treated as an 8 electron system of total charge -8e. The value -8e
arises because the oxygen moiety carries valence charge +6e (this is often referred to as an “ion core”)
and the two hydrogen ions each carry a charge +1e, and, thus, 8 electrons are needed to neutralize the
system. Rather than carry forward the tedious nomenclature “ion-core”, the term ‘atom’ will be used,
allowing the reader to determine the “ion-core” or valence charge by context.

Since KS DFT is a theory for non-interacting electrons in an effective, self-consistent potential that
yields the same ground state as the physical interacting electron system, the KS density functional con-
tains several terms: the quantum mechanical kinetic energy of non-interacting electrons, the Coulomb

3

repulsion or Hartree energy between negative charge clouds ρ(r) and ρ(r′) or the Hartree, the correction
of the Hartree energy to account for the quantum nature of the electrons or the exchange-correlation en-
ergy, and the interaction of the electrons with the atoms (ion-cores) in the system or the external energy.
In the last term, the interaction of the valence electrons with the atoms (ion-cores) is treated explicitly,
and the core electrons are mathematically removed, resulting in the electron-atom (ion-core) non-local
energy. This term should not be confused with non-local electron-electron interactions that are not of
interest here. The form of the exchange-correlation energy is not known and must be approximated as
discussed above.

Once the functional is minimized, the forces acting on the atoms can be computed from the functional
and the atom-atom (ion core-ion core) Coulomb interaction, and the positions and velocities of the atoms
evolved in time according to a finite-difference solution of Newton’s equations of motion. The beauty
of the CPAIMD method is that it avoids this discontinuous process and allows the two elements to occur
simultaneously, enabled by a classical adiabatic principle [37, 2]. Using a variant of the non-orthogonal
state dynamics of Ref. [35] different from the standard CPAIMD technique, momenta are introduced
conjugate to the plane wave basis set coefficients and a fictitious classical kinetic energy introduced to
form a fictitious classical Hamiltonian (Hfict−tot = Hatom +Hfict−electron) from which simple equations
of motion naturally arise. Orthogonality constraints are absent due to the use of the non-orthogonal state
based approach (see below). As long as the plane-wave coefficients move rapidly compared to the atoms
and exhibit small amplitude oscillations around the minimum of the functional at the current (slowly
evolving) atom positions, the method works well. The basic algorithm is summarized in its essential
details in Fig. 1 and below. More complete reviews with many details are given in Refs. [2, 3, 4, 5, 6].
The new EES based methods are described in more technical detail in Refs. [33, 34].

A set of ns, electronic states is introduced which are represented as a set of (complex) Fourier coef-
ficients, Ψ(s, gx, gy, gz), on a regular 3-dimensional “g-space” (or reciprocal Fourier space) of side N
where s is the state index and gx, gy, gz index the Fourier coefficients. The array is not dense but rather, a
sphere of radius proportional to N/4 defines the ng non-zero elements. The number of electronic states
ns, and the number of points in g-space (ng) both increase linearly with the number of atoms, Natom, and
the memory requirement is ∼ N2

atom.
In the course of the computation, each state switches between its g-space and real-space representation

via 3D-FFTs of sizeN×N×N (Phases I and VI). As there are many states, this requires the computation
of multiple simultaneous 3D-FFTs. The real space representation of the states, Ψ(s, x, y, z), is a dense
3D array of real numbers of size N × N × N . (Recent improvements [38, 39, 40] based on localized
states [41] are beyond the current discussion.) The real-space representation of the electron density,
ρ(x, y, z), is computed by squaring the real-space representation of each state and then summing over all
states, ρ(x, y, z) =

∑
s |Ψ(s, x, y, z)|2 (Phase II). The density in its real-space representation is, in any

case, a denseN×N×N array of real numbers. The scalar work employed to generate the density scales
as N2

atom logNatom, dominated by the cost of the 3D-FFTs used to generate the real space representation
of the states. The (complex) Fourier coefficients of the density, ρ(gx, gy, gz), are obtained from a single
3D-FFT of ρ(x, y, z) which scales as Natom logNatom. Note, this 3D-FFT cannot be launched until the
reduction is complete (Phase II). The g-space representation of the density is a single array in a g-space
of size N × N × N that has non-zero values inside a sphere of radius N/2. The memory required to
store the density in both real and g-space scales like Natom.

Phases III and IV compute the Hartree, external and exchange-correlation energies, as well as the
Kohn-Sham (KS) potential, vks(x, y, z). The approximate exchange-correlation functionals of interest,
here, and their associated KS potential depend on both the density ρ(x, y, z) and its spatial gradient
∇ρ(x, y, z), the latter requiring additional 3D-FFTs to compute. The external energy is computed via
2(Natom−type + 1) 3D-FFTs within an Euler Exponential Spline (EES) formalism analogous to that of

4

Refs. [33, 34]. Here, Natom−type is the number of atom types present in the system (e.g. if only car-
bon, hydrogen, and nitrogen atoms are present, then there are 3 atom types.). These 3D-FFTs are 1.4x
larger on edge (1.4N) than those used to compute the exchange-correlation energy. Using the EES
based method, the computation of the external potential energy scales exactly as the computation of the
exchange-correlation energy with system size, Natom logNatom. The KS potential, a portion of which is
related to each energy term, is computed via several more 3D-FFTs and then sent (multicast) back to the
states in the real-space (Phase V). The derivative of the three energy terms with respect to the Fourier
coefficients, Ψ(s, gx, gy, gz), is computed by multiplying each state in real space by the KS potential and
performing an inverse FFT (Phase VI). The negative derivative of an energy term with respect to a Fourier
coefficient of a given state is referred to as a force. The forces on the states are denoted FΨ(s, gx, gy, gz).

The electron-atom (ion-core) non-local energy and the kinetic energy of non-interacting electrons,
Phase IX, can be computed independently from the above work as depicted in Fig. 1. The non-local
energy and forces are computed using the EES technique described in Ref. [33]. Briefly, each state ob-
ject performs 2Natom−type 3D-FFTs if, for example, only s-wave non-locality is considered. The FFTs
are smaller on edge (≈ 0.7N) than those employed to compute the density. The required scalar work
scales as N2

atom logNatom while the memory requirement scales as N2
atom. The 3D-FFTs are performed

concurrently as the non-local energy does not couple the states together but rather couples each state,
individually, to all the atoms. The kinetic energy of non-interacting electrons is expressed (in the com-
puter science parlance) as a “point by point multiply” and reduction operation whose computation scales
as ∼ N2

atom (e.g. (h̄2/2me)
∑
gx,gy ,gzε|g|<gcut

∑
s fsg

2|Ψ(s, gx, gy, gz)|2 where h̄ is Planck’s constant, h
divided by 2π and me is the mass of the electron).

The forces from the non-local energy and the kinetic energy of non-interacting electrons are added
to those obtained from the Hartree, external and exchange-correlation energies to complete the force
computation. In order to proceed further, we note that the states satisfy an orthogonality condition
expressed as a matrix multiplication∑

gx,gy ,gzε|g|<gcut

Ψ(s, gx, gy, gz)Ψ
∗(s′, gx, gy, gz) = fsδss′ (1)

where fs is the occupation of each state and the indices are as above. Eq. (1) fixes the normalization of
the total wave function and hence, the number of electrons, and ensures that the Pauli exclusion principle
is satisfied (typically, fs = 2 and there are two electrons per state, one spin up and one spin down). The
number of allowed points in g-space, ng, is much larger than the number of states and hence the matrix
multiplication is non-square. Enforcing the orthogonality constraints requires ∼ N3

atom operations
If the Fourier coefficients were naively updated using the coefficient forces alluded to above, the states

would deviate wildly from the orthogonality constraint of Eq. (1). Therefore, two orthonormalization
steps are performed (Phase VII and VIII). The first step regularizes the forces which are then used to
evolve the states. The second step corrects the small deviations of the new states from orthogonal-
ity/normalization constraints. Both steps scale as ∼ N3

atom. The order of operations given above is
appropriate for functional minimization. Implementing the nonorthogonal state CPAIMD method em-
ployed in our software which is based on Ref [35] simply requires a change in the order of operations
and an additional matrix multiply as discussed in more detail in Ref [35] and below.

