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Abstract

NAMD (NAnoscale Molecular Dynamics) is a production molecular dynamics (MD)
application for biomolecular simulations that include assemblages of proteins, cell mem-
branes and water molecules. In a biomolecular simulation, the problem-size is fixed and
a large number of iterations need to be executed to understand interesting biological phe-
nomenon. Hence we need MD applications to scale to thousands of processors, even
though the individual time step on one processor is quite small. NAMD has demonstrated
its performance on several parallel computer architectures. In this paper, we present var-
ious compiler optimization techniques that use Single Instruction Multiple Data (SIMD)
instructions to get good sequential performance with NAMD on the embedded 440 core.
We also present several techniques to scale NAMD to 20,480 nodes of Blue Gene/L. These
include topology specific optimizations to localize communication, new messaging pro-
tocols that are optimized for the Blue Gene/L torus (as they do not require message or-
dering), topology aware load balancing, and overlap of computation and communication.
We also present performance results of various molecular systems with sizes ranging from
5570 to 327,506 atoms.

Introduction

With a greater understanding of the functioning of biological systems, the importance
of biomolecular simulations has increased significantly. Over 43,000 structures are pub-
licly available from the Protein Data Bank (www.pdb.org). This has enabled researchers



to explore the relationship between structure and function through simulations that are
now based on a firm experimental foundation. For the majority of proteins, only amino-
acid sequences are known and molecular simulations are needed to predict detailed 3-D
structure which is the famously difficult “protein folding problem.”

Such molecular simulations present several computational challenges. Since hydrogen
atoms in a biomolecule vibrate with a period of approximately 10 femtoseconds, the time
step needs to be around 1 femtosecond for stable and accurate integration. Yet, the phe-
nomenon of interest may occur only at a scale of microseconds. Several nanoseconds of
simulation may be needed even to allow a protein to relax into the nearest low-energy
state. Some phenomena can be studied by observing the molecule’s behavior over tens of
nanoseconds. We can set the simulation up in an initial state and force it through interest-
ing behavior paths. In spite of these shortcuts, we are left with the problem of simulating
several million to a few billion time steps.

Further, the number of atoms in a particular biologically interesting configuration is
fixed. For example, if we want to study a particular Aquaporin, which straddles a cell
membrane and allows water to cross the membrane, we need a simulation involving one
Aquaporin tetramer, a reasonably-sized patch of cell membrane in which to embed it,
and sufficient quantity of water molecules around the structure. This may comprise a
few hundred thousand atoms. Just because we have a larger computer available, we can-
not increase the size (i.e. the number of atoms involved) of this simulation, because the
molecule/s being studied involves a fixed number of atoms. This is unlike the study of
continuous phenomena, such as weather prediction, where we can simply increase the
resolution to exploit a large machine. Of course, we can study larger and larger molecules
as larger machines become available, but (a) the size of such molecular assemblies of in-
terest is normally limited (b) we still need to study a particular system to understand its
behavior, and the real challenge is to simulate a large number of time steps fast.

For some problems, multiple independent or weakly coupled (as in replica-exchange
methods [1]) simulations may be used to increase sampling of molecular configurations.
For many simulations, however, artificial steering forces [2] are used to drive the molecule
through a series of transitions (such as the rotary mechanism of ATP synthase). Larger
steering forces contribute artifacts, so for accuracy, simulations are done using the small-
est steering forces that provide results in a reasonable time. Hence, longer simulations
are necessary for accuracy. Larger molecules function through longer and more complex
mechanisms, making even longer simulations necessary. Thus, larger simulations have an
even greater need for performance than implied by their atom counts, and the challenge
of reducing wallclock time per step remains.