In summary, the memory requirement is ∼ N2
atom, the computational cost is ∼ Natom logNatom for

density related work,∼ N2
atom logNatom for state related work, and∼ N3

atom for the orthogonality related
work. In small systems, the ∼ N2

atom logNatom work is dominant while in large systems the ∼ N3
atom

work becomes the slow step.

5

Parallelization: parallel operations and data decomposition

The processor virtualization approach [42] embodied in the Charm++ parallel programming sys-
tem [43] forms the backbone of our CPAIMD application. Work is divided into a large number of objects
or virtual processors (VPs) and the computation is initially expressed in terms of virtual processors, only.
Either the runtime system or the user can specify/change the mapping of VPs to physical processors at
startup or during the execution of the application. The VPs are C++ objects (called chares), which com-
municate with each other via asynchronous method invocations or messages. Chares are organized into
indexed collections, called chare-arrays. In this way, Charm++ separates the issue of decomposition
and mapping.

CPAIMD parallel operations and data decomposition are described below. The analysis is based on
earlier work [29] which led to scaling on 1k processors of a 32 water molecule system. Here, we highlight
opportunities for interleaving communication and computation and reveal bottlenecks relevant to Blue
Gene/L. The description of the data decomposition that follows, shows how these opportunities can
be exploited on a torus network architecture like Blue Gene/L to generate high scaling. Non-trivial
extensions of our earlier work include the use and parallelization of Euler Exponential Spline based
techniques and the improved parallelization of the orthogonality work (matrix multiplications) and the
3D-FFT work related to density based computations.

Parallel operations

In phase I, the electronic states are transformed from their g-space representation to their real-space
state representation. The parallel 3D-FFTs employed to effect this change of representation are imple-
mented using a transpose-based method [44]. Our parallel 3D-FFT is performed in 3 stages. First, a set of
1D-FFTs are computed to yield Ψ(s, gx, gy, gz) → Ψ(s, gx, gy, z), second, a transpose is performed and
third, two sets of 1D-FFTs are computed to generate Ψ(s, gx, gy, z)→ Ψ(s, x, y, z) due to our planewise
decomposition of Ψ(s, x, y, z) (see below). Since the states have a sparse spherical distribution within
their 3D g-space grid but are dense in real space, this order of operations reduces the communication cost.
The spherical cutoff and the real-to-complex nature of the state 3D-FFT reduce both computation and
communication by≈ 4x compared to a full complex-to-complex 3D-FFT computation. On Blue Gene/L,
the required serial 1D-FFTs were performed using the ESSL library The computation/communication ra-
tio, defined as the ratio of the number of floating point operations required to compute the quantity of
interest in scalar to the number of bytes that must be communicated to compute the quantity of interest
in parallel, is ∼ logNatom.

The CPAIMD algorithm requires ns, multiple, concurrent 3D-FFTs to be performed. The computation
phase of one 3D-FFT is typically interleaved with the communication phase of several other 3D-FFTs. In
this way, the Charm++ programming model can effectively interleave computation and communication
on Blue Gene/L.

The reduction to form the probability density in real space occurs in phase II. Once the states are
available in real-space, the electronic density can be computed via

ρ(x, y, z) =
∑
s

|Ψ(s, x, y, z)|2.

While the states in real space are decomposed into N -planes, the density in real space is decomposed
into NyN sub-planes (see also below). That is each of the N planes is further subdivided into Ny parts.
Therefore, the density construction requires spawning (NyN) simultaneous reductions involving large
data sets (≈ 106 real numbers). The computation to communication ratio is roughly unity.

6

In phases II-VI, the electron density is processed. The electron density in real space is immediately
used to compute a portion of the “exchange-correlation energy” upon arrival. The Fourier components
of the density are then created by subjecting a copy of the density in real space to a 3D-FFT (phase
IV), which requires two transposes due to the sub-plane decomposition described below. Once in g-
space, the Fourier coefficients of the density are used to compute the “Hartree and external energies” via
2(Natom−type+1) 3D-FFTs, which can be performed independently. In addition, the gradient of the elec-
tron density in real space is created by making three copies of the Fourier coefficients of the density, point
by point multiplying each appropriately and performing three 3D-FFTs to real space (requiring 6 trans-
poses). The electron density and its gradients are employed to compute a second, gradient-dependent
contribution to the exchange-correlation energy. The Kohn-Sham potential, vks(x, y, z), is created by
performing 5 more 3D-FFTs (requiring 10 transposes) on data sets generated during the energy compu-
tation. The computation to communication ratio in this phase is logNatom.

The three energies are reduced across all processors involved, and Ny multicasts of degree ns are
performed in order to send each of the NyN subplanes of the KS-potential to the matching plane of each
of the ns states. This operation is a bottleneck and is, therefore, interleaved with the non-local energy
computation.

After performing multiple 3D-FFTs (phase VI) on the product of the Kohn-Sham potential with each
of the states, in a procedure exactly the reverse of that used to form the density, the forces FΨ(s, gx, gy, gz)
are obtained in g-space. The computation to communication ratio is again logNatom.

Phase IX requires the computation of the kinetic energy of the non-interacting electrons which can
be computed without interprocessor communication and the computation of the non-local interaction
between the electrons and the atoms via the new EES method [33]. The latter calculation involves
2Natom−type 3D-FFTs of size of ≈ 0.7N on edge and is interleaved with Phases II-VI. The memory
requirement and the communication/computation ratio for this phase both scale as the 3D-FFT phase
used to create the density (phase I).

The force regularization and orthonormalization are performed in phases VII-VIII. Once the forces
have been computed, a series of matrix multiplications must be performed. For functional minimization,
a (ns×ng)×(ng×ns) multiplication of the forces, FΨ(s, gx, gy, gz), by the states, Ψ(s′, gx, gy, gz), to form
the matrix, Λ(s, s′), is followed by a modification of the forces, FΨ(s, gx, gy, gz) ← FΨ(x, gx, gy, gz) −∑
s′ Λ(s, s′)Ψ(s′, gx, gy, gz).
Under non-orthogonagal state dynamics the forces are further multiplied by the precompted inverse

square root matrix which is available due to the change in the order of operations required by the dy-
namics method as described below. The modified forces are then employed to evolve the states in both
cases.

Under functional optimization, the evolved states are slightly non-orthogonal and must be “reorthog-
onalized” by matrix transformation. This requires the computation of the overlap matrix, S(s, s′) =∑
g Ψ(s, gx, gy, gz)Ψ(s′, gx, gy, gz). Next, the inverse square root of the S-matrix, T (s, s′) = S−1/2(s, s′)

is computed and the the orthonormal states, Ψ(new)(s, gx, gy, gz) =
∑
s T (s, s′)Ψ(s′, gx, gy, gz) are con-

structed. The matrix multiplications are non-square because the number of non-zero points in g-space,
ng, is much larger than the number of states, ns. For the non-orthogonal state dynamics, the input non-
orthogonal states are diagonalized in exactly the same way and the inverse square matrix stored for use
later.

A novel feature of our multiplication scheme is that the resultant matrix is used in a “backward path” to
compute the necessary modification to the input data, Ψ(new)(s, gx, gy, gz) =

∑
s T (s, s′)Ψ(s′, gx, gy, gz)

orFΨ(s, gx, gy, gz)← FΨ(s, gx, gy, gz)−
∑
s′ Λ(s, s′)Ψ(s′, gx, gy, gz) for functional minimization . Hence,

the Charm++ chare arrays assigned to perform the multiply do not destroy their input data (see below).
The result of the matrix multiplication, after summing contributions from all of g-space to form the S or

7

Λ matrices (see the decomposition below) and post-processing if necessary (e.g. to form the T-matrix),
is simply applied in place for each block. A reduction over rows, s′, is then performed, to generate
the desired result. The procedure required by the new nonorthogonal state CPAIMD method based on
Ref. [35] is not significantly different.

In summary, under functional minimization, an iteration starts with a set of orthogonal input states
that are used to compute forces. After force regularization, the states are evolved and slightly non-
orthogonal states generated. These states are in turn orthogonalized and the entire procedure repeated.
Under non-orthogonal state dynamics, a set of input non-orthogonal states is first orthogonalized and
the inverse square root matrix stored. Forces are computed on the orthonormal states and the forces on
the orthonormal states are transformed to forces on the non-orthonormal states as described above. The
non-orthonormal states are then evolved to the next step using the forces and the procedure repeated.
This summary omits some of details described elsewhere [35].

Note, the orthogonalization phase forms a barrier. The forces must be completed before orthogo-
nalization starts and new forces cannot be computed until the orthogonalization phase ends. Thus, the
communication into/out of this phase is critical, as is its implementation within a data-driven model
which allows the orthogonalization work to proceed (as far as possible) as data arrives and vice versa on
the outward path.

Data decomposition : enabling parallelism and interleaving

CPAIMD’s nine phases are parallelized by decomposing the system into 14 indexed collections of
objects, each implemented as a chare array. These include the real-space and g-space representations
of the electronic states decomposed into the 2D state × r/g-space collection arrays, G(s, p) [ns × Ng]
and R(s, p) [ns × N], respectively, the real-space and g-space representation of the electronic density
decomposed into 1D and 2D chare arrays, Gρ(p) [Ngρ] and Rρ(p, p

′) [(N/Ny) × Ny], the real-space
and g-space representations required for the external/Hartree energy work decomposed as the density
but with an additional atom type index, GHE(p, a), [NgHE×natom−type] and RHE(p, p′, a) [(1.4N/Ny)×
Ny×natom−type] with natom−type ≤ Natom−type, the real-space and g-space representations required for the
non-local work decomposed as the states,Gnl(s, p) [ns×Ng] andRnl(s, p) [ns×0.7N]. The orthogonality
related computation is decomposed into two 4D g-space based arrays (called pair calculators) and a 2D
auxiliary chare (called ortho) described below. The computational work and memory are always well
balanced within density and state chares. Orthogonality is inherently more expensive than all other
elements in large systems.

The orthogonality phase presented in Fig. 2, is performed by a set of 4 index ‘pair calculator’ chare
arrays, Pc(s, s′, p, p′), of size Ns × Ns × Ng × N ′g. These array are designed to compute the matrix
multiplications, (ns × ng)× (ns × ng), which generate the overlap matrices of size (ns × ns). The s, s′

indices control the decomposition of the (ns×ns) overlap matrices into chunks of size sgrain× sgrain
where sgrain = (ns/Ns). The p and p′ indices control the decomposition of g-space and the sgrain ×
sgrain portions overlap matrix are generated by performing a reduction over the pair calculator chare
indices (p, p′) at fixed s, s′. Here,Ng is exactly the same as above andN ′g allows for a finer decomposition
of g-space .e.g. splitting ng into chunks of size ng/(NgN

′
g).

Postprocessing of the overlap matrices, forming the T-matrix from the S-matrix, is performed by the
‘ortho’ array, O(s, s′) [NsO ×NsO], whose decomposition is generally finer than that of Pc, NsO ≥ Ns.
Communication from the pair calculator chares to the ortho chares and back forms a bottleneck that
requires careful attention. The time consumed in this bottleneck is minimized by the adoption of a data
driven model that enables interleaving as described later. The reduction to form the S and Λ matrices
and multicasts of the T and Λ matrices back to the Pc chare arrays (form O) can create contention and
imbalance within root and intermediate nodes in the spanning tree, particularly across N ′g, unless these

8

are balanced by shifting the roots for each N ′g. Network contention is mitigated via the topology aware
mapping described in the mapping section. The matrix multicasts, in particular, can be further optimized
using a rectangular multicast scheme enabled by topologically aware mapping described later in the text.

We note the memory requirement of CPAIMD scales like ∼ N2
atom in scalar. In the parallel imple-

mentation given above, the memory requirement scales like ∼ N
2/3
atom per processor due to the planewise

decomposition. This assumes that we permit the number of processors used in the computation to in-
crease like ∼ N

4/3
atom. At fixed problem size, the memory requirement per processor decreases until the

number of processors, Nproc exceeds Nns (Nproc > Nns). This is also the point at which our decom-
position would have to be further refined to continue scaling. For the largest system studied here, 256
water molecules, the total memory requirement in scalar is ≈ 100 Gigabytes using the non-local EES
method, a computation which “squeezes” onto 512 Blue Gene/L processors but is easily accommodated
on Nproc ≥ 1024 in co-processor mode.

In order to judge the scale of the computation, consider a 32 water molecule system under a 70 Rydberg
spherical g-space cutoff. The system contains ns = 128 states, N=100 state r-space planes and about
ng = 64, 000 non-zero g-space points per state. The computation is decomposed into 12,800 virtual
processors to represent the states in real-space, and about as many virtual processors to hold the non-
zero points in g-space. In addition, there are 500 virtual processors representing density in real-space
and reciprocal space, respectively (see Fig. 1). Older MPI based applications, such as that by two of the
authors [28], scale this benchmark to 128 processors (≈ ns).

The Blue Gene/L architecture

The Blue Gene/L machine [45] is a low power massively parallel supercomputer with 20480 node
installation at the IBM T. J. Watson Research Center. Each node has two PowerPC 440 cores running at
a low clock speed of 700 MHz. The performance of each Blue Gene/L core is enhanced through a second
floating point unit, called the double hummer [46], resulting in a peak performance of 2.8 GF/s per core.
The second floating point unit is only usable with 16 byte aligned inputs. Linear algebra libraries like
BLAS can make use of the double hummer unit and optimized sequential libraries are utilized as much
as possible by our application.

Blue Gene/L has a 3D torus interconnection network [47] for messaging with a favorable network
bytes/flop ratio. The network has low messaging latency and good performance for short messages. As
the torus network has limited bisection bandwidth, localizing communication improves performance.

Message passing on Blue Gene/L is performed by the core itself. Packets are sent by writing appli-
cation data to memory mapped to a First In First Out queue (FIFO). Therefore, overlap of computation
and communication is limited although optimizations can be achieved by interleaving computation and
communication given a data driven programming model such as Charm++. Since the PowerPC 440 core
can have 3 loads and 3 stores outstanding, packet throughput is limited and each core can barely keep the
entire network busy. Thus, each CPU is kept occupied during phases in which it sends messages to near
neighbors. During phases in which messages are sent to far neighbors, the data rate is restricted by/at the
torus bisection, and communication can be overlapped with computation.

Parallelization : techniques and trade-offs

In order to interleave communication and computation not only within the individual phases but also
among phases that occur simultaneously and at the boundaries of phases that form natural barriers to
progress, synergistic optimization of (1) the 3D-FFT phase used to create the density by interleav-
ing computation and communication of the many 3D-FFTs, (2) the multicast/reduction of real-space

9

state chares to the real-space density chares and the multicast from the density chares back to the state
chares, (3) the interleaving of the non-local related computation/communication with the density mul-
ticasts to/from the states, and intra-density chare communication and computational work, (4) the few
3D-FFTs required to perform the density work, (5) the many simultaneous 3D-FFTs required to perform
the nonlocal computation, (6) the communication into/out of the pair-calculator chares to/from the g-
space state chares so as mitigate the natural barrier formed by the orthogonalization work, and (7) the
communication into/out of the pair-calculator chares to/from the ortho chares which post-process the
overlap matrices, is required. In order to accomplish these 7 tasks, (1) the scalar performance, (2) the
decomposition of work to chare array elements, (3) the topologically cognizant mapping of chare array
elements to processors, (4) interprocessor communication through use of the Blue Gene/L machine layer,
were all systematically improved. In this process, we quite naturally borrowed any applicable general
optimizations from previous work by the CS authors [48].