As a concrete goal, consider the Apolipoprotein-A1 (ApoA1) system, a model of a
newly-formed high-density lipoprotein (HDL) particle [3]. (HDL transports cholesterol
in the bloodstream and is the “good” cholesterol measured by blood tests.) With 92,224
atoms and a mix of proteins, lipids, and water, ApoA1 is representative of modern moderately-
sized simulations. Sequentially, the simulation of ApoA1 takes about 6.2 seconds per time
step on a single processor core of BG/L. The challenge is to take the 6.2 seconds com-
putation and run it efficiently on several thousand processors, with each time step taking
only a few milliseconds.

In this paper, we describe how this scaling was accomplished in NAMD, specifically
on the Blue Gene/L machine. NAMD [4] is a parallel molecular dynamics code devel-



oped at the University of Illinois at Urbana-Champaign, as a collaborative project in-
volving the Theoretical and Computational Biophysics Group (http://www.ks.uiuc.edu)
and the Computer Science Department, including the Parallel Programming Laboratory
(http://charm.cs.uiuc.edu). NAMD uses an effective parallelization strategy that is a hy-
brid of spatial decomposition and force decomposition. This is supported further by dy-
namic load balancing capabilities of the Charm++ parallel programming system. This
hybrid parallelization strategy has remained effective over the past ten years. We begin
by describing and reviewing this strategy. We then present a series of optimizations, in-
cluding sequential optimizations targeted towards IBM PowerPC 440 cores used in Blue
Gene/L, as well as parallel optimizations including dynamic load balancing. We present
performance data for molecular systems ranging from 5570 to 327,506 atoms.

NAMD Parallelization Strategy

NAMD uses a hybrid strategy that combines spatial decomposition with force decom-
position, and couples it with Charm++’s dynamic load balancing framework. The dom-
inant computation in molecular dynamics is that of computing non-bonded forces i.e.
electrostatic and Van der Waal’s forces between all pairs of atoms. The potential O(n2)
all-pairs algorithm is optimized to O(n log(n)) complexity by using the notions of a cut-
off radius rc, and separation of computation of short-range and long range forces. For
each atom, the non-bonded forces due to atoms within rc are calculated explicitly. The
long-range forces due to the atoms outside this radius are calculated using a O(n log(n))
Particle Mesh Ewald (PME) algorithm. Even with this splitting, 90% of the computation
cost is due to explicit calculation of non-bonded forces within the cut-off radius.

Early attempts at parallel molecular dynamics (in biophysics) were made using exist-
ing sequential codes. We showed in [4] that many such strategies were not scalable, in
the sense of the Isoefficiency metric for scalability [5] (the Isoefficiency metric indicates
how well a parallel workload scales while maintaining a fixed efficiency). In particular,
the communication-to-computation ratio of many of these schemes rises with increasing
number of processors, and in a way that does not even allow “weak scaling” – i.e. even if
we were to increase the number of atoms, the communication-to-computation ratio does
not improve. A pure force decomposition scheme, such as that in [6, 7], also suffers from
this limit.

We also showed in [4] that spatial decomposition does not suffer from this problem.
We presented an even more effective formulation that combines spatial decomposition
and force decomposition that generates additional parallelism without increasing commu-
nication. In this formulation, the simulation space is divided into cubic boxes (called
“patches” in NAMD). The size of each cube b is chosen based on the cut-off distance rc.
Let B = rc + rH +m, where rH is twice the maximum length of a bond to a H atom and
m, the margin is twice the distance which atoms may move without migration between
patches being necessary. Then b along each dimension is chosen as B/k. Typically, k
is either one or two (although we have experimented with k = 3). With k = 1 (also
called 1-away decomposition), there are about 400-700 atoms per cube. With k = 2, this
drops down to 50-75 atoms. To provide intermediate granularities, we support non-cubic
patches: each dimension can be either B or B/2, for example. With k = 1, only atoms in
neighboring patches need to interact (i.e. there are 27 interactions each patch participates



in). With k = 2, interactions involve 125 cubes that are “2-away” from each other in the
coordinate space.