Scalar optimization:

The scaling of the non-local energy computation with system size was reduced fromN3
atom toN2

atom logNatom

via the new EES nonlocal energy method [33]. The scaling of the external local energy computation with
system size was similarly reduced from N2

atom to Natom logNatom via an EES method. The use of EES
techniques is unique to our CPAIMD implementation.

The orthogonalization scheme for functional optimization and non-orthogonal state dynamics [35]
employed herein requires the computation of an inverse matrix square root. A 2nd order iterative method
involving three (ns × ns) matrix multiplications per cycle was implemented [49] which has lower over-
head than the standard technique and is easier to parallelize.

Decomposition optimization:

Three important decomposition optimizations were developed. The first simultaneously balances
the communication from the g-space state chares, G(s, p), to the pair-calculator orthogonality chares,
Pc(s, s

′, p, p′), and the 3D-FFT work and communication. Briefly, the spherical truncation of g-space,
which is key to obtaining high scalar efficiency and reducing communication in both the state 3D-FFT
phase and the orthogonality phase, can lead to unbalanced chare array elements if a naive decomposition
is employed. Creating sets of complete gz-lines of state Fourier coefficients so as to balance the number
of points and lines in each G(s, p) chare array element leads to substantial performance improvement. It
also permits the introduction of a free parameter, Ng, that can be used to tune the granularity of G(s, p).

The second optimization increases the degree of parallelism of the orthogonality phase. Rather than
keeping the collection of g-space points assigned to each G(s, p) intact and simply communicating them
to appropriate Pc(s, s′, p) calculators, the collections were further split. This was implemented by simply
adding another index to the pair-calculator chare array, Pc(s, s′, p, p′). Increasing the degree of paral-
lelism increases the number of messages sent but each message is smaller. The total amount of data to
be reduced in the formation of the overlap matrices is, also, increased. However, the trade-off results in
efficiency gains.

The third optimization increases the degree of parallelism of the density work. The g-space represen-
tation of the density has about 8 times the number of non-zero entries as the g-space representation of a
state. Therefore, the computational cost to transform the density between g-space and real-space is about
5 times that required to transform a state. Further decomposing the density into subplanes, Rρ(s, p, p

′),
resulted in higher efficiency despite the communication cost of an additional transpose. In addition, the
g-space representation of density was decomposed into sets of complete gz-lines of density Fourier co-
efficients so as to balance the number of points and lines in each chare array element, Gρ(p), allowing

10

Ngρ to become an adjustable parameter in precisely the manner given above for the states.

Mapping challenges:

The Charm++ system supports a default user provided mapping of virtual processors to real proces-
sors. Due to the complexity of the CPAIMD application, there are opportunities for intelligent mapping
to simultaneously optimize load balance and communication overhead. Under CPAIMD, the load on
each virtual processor is static and therefore, the mapping can be defined at startup.

A simple map that allocates all planes of a state to the same processor would make all 3D-FFT trans-
pose messages local, resulting in good performance. This map is not scalable, as it is desired to run
the application on processor configurations much larger than the number of states. We call this function
the state-map. In contrast, the planes of the same rank in all the states could be placed on the same
processor. This mapping would optimize the KS potential multicast operation (Fig. 1, phase V) from the
density objects to real-space plane state objects. Of course, keeping planes together would make the FFT
transpose messages highly non-local (Phases I and VI), thereby increasing the communication overhead
of the application. This mapping function is referred to as the plane-map.

A compromise between the state and plane mapping would allocate planes of a state-partition on a
processor-partition. This would result in a smaller fanout for the KS potential multicast and keep FFT
messages local or to nearby processors in the network. We will refer to this map as the hybrid-map. The
mapping functions, state-map and plane-map, are two extremes of the hybrid map. The best scheme
depends on the number of processors and the interconnect message latency and bandwidth.

Careful topology aware mapping and relationship mapping are critical design issues for software that
must run efficiently on a 3D network torus architecture. The concept of data locality must be extended
to consider placement on neighboring processors. The cost of communication between processors is
affected by their distance within the torus. The effective bandwidth consumed by a message is its size
multiplied by the number of links which must be traversed from sender to destination in the torus or the
‘hop count’. Network contention resulting from link saturation can severely damage the performance of
a communication intensive application like CPAIMD. The most efficient use of bandwidth, and there-
fore the best performance for CPAIMD, comes from minimizing the distance between objects which
frequently communicate while maintaining good load balance.

The key to defining an effective mapping of VPs to processors in the CPAIMD application lies
in placement of the state g-space VPs, G(s, p) where s is the state index and p is the plane index.
Both the real-space VPs and the orthonormalization VPs depend on the G(s, p) placement. In or-
der to localize communication we used a box mapping for G(s, p). VPs with the same plane in-
dex, p, were placed in rectangular prisms. These rectangular prisms were selected such that their
long axis spanned one dimension of the torus and was oriented along whichever of the X, Y, or Z
torus axes allowed the torus to be completely tiled by the prisms. The number of prisms is the num-
ber of planes, and was always chosen at configuration time to be a multiple of at least two torus di-
mensions (power of 2 choices suffice on natural BG/L partitions). Within each prism, the chares for
G(s, p) were allocated in increasing state order longitudinally along the long axis of the prism. Fig-
ure 3 shows the map employed on the Blue Gene/L torus network. The matrix-multiplication/pair
calculator virtual processors, Pc(s1, s2, p, p′), could then be placed starting at the centroid of the 3D
object formed by G(s1, p) + . . . G(s1 + sgrain, p) + G(s2, p) + . . . + G(s2 + sgrain, p) within the
prism for each plane p, thereby, minimizing the hop-count for the orthonormalization input and out-
put. The ortho VPs, O(s1 . . . s1 + sgrain, s2 . . . s2 + sgrain), can likewise be placed based on the
Pc(s1 . . . s1 + sgrain, s2 . . . s2 + sgrain, ∗, ∗) processor list, but this only led to ideal hop-count for
elements on the diagonal s1 = s2, motivating further communication optimizations described in the
“Interleaving communication and computation” section.

11

The real space VPsR(s, p) were placed with one state per flat prism formed byG(s, ∗). The previously
described longitudinal state-wise placement withinG(s, p) resulted in flat bounding prisms for each state
orthogonal to the long axis of each prism. The R(s, p) chares were placed in increasing order of plane
index along one axis of the flat bounding prism, thereby providing an orthogonal localization for the
plane indices. The density related chares Rρ(p, ∗) were placed on processors proximal to state real space
chares, R(s, p), by starting with “centroid” of each R(∗, p), then Gρ(p, ∗) is mapped near, but not on,
the processors used by Rρ(p, ∗). The nonlocal g-space EES chares were pinned to the G(s, p) while
its r-space non-local EES chares REES(s, ∗) were mapped based on the the placement of G(s, ∗). If
there were sufficient processors, the REES map excluded the processors used by the density objects to
minimize interference during overlap.

A critical result of the mapping scheme is that it reduces the maximum hop-count for each phase. That
is, phases which might otherwise exhibit communication patterns spanning the entire torus in a naive
mapping scheme, were instead confined to communicate within prism shaped sub-tori. This, in turn, bal-
anced the overall communication load throughout the available torus. Performance degradation due to
network contention and “hot-spots” was avoided, while each phase remained able to exploit the resources
of the entire processor allocation as needed. In more detail, planewise communications in the orthonor-
malization chares were confined to each G(∗, p) prism. Statewise communications G(s, ∗) ↔ R(s, ∗)
were confined to planes orthogonal to the long axis of the G(s, p) prisms. Planewise communications
R(∗, p) ↔ Rρ(p, ∗, ∗) were likewise confined to a different set of prisms. Each of these prism objects
spanned one or more torus dimensions, permitting the torus wrap around to reduce the maximum hop-
count within each prism to approximately half the length of the largest spanned dimension, and could in
many cases be reduced further via the centroid scheme described above.

Finally, we note that the memory cost of these maps grows linearly (3 integers per VP) in proportion
to the number of VPs, which was a few megabytes in the largest system studied. Runtime cost of
creating the most complex of these maps is pn2log(n) where n is the number of VPs and p the number of
processors, however the constant time is sufficiently small for the largest runs to require less than a few
minutes to map. Nevertheless, once created, maps were stored once and reloaded in subsequent runs to
minimize restart time. Offline creation of maps using even more sophisticated techniques and adapting
these ideas to other topologies is an area of future work.

The Charm++ Native Layer for Blue Gene/L :

The MPI communication software stack on Blue Gene/L [50] has two messaging protocols, eager and
rendezvous. As MPI requires message ordering, eager protocol [50] packets are routed deterministically,
a protocol which works well only for short messages. For long messages, the rendezvous protocol is used;
a rendezvous packet is sent to the destination where the MPI tags are matched and an acknowledgement
is sent back. Upon receiving the acknowledgement, the source sends the packets to the destination with
adaptive routing for higher network throughput. The performance of the rendezvous protocol is effected
when the rendezvous packets are delayed by other packets. This approach prevents some sources from
making progress on their messages.

Charm++, in contrast, does not require message ordering. This allows different components of an
application to make progress, independently, thereby enabling the effective interleaving of computation
and communication. Ordering and synchronization are handled at the application and runtime levels. All
messages are “unexpected” and are not required to carry additional tag information. Handling of this
messaging scheme within MPI requires frequent calls to MPI Test() and MPI Probe() in order to drive
network buffer progress, which introduces undesirable overhead (see Results section for a comparison).
Furthermore, the flexibility of Charm++ allows it to be built on top of a lower level message layer than
MPI; the Charm++ native layer is built on the Blue Gene Message Layer [51], which reduced message

12

overhead and permitted the development of the new more efficient protocol described in the following
section.

Last, we note that the per node memory of the Charm++ runtime system on Blue Gene/L does not
increase with processor number at fixed system size.

The adaptive eager communication protocol :

Since Charm++ does not require message ordering and all messages are received as unexpected mes-
sages, it can take advantage of the adaptive eager protocol [36]. Here messages are sent on the network
as eager messages without handshakes, and with adaptive routing. Hence, this protocol has low message
overhead and good network throughput. Messages sent with adaptive routing packets could arrive out of
order, which would violate MPI semantics, but is not a problem for Charm++. However, each packet
must carry the size of the message to allocate a buffer for the entire message. The packet most also carry
the source rank, offset in the message and a sequence number to uniquely identify it at the receiver. For-
tunately, the software header for a torus packet has space for up to 1MB messages and a 4 bit sequence
number. This allows each processor to send 16 messages to every other processor in the partition. After
a processor receives 16 messages from a given source, it sends an acknowledgment back to the source to
send the next 16 messages. We have observed that this protocol significantly improves performance of
Charm++ applications on Blue Gene/L.

Optimized multicasts:

There are several multicast operations in CPAIMD. In Fig. 1, phases V and VIII involve each-to-many
communication operations with large messages. Two techniques are used to optimize this communica-
tion: (1) Randomized Direct Multicast: Each of the NNy subplanes of the density in phase V of the
computation sends ns messages to the corresponding state real-space planes. These are sent as point-to-
point messages using the Adaptive Eager protocol, with adaptive routing. They are also randomized to
saturate the links at the core bisection of the Blue Gene/L torus [47]. (2) Rectangular Multicast on Blue
Gene/L: The destination objects of a multicast can sometimes be mapped onto a rectangular prism, such
as in the orthonormalization phases. Here, the deposit-bit broadcast capabilities of the network hardware,
where each packet can be sent to all the destinations on a line, is exploited, reducing message overhead.

Optimizing parallel 3D-FFTs by message combining:

The overhead of sending several short messages, during 3D-FFT phases was optimized using a stream-
ing communication strategy. These messages are sorted into buckets based on the destination processor
rank. When the bucket for a particular destination fills up, the messages are combined and sent to the
destination as one message, resulting in a lower per message overhead. A bucket size of 5 was found to
be optimal.

Interleaving communication and computation:

The density (phases III and IV) and non-local (phase IX) computations can be interleaved because
these phases involve 3D-FFTs and, hence, all-to-all communication. Again, on Blue Gene/L, the pro-
cessor, itself, has to packetize messages and overlap between computation and communication is not
achieved easily. However, with all-to-all communication, the rate at which the data arrives at the proces-
sors is limited by the bisection bandwidth of the torus and gains from the overlap of computation and
communication are possible. Effective overlap allows VPs involved, here, non-local and density chares,
to share the same physical processor on smaller machines.

13

In order to enable interleaving, “network progress calls” are inserted into application’s core compute
loop every tens of thousands of processor cycles [48]. On the receiver side, progress calls ensure that
arriving packets are processed while the lag-time is used to perform computation. On the sender side,
progress calls fill up the 24 network FIFOs thereby allowing the application to compute while the network
drains. This approach was borrowed from other work by the CS authors [48].

The application of the T or Λ matrices in the “backward path” of the pair calculator chares described
previously provides further opportunity for overlap using a data driven programming model. As the
construction of tiles of T or Λ are completed and communicated back from the ortho chares, O, to the
pair-calculator chares, Pc, these can be multiplied against the original data as they arrive (The granu-
larity in the state indices of O is typically finer than of the Pc, NsO ≥ Ns.) Furthermore, the resulting
components can be returned to appropriate G chare array elements as soon as possible and the reduction
performed in the G chare array as messages arrive. In this way, interleaving computation and communi-
cation is achieved while reducing peak bandwidth usage.

Results

The efficiency of the Charm++ based implementation of CPAIMD described in the text on Blue
Gene/L was investigated using liquid water as a test case due to the importance of aqueous solutions in
biophysics[52]. A single water molecule, H2O, consists of three atoms per molecule, 2 atom types and
possesses 4 doubly occupied valence electron states. All the computations to be discussed below were
performed using the standard g-space spherical cutoff radius on the states of |g|2cut = 70Ry at the Γ point
(1 k-point), three dimensional periodic boundary conditions, the BLYP generalized gradient corrected
density functional[19, 20] and Martins-Troullier type pseudopotentials[53]. More complex systems with
up to 5 atom types are currently running using our framework and will be discussed in a later publication;
the framework is not limited to 5 atoms types but that is simply the maximum number attempted to date.

We note that water is an extremely common CPAIMD simulation target[10, 11, 12]. Other groups
developing fine grained parallel CPAIMD software[30, 31], have not as yet provided recent scaling data
on water with standard parameters, and we would be hesitant to estimate timings for software other
than our own. Here, we provide a set of unambiguous timings for a well studied system, liquid wa-
ter, using standard parameters, on a well known architecture in a prominent publication to which other
groups can compare their results in the future. (Two year old scaling data on 32 water molecules using
the non-standard cutoff, |g|2cut = 100Ry, on small processors numbers, Nproc ≤ 512, has been pre-
sented by others[30]. The one published data point for the 32 molecule water system using standard
parameters,|g|2cut = 70Ry, is 0.35s/step on 512 processors[30]. This likely does not represent the current
status of their project.).