An innovation in NAMD 2.0 [4] was its use of a kind of force decomposition on top
of this spatial decomposition: For every pair of interacting patches, NAMD creates a
force-computation-object (just a “compute-object or “compute” for brevity). With k = 1,
this leads to 14 times more compute objects than the number of patches. These compute
objects are then assigned to processors under the control of a dynamic load balancer in
Charm++ (see below). Compared to spatial decomposition by itself, this strategy also
eliminates duplicate computation of forces, by exploiting Newton’s Third Law.

More recent proposals for scalable molecular dynamics [8, 9, 10] use the basic strategy
of hybrid decomposition, which originated from NAMD 2.0. They differ in how the
force computations are assigned to processors: either via static (but topology sensitive)
schemes [8, 9] or the Blue Matter scheme [10] that allocates work based on number of
atoms. We believe that the original scheme is at least as good or better than these schemes
because of its ability to take the dynamic processor load into account (assuming the load
balancer performs well).

Charm++ is a C++-based parallel programming system in which the programmer
decomposes the work into a large number of interacting message-driven objects called
chares. The objects may be organized into multiple indexed collections, known as chare-
arrays. The programmer’s ontology does not include processors but only the objects.
Multiple objects can be and typically are, assigned to a single processor. The execution
on each processor is controlled by a scheduler, which selects an available message, iden-
tifies the chare it is destined for, allows the chare to process the message, and repeats. The
Charm++ adaptive runtime system can reassign objects to processors during a run, and
handles all the bookkeeping associated with such migrations automatically. It measures
computational loads of individual objects and tracks communication between pairs of ob-
jects. Based on these measurements, the load balancer can reassign objects accurately to
improve load balance and to decrease communication.

Blue Gene/L Optimizations

Improving Sequential Performance on the 440 Core

The Blue Gene/L machine is based on the embedded PowerPC 440 core. It took a sig-
nificant effort to achieve good sequential performance on the Blue Gene/L embedded core.
Due to aliasing constraints in the NAMD inner loop, the IBM XL compiler was unable
to generate optimized code. As a result, the inner force compute loops were not effec-
tively software pipelined. We eliminated the aliasing constraints by inserting #pragma
disjoint directives in the compute loop to enable the generation of software pipelined
object code. In some instances, we manually unrolled and pipelined the loop to get the
best performance. We observed that the bonded code in NAMD had several stack tempo-
raries as it was using C++ operator overloading. The stack temporaries were introducing
expensive loads, stores and pipeline stalls. We reported this to the IBM XL compiler
team and obtained a fix which is now available in XLC Version 8.0. The net result of the
above optimizations was to more than double serial performance on the PowerPC 440.
The optimizations also helped other PowerPC architectures. Table ?? compares the per-



formance of NAMD version 2.5 with NAMD version 2.7 pre-release. (The Blue Gene/L
optimizations in NAMD were added after the release of NAMD version 2.5.)

The PowerPC 440 core is enhanced with an additional floating point unit called the
double floating point unit (double FPU) [11]. To take advantage of the double FPU, the
addresses of loads and stores have to be aligned to 16 bytes. We had to pad the force
vector and other structures (which were originally 24 bytes) to have a 32 byte alignment,
in order to make use of the double FPU. The force computation in NAMD requires X, Y
and Z dimensions to be computed. However, the SIMD instructions can only parallelize
the X and Y dimensions and the computation of the Z dimension is not SIMDized. This
restricts the achievable speedup from the double FPU to be about 33%.

The actual performance improvement with the SIMD optimizations is only about 7% as
shown in Table ??. We are working on further optimizing the SIMD version of NAMD. A
possible reason for lower 440d performance could be a cache miss in the force compute
loop. This loop uses interpolation tables for the three independent terms in the potential
(electrostatics plus Lennard-Jones r−12 and r−6), thus eliminating reciprocal square root
and erfc computations. The interpolation table is quite large and of the order of several
hundred cache lines. Many PowerPC architectures have relatively small L1 caches (32 KB
on Blue Gene/L). This may lead to cache misses in the inner compute loop of NAMD. As
the access pattern to the interpolation table is quite irregular, even the L2 prefetch unit on
the Blue Gene/L chip may not be very effective in this case.

We are exploring new computational algorithms which nay have more SIMD computa-
tion but would require a smaller interpolation table. We also plan to take advantage of the
PowerPC reciprocal square-root approximation instruction to further reduce the number
of entries in the interpolation table. We hope these optimizations will further improve the
performance of NAMD on Blue Gene/L and other PowerPC architectures.

Topology Mapping

The Blue Gene/L supercomputer has a torus interconnection network [12] for appli-
cation data exchange. As a torus interconnection network has limited bisection band-
width, localizing communication results in better application performance. For NAMD,
this fact makes careful mapping of patches to processors critical, for achieving strong
scaling on Blue Gene/L. The patches in NAMD are allocated to processors using an or-
thogonal recursive bisection (ORB) scheme [13] to map the patch objects to the Blue
Gene/L torus. The dimensions of the Blue Gene/L torus depend on the size of the pro-
cessor partition, while the dimensions of the patch torus depend on the problem’s size.
Both the processor and patch tori are typically not cubic. So, first the axes of the patch
and processor tori are sorted and then the largest dimensions of the processor torus are
matched with the corresponding dimensions of patch torus. For example, when we map
a 13× 6× 4 patch torus to a 8× 32× 16 processor torus we get the following axis-map
Xprocesor = Zpatch, Yprocessor = Xpatch, Zprocessor = Ypatch. Next, we rotate the patch grid
so that its dimensions match the processor grid using the above computed axis-map. Once
this is done we can use ORB (as described below) to allocate patches to processors.

The ORB scheme splits patches along the longest dimension and then computes the to-
tal load of each of the two partitions. The load generation function takes into account the
patch computation which depends on the number of atoms, and the expected communica-



tion overhead of each patch. Next, the processor grid (torus) is halved into two sub-grids,
where the size of each partition corresponds to the load of the patch partition. This is re-
peated recursively till we have one patch, which is allocated to a random processor in the
corresponding processor sub-grid. Figure ?? shows the mapping of patches and computes
onto the 3D torus of Blue Gene/L.

Communication Optimizations

We have developed a native Charm++ runtime-system optimized for Blue Gene/L on
top of the Blue Gene message layer [14]. We found the Charm++ MPI driver unsuitable
as it called MPI Iprobe and MPI Test to make progress on the network, thus introducing
overheads. An optimized runtime also allowed us to explore the adaptive-eager messaging
protocol that does not require the ordering semantics of MPI.

Adaptive Eager Protocol

The production MPI software [15] on Blue Gene/L has two protocols for point-to-point
messages, (i) Eager and (ii) Rendezvous. In the eager protocol, all packets are sent using
the in-order deterministic routing scheme. The first packet matches the MPI posted re-
ceives and the rest of the payload is copied into an application buffer. In the rendezvous
protocol, first an RTS (request-to-send) packet is sent to the receiver. When receiver is
ready to receive it sends a CTS (clear-to-send) packet back to the sender. On receiving the
CTS, the sender sends the application buffer with adaptive routing.

As the eager protocol uses deterministic routing it can restrict the application’s com-
munication performance. Even though the rendezvous protocol uses adaptive routing, it
has a three-way handshake which is not very effective in the Charm++ scenario. The
three-way handshake restricts overlap of computation and communication. It is possible
that the sender starts computing after sending the messages and cannot process the CTS
packet as soon as it arrives. Moreover, the overhead of the RTS and CTS packets makes
rendezvous less suitable for the most common NAMD messages, which are only a few
kilobytes in size.