Specifically, six liquid water systems consisting of 8, 16, 32, 64, 128, and 256 molecules and 32,
64, 128, 256, 512 and 1024 doubly occupied electron states, respectively, were selected for study in
order to probe the performance of our CPAIMD application in many limits. In the small systems with
8 and 16 water molecules, the 3D-FFT work is dominant. In large systems with 128 and 256 water
molecules, the orthogonalization work is more dominant. In the intermediate size systems with 32 and
64 waters, the 3D-FFT work and orthogonalization have more balanced workloads. In Ref. [31], a 1000
atom system of solid molybdenum under 3D periodic boundary conditions was studied using from 1
to 8 k-points and a cutoff of 44Ry. Compared to our largest benchmark, 256 waters using 1 k-point
(the Γ-point), the number of non-zero g-vectors per state is essentially the same but the molybdenum
system has ns = 6000 doubly occupied states and is more strongly dominated by orthogonality work
than the 256 water molecule system (e.g. 36×). There are significantly more non-local electron-atom
(ion core) interactions in molybdenum than in water (250×) and these were treated using the standard

14

N3
atom method (to the best of our knowledge). Thus, the molybdenum system has significantly more

computational work to parallelize than the 256 water molecule system. Scaling results starting at 1024
nodes are given for the molybdenum system with 1 k-point in Ref. [31].

Numerical tests were performed to examine the extreme scaling limit of the CPAIMD application on
our benchmark suite. Table 1 (top) shows the present performance up to processor numbers many times
larger than physical parameter values such as the number of electronic states.

Strong scaling is observed in all cases. Thus, the timing ≈ 0.2s/step is observed for 8 waters at
32 nodes, for 16 waters at 128 nodes, for 32 waters at 512 nodes, and for 64 waters at 4096 nodes in
co-processor mode (number of nodes= number of processors). For 128 waters, on 20,000 nodes in co-
processor mode a rather promising time of 0.3s/step is achieved. However, in virtual-node-mode for 128
waters using 16,000 nodes and 32,0000 processors we attain a slower timing than using 20,000 nodes in
co-processor mode. This motivates future work optimizing our CPAIMD application for large systems
on large processor numbers (e.g. more scaling tests on the full Blue Gene/L machine are required to
analyze and eliminate the bottleneck for this case). Note that the other systems studied exhibited quite
good performance in virtual-node-mode even at high processor numbers. The number of processors
required to reach 0.2s/step increases as N2

atom at small system size and as N3
atom at large system size as

expected. Good weak scaling is also observed. The CPU time per step is reduced fairly monotonically
as processor number increases at fixed system size until the scaling limit is reached. The scaling limit
appears at processor numbers much greater than the number of states in the system Nproc ≥ 30ns. We
further point out our time per step for 32 waters is 0.26s/step on 512 node=processors in co-processor
mode. Below, some of the more important elements that lead to these results are described.

First, Charm++ can be compiled using MPI as its machine interface or using a Blue Gene/L cus-
tomized machine interface[36] called the Native Layer. The scaling of the CPAIMD application on the
MPI driver was limited (see Table 1 (bottom labeled “MPI”)) because MPI adds an additional level of
overhead and imposes message ordering which is not necessary or pertinent for this application.

Second, as Blue Gene/L is a torus network architecture with a limited bisection bandwidth, efficiency
gains can be achieved by implementing VP mapping optimizations that improve communication local-
ity. Table 1 (bottom labeled “No Topo”)) shows the performance degradation if topology specific and
relational maps are disabled in the application. In the simple mapping scheme, the work is spread out
over processors without regard for network locality. As can be seen in the “No Topo” line for the 256
water molecule system, the utility of topology mapping increases with the size of the torus, exceeding a
factor of two reduction in CPU time on most of the 256 water molecule data at large processors; the “No
Topo” runs hit the scaling limit before Nproc = 8k for the 32 water molecule test case.

Third, we observed that the non-local and density computations had limited parallelism when im-
plemented using N3

atom and N2
atom algorithms rather than the N2

atom logNatom and Natom logNatom EES
based methods. In Table 1 (bottom labeled “No EES”)), results produced using the standard methods
are given for comparison. The EES based methods permit more parallelism using the decomposition de-
scribed in the text as can be seen by the increasing beneficial effect of EES on processor numbers greater
than 1000. The standard methods could be made scale better if a finer decomposition of the states is
implemented as described elsewhere[31].

Conclusion

A fine grained parallel implementation of the CPAIMD method using the concept of processor vir-
tualization was able to obtain scaling of important systems to physical processor numbers equal to 30
times the number of electronic states on IBM’s Blue Gene/L. Virtualization and adaptive interleaving of
communication, automatically engendered by the Charm++ runtime system, novel topologically aware

15

mapping of objects to processors, and new scalar algorithms resulted in an improvements both in the
number of processors used and in absolute performance. The study demonstrates the ability of synergis-
tic research in hardware, software and science to generate efficient and useful applications.

Acknowledgments

We extend our thanks to Drs. Fred Mintzer, Bob Walkup and the Blue Gene/L team at IBM TJ Watson,
as this work would not have been possible without their help and access to the hardware. We would like
to thank Dr. Gheorghe Almasi for assistance with the Blue Gene/L message layer. We would also like to
thank Philip Heidelberger for technical support on the Blue Gene/L torus interconnection network. We
thank Professor Jason Crain and Mr. Raphael Troitzsch, University of Edinburgh, and the staff of the
Edinburg Parallel Computing Center as the critical initial Bluegene/L porting and scaling research relied
upon their support. This work was supported by the National Science Foundation (ITR-0121357 and
ITR-0229959).

16

Laxmikant V Kale Department of Computer Science, Thomas M. Siebel Center, University of Illinois
at Urbana-Champaign, Urbana, IL 61801. (kale@uiuc.edu). Professor Laxmikant Kale has been work-
ing on various aspects of parallel computing, with a focus on enhancing performance and productivity
via adaptive runtime systems, and with the belief that only interdisciplinary research involving multiple
CSE and other applications can bring back well-honed abstractions into Computer Science that will have
a long-term impact on the state-of-art. His collaborations include the widely used Gordon-Bell award
winning (SC’2002) biomolecular simulation program NAMD, and other collaborations on computational
cosmology, quantum chemistry, rocket simulation, space-time meshes, and other unstructured mesh ap-
plications. He takes pride in his group’s success in distributing and supporting software embodying his
research ideas, including Charm++, Adaptive MPI and the ParFUM framework.

L. V. Kale received the B.Tech degree in Electronics Engineering from Benares Hindu University,
Varanasi, India in 1977, and a M.E. degree in Computer Science from Indian Institute of Science in
Bangalore, India, in 1979. He received a Ph.D. in computer science in from State University of New
York, Stony Brook, in 1985. He worked as a scientist at the Tata Institute of Fundamental Research from
1979 to 1981. He joined the faculty of the University of Illinois at Urbana-Champaign as an Assistant
Professor in 1985, where he is currently employed as a Professor.

Glenn J. Martyna, Physical Sciences Division, IBM T. J. Watson Laboratory, Yorktown Heights,
NY (martyna@us.ibm.com). Dr. Martyna received his Ph.D. in Chemical Physics from the Columbia
University and then became a NSF Postdoctoral Fellow in Computational Science and Engineering at
the University of Pennsylvania. He was a tenured faculty member at Indiana University, Bloomington
before joining IBM. Dr. Martyna’s research has focused on atomistic modeling of chemical, biological
and materials processes. He is well known for developing novel techniques that markedly increase
the speed and efficiency of computer simulations and applying the methods to investigate important
phenomena.

Mark E. Tuckerman Department of Chemistry and Courant Institute of Mathematical Sciences,
New York University, New York, NY 10003. Professor Tuckerman obtained his Ph.D. in physics from
Columbia University in 1993. From 1993–1994, he held an IBM postdoctoral fellowship at the IBM
Forschungslaboratorium in Rüschlikon, Switzerland, and from 1995–1996, held an NSF postdoctoral
fellowship in Advanced Scientific Computing at the University of Pennsylvania in Philadelphia. He is
currently an Associate Professor of Chemistry and Mathematics at New York University. His research
interests include reactions in solution, organic reactions on semi-conductor surfaces, dynamics of molec-
ular crystals, development of the methodology of molecular dynamics, including novel techniques for
enhancing conformational sampling and prediction of free energies in biological systems, and the devel-
opment of new approaches to electronic structure and ab initio molecular dynamics calculations. In 2005,
he received the Wilhelm Friedrich Bessel Research Prize from the Alexander von Humboldt Foundation.