We present the adaptive eager protocol to optimize the scenario where the application
sends several short messages a few kilobytes in size. The adaptive eager protocol sends
messages with adaptive routing, while avoiding RTS and CTS packets. In this protocol,
each processor keeps a system wide connection list with one slot for each processor in
the booted partition. Each packet has to carry all the state for the message. In MPI, this
state would include the communicator and tag for the message along with the source and
the size. So, for an MPI implementation of adaptive eager protocol the tag and commu-
nicator would also have to be sent to match the incoming message with a list of posted
receives. Hence the bandwidth achievable with adaptive eager protocol in MPI will be
lower than that for Eager or Rendezvous. Moreover, only one message can be outstanding
as messages need to be matched in order.

Unlike MPI, in Charm++ all messages are received as unexpected messages and hence
only the size of the message is needed in all arriving packets to allocate a buffer for the
message. Fortunately, packets on Blue Gene/L have an 8-byte software header. We were
able to pack the message size, source, packet offset and a sequence number in the 8-byte
software header, with each of those fields occupying 21, 18, 21 and 4 bits respectively. On



receiving a packet the receiver looks up the connection list and if a buffer for that sequence
number has not been allocated, it requests the application (the Charm++ runtime here)
for a buffer to receive the message.

As Charm++ does not require message ordering, we can allow several messages to
be outstanding at a given time. The packets of these messages can arrive together and
are distinguished by a sequence number. The maximum number of outstanding messages
is determined by the number of bits allocated to the sequence number, which is 16 out-
standing messages with a 4 bit sequence number. Once the receiver has received all the
16 messages, it sends an acknowledgment back to the sender to send the next set of 16
messages.

Dynamic Load-Balancing

NAMD uses the Charm++ dynamic load balancing framework [16, 17]. The patches
have an initial placement in a topology optimized manner using the ORB scheme pre-
sented in the Topology Mapping subsection. To achieve good load balance, it is essential
for the Charm++ runtime to record the most up-to-date application and system load in-
formation. The Charm++ runtime exploits a simple heuristic called Principle of Persis-
tence [18] to obtain load information automatically. This principle simply exploits the fact
that the object computation times and communication patterns (number and bytes of mes-
sages exchanged between each communicating pair of objects) tend to persist over time,
which holds for molecular dynamics simulations where atoms move slowly. This heuris-
tic makes it possible to instrument the application automatically at runtime and use the
newly instrumented load information to predict the load of the near future. In NAMD, the
load balancing framework measures the computational load of all the objects along with
the communication and background load of non-migratable work on the processors. The
load statistics are provided as a parameter to a load balancing strategy which computes
the new object placements.

We use two load balancing strategies in NAMD. The first scheme is a comprehen-
sive load balancing strategy which assigns migratable work from scratch (mostly non-
bonded force computation), ignoring the current location of such work. This comprehen-
sive scheme is performed only once during a run of NAMD. The second load balancing
strategy is a refinement strategy that just moves a few objects from overloaded proces-
sors to lightly loaded processors. The refinement scheme is called periodically (every few
thousand time steps) to move compute objects to balance changes in processor load for
atom migrations.

Both the comprehensive and refinement strategies have topology optimizations built
into them. We present each of them below:

• Comprehensive Strategy: In this strategy, the load balancer first assigns all the com-
pute objects to a max-heap. The strategy then picks the heaviest compute object and
assigns it to the processor based on a greedy heuristic which takes into account the
processor load, communication history and the processor’s nearness on the Blue
Gene/L torus to the patches whose interaction is being computed and the number
of destinations in the patch multicast. The size of the patch multicast depends on
the number of proxies, which are destination processors that keep copies of the
patch coordinate data for one or more local computes. The comprehensive strategy



is biased by initial proxies placed on processors which are close to the patch pro-
cessor on the Blue Gene/L torus. It also prefers processors which are less than 4
hops from the midpoint of the patches whose interaction is being computed in the
compute object.