Abhinav Bhatele, Department of Computer Science, Thomas M. Siebel Center, University of Illinois
at Urbana-Champaign, Urbana, IL 61820. (bhatele2@uiuc.edu) Abhinav received a B. Tech. degree in
Computer Science and Engineering from I.I.T. Kanpur (INDIA) in May 2005. He is a Ph.D. student
at the Parallel Programming Lab at the University of Illinois. His research is centered around topology
aware mapping and load balancing for parallel applications.

Eric Bohm, Department of Computer Science, Thomas M. Siebel Center, University of Illinois at
Urbana-Champaign, Urbana, IL 61820. (ebohm@uiuc.edu). Eric received a B.S. degree in Computer
Science from the State University of New York at Buffalo in 1992. He worked as Director of Software
Development for Latpon Corp from 1992 to 1995, then as Director of National Software Development
from 1995 to 1996. He worked as Enterprise Application Architect at MEDE America from 1996 to
1999. He completed his time in industry as Application Architect at WebMD from 1999 to 2001. Fol-
lowing a career shift towards academia, he joined the Parallel Programming Lab at University of Illinois

17

at Urbana-Champaign in 2003. His current focus as a Research Programmer is on optimizing molecular
dynamics codes for tens of thousands of processors.

18

References

[1] F. Allen et al. “Blue Gene: A vision for protein science using a petaflop supercomputer.” IBM
System Journal, 40, no. 2, 310–327, (2001).

[2] R. Car and M. Parrinello. “Unified Approach for Molecular Dynamics and Density-Functional
Theory.” Phys Rev Lett, 55, 2471–2474, (1985).

[3] G. Galli and M. Parrinello. “Ab initio molecular dynamics : principles and and practical implemen-
tation.” Computer Simulation in Materials Science : interatomic potentials, simulation techniques
and applications, 3, 283, (1991).

[4] M. Payne, M. Teter, D. Allan, T. Aria, and J. Joannopolous. “Iterative minimization techniques for
ab initio total energy calculations : molecular dynamics and conjugate gradients.” Rev Mod Phys,
64, 1045–1097, (1992).

[5] M. E. Tuckerman. “Ab initio molecular dynamics: Basic concepts, current trends and novel appli-
cations.” J Phys Condensed Matter, 14, R1297–R1395, (2002).

[6] D. Marx and J. Hutter. “Ab initio molecular dynamics: Theory and implementation.” in Modern
methods and algorithms of quantum chemistry (J Grotendorst (Ed), Forschungszentrum, Juelich,
NIC Series), 1, 301–449, (2000).

[7] A. D. Vita, G. Galli, A. Canning, and R. Car. “A microscopic model for surface-induced diamond-
to-graphite transitions.” Nature, 379, 523–526, (1996).

[8] G. Galli, R. M. Martin, R. Car, and M. Parrinello. “Melting of diamond at high pressure.” Science,
250, 1547–1549, (1990).

[9] D. Kruger, H. Fuchs, R. Rousseau, D. Marx, and M. Parrinello. “Pulling monatomic gold wires
with single molecules: An ab initio simulation.” Phys Rev Lett, 89, 186402, (2002).

[10] M. Benoit, D. Marx, and M. Parrinello. “Tunneling and zero point enregy in high pressure ice.”
Nature, 392, no. 6673, 258–261, (1998).

[11] D. Marx, M. E. Tuckerman, J. Hutter, and M. Parrinello. “The nature of the hydrated excess proton
in water.” Nature, 367, no. 6720, 601–604, (1999).

[12] M. E. Tuckerman, D. Marx, and M. Parrinello. “The nature and transport mechanism of hydrated
hydroxide ions in aqueous solution.” Nature, 417, no. 6892, 925–929, (2002).

[13] D. Alfe, M. J. Gillan, and G. D. Price. “The melting curve of iron at the pressures of the Earth’s
core from ab initio calculations.” Nature, 401, no. 6752, 462–464, (1999).

[14] P. Minary and M. E. Tuckerman. “Reaction mechanism of cis-1,3-butadiene addition to the Si(100)-
2 x 1 surface.” J Am Chem Soc, 127, no. 4, 1110–1111, (2005).

[15] R. Iftimie, P. Minary, and M. E. Tuckerman. “Ab initio molecular dynamics: Concepts, recent
developments, and future trends.” Proc Natl Acad Sci, 102, no. 19, 6654–6659, (2005).

[16] R. Martonak, D. Donadio, A. R. Oganov, and M. Parrinello. “Crystal structure transformations in
SiO2 from classical and ab initio metadynamics.” Nature Materials, 5, no. 8, 623–626, (2006).

19

[17] W. Kohn and L. J. Sham. “Self-Consistent equations including exchange and correlation effects.”
Phys Rev, 140, A1133, (1965).

[18] R. G. Parr and W. Yang. Density Functional Theory of atoms and molecules. Oxford University
Press, Oxford, (1989).

[19] A. Becke. “Density-Functional exchange-energy approximation with correct assymptotic behav-
ior.” Phys Rev A, 38, no. 6, 3098–3100, (1988).

[20] C. Lee, W. Yang, and R. Parr. “Development of the Calle-Salvetti correlation energy into a func-
tional of the electron density.” Phys Rev B, 37, no. 2, 785–789, (1988).

[21] J. P. Perdew, K. Burke, and M. Ernzerhof. “Generalized Gradient Approximation Made Simple.”
Phys Rev Lett, 77, no. 18, 3865–3868, (1996).

[22] Y. Liu, D. A. Yarne, and M. E. Tuckerman. “Ab initio molecular dynamics calculations with simple,
localized, orthonormal real-space basis sets.” Phys Rev B, 68, 125110, (2003).

[23] H. S. Lee and M. E. Tuckerman. “Ab initio molecular dynamics with discrete variable repre-
sentation basis sets: Techniques and application to liquid water.” J Phys Chem A, 110, no. 16,
5549–5560, (2006).

[24] H. S. Lee and M. E. Tuckerman. “Structure of liquid water at ambient temperature from ab initio
molecular dynamics performed in the complete basis set limit.” J Chem Phys, 125, 154507, (2006).

[25] H. S. Lee and M. E. Tuckerman. “Dynamical properties of liquid water from ab initio molecular
dynamics performed in the complete basis set limit.” J Chem Phys, 126, 164501, (2007).

[26] A. Cohen, P. Mori-Sanchez, and W. Yang. “Development of exchange-correlation functionals with
minimal many-electron self-interaction.” J Chem Phys, 126, 191109, (2007).

[27] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé. “NAMD: Biomolecular Simulation on Thou-
sands of Processors.” In Proceedings of SC 2002. Baltimore, MD, (2002).

[28] M. Tuckerman, D. Yarne, S. Samuelson, A. Hughes, and G. Martyna. “Exploiting multiple lev-
els of parallelism in Molecular Dynamics based calculations via modern techniques and software
paradigms.” Comp Phys Comm, 128, 333–376, (2000).

[29] R. Vadali, Y. Shi, S. Kumar, L. Kale, M. Tuckerman, and G. Martyna. “Scalable fine-grained
parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers.” J
Comp Chem, 25, no. 16, 2006–2022, (2004).

[30] J. Hutter and A. Curioni. “Car-Parrinello Molecular Dynamics on massively parallel supercomput-
ers.” Chem Phys Chem, 6, no. 9, 1788–1793, (2005).