• Refinement Strategy: In this strategy, the overloaded processors are first allocated
to a max heap. The strategy goes in a loop picking the highest loaded processors,
and then removing the heavy objects in that processor to a lightly loaded accepting
processor. This accepting processor is chosen using heuristics similar to those in
the comprehensive scheme. Refinement strategy iterates till there are no overloaded
processors above a threshold load. The refinement strategy prefers lightly loaded
processors within eight hops of the mid-point of the patches whose interaction is
being computed.

Once the load balancing strategy has finished re-assigning compute objects, the Charm++
runtime moves the objects to their new destinations. After this is finished a new spanning
tree is constructed for each patch to multicast its atom coordinate data. The spanning tree
creation also ensures that no processor is overloaded with spanning tree intermediates
from different patches. Figure ?? shows patches and their multicast targets superimposed
on a 2D view of the physical processor topology. A two-level k-ary tree is generally used
in NAMD where k is close to ten.

Overlap of Computation and Communication

The Blue Gene/L machine has two PowerPC 440 cores on each node. However, it
does not have a DMA unit on the compute node. Ideally one of the cores could serve
as a communication co-processor, but due to lack of cache-coherence the caches have to
be flushed for any communication between the cores. The overhead of cache flushing
may limit the performance of co-processor mode as the messages in NAMD are relatively
short.

In this paper, we present a technique that can overlap computation and communication
in virtual node mode [19]. Each core has 6 normal priority Torus FIFOs, and each of these
FIFOs can store up to 4 packets. At full link bandwidth of 175 MB/s each FIFO would
fill up in about 4320 processor cycles. We have observed in NAMD that the achievable
throughput due to network contention is only about 2 links, which implies that each FIFO
would fill up every 12960 cycles on average. We can make the cores compute for these
12960 cycles, and periodically make calls to drain network FIFOs and call the progress
engine in the messaging software. In NAMD, the rate of progress is a command line
parameter and can be tuned to the processor partition size and the benchmark.

The Blue Gene/L torus interconnect is a reliable network where a packet is only sent
downstream if there are resources available for it. The local resources of the packet are
released when the receiver acknowledges the error-free reception of the packet. Hence,
the reception FIFOs need to be drained before they fill up. If this is not done, packets are
stuck in intermediate buffers on the network. The progress calls in NAMD prevent this
from happening as network reception FIFOs are drained from the inner compute loops.

We had to develop infrastructure in the Charm++ runtime to support such progress
calls from within application entry methods. We extended this runtime to support immediate-



messages, within the progress calls. With an immediate method, the handler for the mes-
sage is called within the progress call allowing the message to be forwarded to other
processors. The NAMD coordinate multicast uses a spanning tree to multicast data to the
destinations (Dynamic Load Balancing Subsection). If an intermediate destination on the
spanning-tree is busy in a compute loop, the multicast messages will be delayed resulting
in bad performance. With immediate-messages, the multicast data can be forwarded on
the intermediate nodes within a few thousand processor cycles after the message has ar-
rived. Similarly, immediate-messages can also be used for the force reduction messages
which are sent back to the patches.

Particle Mesh Ewald

NAMD uses the Particle Mesh Ewald method [20] to compute the long-range interac-
tions between the atoms. PME requires two 3D Fast Fourier Transforms to be computed.
NAMD 2.6 used a 1D decomposition for the FFT operations. Since the 1D decomposition
only requires a single transpose of the FFT grid, it is the preferred algorithm on clusters
with slower networks and small numbers of processors. Parallelism for the FFT in the
1D decomposition is limited to the number of planes in the grid, 108 processors for the
ApoA1 benchmark. However, the message-driven execution model of Charm++ allows
the small amount of FFT work to be interleaved with the rest of the force calculation, al-
lowing NAMD to scale to thousands of processors even with the 1D decomposition. Still,
we have observed that this 1D decomposition did not scale on Blue Gene/L and many
other architectures due to insufficient parallelism.

We implemented a 2D decomposition for PME, where the FFT calculation is decom-
posed into thick-pencils with 3 phases of computation and 2 phases of transpose commu-
nication. A thick-pencil along the X dimension will have all the FFT grid points in the
X dimension, while the Y and Z dimension sizes would typically vary from 1 to 4. The
FFT operation is computed by 3 arrays of chares in Charm++ with a different array for
each of the three phases of transposes. At the limits of scalability this operation is mainly
dominated by communication overhead of small transpose messages. We used the real-
to-complex optimization to reduce the computation and communication overhead of the
FFT operation by a factor of two.

In addition to the 2 FFT calculations, PME in NAMD has 2 additional computation
and communication phases. These phases send grid data from the Patches in NAMD
to the PME force computation and FFT chares. The PME calculation begins with the
computation of the charge grid by interpolating each atom to a charge grid typically of
size 4x4x4. The contribution of each atom is reduced locally. Next, the intersecting
section of the charge grid is sent to the FFT thick-pencil chare along the z dimension.
The FFT thick-pencils do a forward 3D FFT followed by the Ewald calculation on the
transformed grid in k-space. Next, a backward 3D FFT is performed which computes the
long-range forces which are sent back to the patches. The forces are then integrated to
update atom positions and velocities in the next integrate phase.

One of the advantages on the 2D decomposition is that the number of messages sent
or received by any given processor is greatly reduced compared to the 1D decomposition
for large simulations running on large numbers of processors. Consider a typical situation
where each 16 Å patch contributes to a 24 × 24 × 24 block of the FFT grid. For an



N ×N ×N patch grid, each slab of an N-slab 1D decomposition communicates with up
to 2N2 patches and each patch communicates with 24 slabs. For the same system, with
a 2D decomposition, each thick-pencil of m × m grid lines communicates with at most
16N patches (assuming m < 16) and each patch communicates with (24/m+1)2 pencils.
Thus the 2D decomposition has fewer messages to and from patches if N > 8 and m > 7,
a simulation of roughly 200,000 atoms. Similarly, messages per processor are reduced for
the FFT transposes for pencils larger than 2× 2 grid lines.

Performance Results

We used four different molecular systems to benchmark the performance of NAMD on
Blue Gene/L. These are the 5570 atom Islet Amyloid Polypeptide system (IAPP) [21],
the Lysozyme in urea simulation [22] (39,864 atoms), Apolipoprotein-A1 (92,224 atoms)
and the F1-ATPase system (327,506) atoms.

Table ?? presents the gains of the various performance optimizations presented in the
previous sections for the ApoA1 system on 4096 processors doing cutoff and PME com-
putation. As we wanted to isolate the gains of each of the optimizations we disabled PME
for the first six runs. We have observed that the performance gained from optimizations
often depends on the order in which they are applied. From Table ??, we can conclude that
the two most effective optimizations are the two-away communication and the Charm++
native machine layer. Even though not clearly reflected in the table, spanning trees are
much more effective on larger processor partitions.

The scaling of NAMD with PME on four molecular systems is presented in Figures ??
and ??. The full electrostatics (PME) frequency for each of these runs was chosen based
on the time-step of the simulation. It was 2 for IAPP and Lysozyme, while it was 4 for
ApoA1 and F1-ATPase. All these performance runs used the native layer of Charm++
with spanning trees and immediate messages enabled. The performance presented here
excludes I/O overheads. The co-processor mode results have decreasing time steps to
16384 CPUs for Lysozyme, and to 20,480 CPUs for both ApoA1 and F1-ATPase. The
virtual node mode results for Lysozyme and ApoA1 have decreasing time steps up till
16,384 CPUs (8192 nodes). Table ?? shows the best performance and speedups achieved
on the different benchmarks and the two-away options used for them. The speedup is
computed from NAMD performance on the smallest processor partition which has enough
memory to run the benchmark. We have found that the two-away options have significant
grain size overheads, and that could be a reason for the limited scaling of NAMD. Observe
that for IAPP, Lysozyme and APoA1 the performance saturates at about the 2ms mark.
We are exploring new schemes to further improve the scaling of the NAMD application.