[31] F. Gygi. “Large scale first principles molecular dynamics: moving from terascale to petascale
computing.” J Phys: Conf Ser, 46, 268–277, (2006).

[32] L. V. Kale and S. Krishnan. “Charm++: Parallel Programming with Message-Driven Objects.” In
G. V. Wilson and P. Lu, eds., Parallel Programming using C++, 175–213. MIT Press, (1996).

[33] H. Lee, M. Tuckerman, and G. Martyna. “Efficient evaluation of nonlocal pseudopotentials via
Euler exponential spline interpolation.” Chem Phys Chem, 6, no. 9, 1827–1835, (2005).

20

[34] D. Yarne, M. Tuckerman, and G. Martyna. “A dual length scale method for plane-wave-based,
simulation studies of chemical systems modeled using mixed ab initio/empirical force field de-
scriptions.” J Chem Phys, 115, no. 8, 3531–3539, (2001).

[35] J. Hutter, M. Tuckerman, and M. Parrinello. “Integrating the Car-Parrinello equations .3. techniques
for ultrasoft pseudopotentials.” J Chem Phys, 102, no. 2, 859–871, (1995).

[36] S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele, J. C. Phillips, H. Yu, and L. V. Kalé. “Scalable
Molecular Dynamics with NAMD on Blue Gene/L.” IBM Journal of Research and Development:
Applications of Massively Parallel Systems (to appear), (2007).

[37] M. Born and K. Huang. Dynamical Theory of Crystal Lattices. Oxford University Press, New York,
New York, (1954).

[38] M. Sharma, Y. Wu, and R. Car. “Ab initio MD with maximally localized Wannier functions.” Intl
J Quant Chem, 95, no. 6, 821–829, (2003).

[39] J. W. Thomas, R. Iftimie, and M. E. Tuckerman. “Field theoretic approach to dynamical orbital
localization in ab initio molecular dynamics.” Phys Rev B, 69, 125105, (2004).

[40] R. Iftimie, J. W. Thomas, and M. E. Tuckerman. “On-the-fly localization of electronic orbitals in
Car-Parrinello molecular dynamics.” J Chem Phys, 120, no. 5, 2169–2181, (2004).

[41] G. H. Wannier. “The structure of electronic excitation levels in insulating crystals.” Phys Rev, 52,
191, (1937).

[42] L. V. Kalé. “The Virtualization Model of Parallel Programming : Runtime Optimizations and the
State of Art.” In LACSI 2002. Albuquerque, (2002).

[43] L. V. Kale and S. Krishnan. “Charm++: Parallel Programming with Message-Driven Objects.” In
G. V. Wilson and P. Lu, eds., Parallel Programming using C++, 175–213. MIT Press, (1996).

[44] C. Cramer and J. Board. “The Development and Integration of a Distributed 3D FFT for a Cluster
of Workstations.” 4th Annual Linux Showcase and Conference, 121–128, (2000).

[45] A. Gara et al. “Overview of the Blue Gene/L System Architecture.” IBM J Res Dev, 49, 195–212,
(2005).

[46] S. Chatterjee et al. “Design and exploitation of a high-performance SIMD floating-point unit for
Blue Gene/L.” IBM J Res Dev, 49, 377–391, (2005).

[47] N. R. Adiga et al. “Blue Gene/L torus interconnection network.” IBM J Res Dev, 49, 265–276,
(2005).

[48] S. Kumar, C. Huang, G. Almasi, and L. V. Kalé. “Achieving Strong Scaling with NAMD on Blue
Gene/L.” In Proceedings of IEEE International Parallel and Distributed Processing Symposium
2006. (2006).

[49] N. Higham. “Stable iterations for matrix square roots.” Numerical Algorithms, 15, 227–242, (1997).

[50] G. Almasi et al. “Design and implementation of message-passing services for the Blue Gene/L
supercomputer.” IBM J Res Dev, 49, 393–406, (2005).

21

[51] M. B. et al. “Design and Implementation of One-Sided Communication for the IBM eServer Blue
Gene Supercomputer.” In Proceedings of Supercomputing. (2006).

[52] J. Thar, W. Reckien, and B. Kirchner. “Car-Parrinello molecular dynamics simulations and biolog-
ical systems.” Topics Curr Chem, 268, 133–171, (2007).

[53] N. Troullier and J. Martins. “Efficient pseudopotentials for plane wave calculations.” Phys Rev B,
43, no. 3, 1993–2006, (1991).

22

Tables

Table 1. Parallel performance : Liquid water

CO Mode Native Layer with Optimizations
Nodes 32 64 128 256 512 1024 2048 4096 8192 16384 20480

Processors 32 64 128 256 512 1024 2048 4096 8192 16384 20480
W8 Time s/step 0.22 0.10 0.082 0.071 0.046 0.026 0.020

W16 Time s/step 0.73 0.40 0.23 0.15 0.106 0.061 0.041 0.035
W32 Time s/step 2.71 1.52 0.95 0.44 0.26 0.15 0.11 0.081 0.063
W64 Time s/step 6.62 3.75 1.88 0.87 0.51 0.31 0.21 0.15
W128 Time s/step 6.9 2.73 1.40 0.91 0.58 0.37 0.3
W256 Time s/step 16.4 8.14 4.83 2.75 1.71 1.54

VN Mode Native Layer with Optimizations
Nodes 32 64 128 256 512 1024 2048 4096 8192 16384 20480

Processors 64 128 256 512 1024 2048 4096 8192 16384 32768 40960
W8 Time s/step 0.13 0.11 0.08 0.06 0.028 0.021

W16 Time s/step 0.46 0.28 0.19 0.13 0.08 0.047 0.035
W32 Time s/step 1.99 1.40 0.81 0.43 0.174 0.13 0.082 0.067
W64 Time s/step 9.07 3.38 1.71 0.67 0.38 0.22 0.17 0.15
W128 Time s/step 3.0 1.48 0.90 0.65 0.48 0.40 0.3
W256 Time s/step 5.10 3.48 2.41 1.47 1.2

Performance without Selected Optimizations for Comparison to CO Mode
Nodes 32 64 128 256 512 1024 2048 4096 8192 16384 20480

Processors 32 64 128 256 512 1024 2048 4096 8192 16384 40960
W32 (MPI) Time s/step 0.33 0.22 0.17 0.12

W32 (No Topo) Time s/step 0.21 0.23 0.16 0.18
W32 (No EES) Time s/step 0.22 0.14 0.098 0.082

W256 (No Topo) Time s/step 28.8 23.0 13.4 6.83 3.40

23

Figure captions

Fig. 1 Structure of our implementation. Phases are in Roman numerals.

Fig. 2 Computing the entries of the S matrix. Each chare array element Pc(s, s′, p, p′), s ≤ s′ computes a
contribution to an sgrain × sgrain tile of the S matrix (sgrain = Ns/2 above) for its section of
g-space indexed by p, p′ after receiving data from the state g-space chares. After computation, the
g-space contributions are added together by summing over p, p′ at fixed s, s′ (a “section reduction”)
to produce the desired sgrain× sgrain tile of S. Here, 0 ≤ p ≤ 1, p′ = 0.

Fig. 3 Placement of GSpace, RealSpace and density objects on the 3D torus.

24

Figure 1. Structure of our implementation. Phases are in Roman numerals.

25

Figure 2. Computing the entries of the S matrix. Each chare array element Pc(s, s′, p, p′), s ≤ s′

computes a contribution to an sgrain × sgrain tile of the S matrix (sgrain = Ns/2 above) for
its section of g-space indexed by p, p′ after receiving data from the state g-space chares. After
computation, the g-space contributions are added together by summing over p, p′ at fixed s, s′ (a
“section reduction”) to produce the desired sgrain× sgrain tile of S. Here, 0 ≤ p ≤ 1, p′ = 0.

26

Figure 3. Placement of GSpace, RealSpace and density objects on the 3D torus

27