Related Work

Blue Matter [10] is another application which has demonstrated very good performance
on 16,384 nodes of Blue Gene/L. Blue Matter also uses a spatial decomposition algorithm,
though different from the one used in NAMD. Besides, it uses low level message passing
primitives. Blue Matter has 2D decomposition for the PME computation and uses an
optimized FFT library which scales to 16384 nodes of Blue Gene/L [23].



So far we have kept the NAMD software quite general. Architecture specific optimiza-
tions are made available to NAMD through abstractions in Charm++ runtime. Table ??
compares the performance of NAMD with Blue Matter. NAMD performance is better
than Blue Matter at small processor partition sizes, but at the limits of scalability its per-
formance is similar to Blue Matter.

Remaining Challenges

PME: As expected, our measurements confirm that the new pencil decomposition of
3D FFT is significantly faster than the plane decomposition. The main bottleneck in
PME now is the patch-to-pencil communication, which has relatively large messages as
compared to the transpose messages. We are exploring new mapping and decomposi-
tion schemes to optimize this data movement operation. We are also exploring new low-
latency message passing optimizations to further improve the performance of the PME
3-D FFT calculation.

Spanning Trees: It is clear from our experiments that the spanning trees are useful
for communicating coordinates from patches to compute objects and for collecting forces
back from them. Without them, each patch will send around 60 to 80 messages, and re-
ceive as many, in each step. We use a 2-level spanning tree with a branching factor of
about 10. However, the spanning tree intermediate nodes (STINs) present a new chal-
lenge: The spanning tree can be decided only after the load balancer decides where to
migrate computes, if any. However, when an STIN is placed on a processor it may be-
come overloaded. What is worse, since each patch is creating a spanning tree for its
clients independently, multiple STINs may be assigned to a processor. We used a central-
ized strategy to create all spanning trees together to reduce the number of STINs assigned
to a processor, which helps improve performance. However, even one STIN adds a few
hundred microseconds of overhead to a node (counting both the downward and upward
path through it). Figure ?? is a projections timeline view of a 16,384 node run of NAMD
with the ApoA1 benchmark. The color code for this projections plot is as follows, red is
integrate computation, blue is force computation, pink is spanning tree, black regions is
communication overhead in the message layer, and white represents idle time.

The figure clearly shows the overhead of spanning trees on processor 15236. So,
stronger techniques are needed to break the circular dependence between STIN place-
ment and load balancing. We plan to explore is the simultaneous creation of STINs as
a part of load balancing. Alternatively, it will be helpful to utilize a packet level multi-
cast strategy (as used by SPI layer in Blue Matter), possibly combined with either packet
level or higher level reduction. Lower-level support for such overlapping multicasts (here:
60-80 destinations each, and often a 10th of all processors originating a separate multi-
cast almost simultaneously) in future machines will be critical for continued performance
improvements.

Summary and Future Work

We described the basic parallelization strategies used by NAMD, and how it was op-
timized for the Blue Gene/L supercomputer. Several new optimizations were necessary
to tune performance of NAMD on Blue Gene/L. Some of these optimizations were mo-



tivated by the order of magnitude larger number of processors compared with the largest
previous machine for NAMD, others by the various challenges of the Blue Gene/L ar-
chitecture. We presented an overview of these optimizations, and presented performance
data that shows that simulations of even a relatively small, 92,224 atom system perform
quite well on 20,480 processors.

In addition to the immediate challenges identified in the previous section, the NAMD
team is planning to incorporate techniques that reduce the memory footprint per processor,
leading to simulations of larger molecular systems, and to parallelize its I/O. Optimiza-
tions to other machines, including Cray XT3, and the upcoming Blue Gene/P are also
planned.
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