
April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

Parallel Processing Letters
c© World Scientific Publishing Company

BENEFITS OF TOPOLOGY AWARE MAPPING FOR MESH
INTERCONNECTS

Abhinav Bhatelé ∗

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801, USA

Laxmikant V. Kalé

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801, USA

Received June 20th, 2008

Revised August 25th, 2008
Communicated by Darren J. Kerbyson

ABSTRACT

The fastest supercomputers today such as Blue Gene/L, Blue Gene/P, Cray XT3 and

XT4 are connected by a three-dimensional torus/mesh interconnect. Applications run-
ning on these machines can benefit from topology-awareness while mapping tasks to

processors at runtime. By co-locating communicating tasks on nearby processors, the

distance traveled by messages and hence the communication traffic can be minimized,
thereby reducing communication latency and contention on the network. This paper

describes preliminary work utilizing this technique and performance improvements re-
sulting from it in the context of a n-dimensional k-point stencil program. It shows that

even for simple benchmarks, topology-aware mapping can have a significant impact on

performance. Automated topology-aware mapping by the runtime using similar ideas can
relieve the application writer from this burden and result in better performance. Prelim-

inary work towards achieving this for a molecular dynamics application, NAMD, is also

presented. Results on up to 32, 768 processors of IBM’s Blue Gene/L, 4, 096 processors
of IBM’s Blue Gene/P and 2, 048 processors of Cray’s XT3 support the ideas discussed
in the paper.

Keywords: topology, mapping, mesh, torus, performance, scaling, supercomputers

1. Introduction

Two important aspects of a parallel program are computation and communication
which decide its efficiency and performance. The computation needs to be divided
evenly among processors to achieve near-optimal load balance. Communication,

∗The authors can be contacted by electronic mail at: bhatele@illinois.edu

1

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

2 Parallel Processing Letters

on the other hand, needs to be minimized across processors to ensure minimum
overhead. These two objectives are not independent and have to be performed in
tandem. To minimize communication, communicating tasks should be placed on the
same physical processor. This is not feasible because many tasks communicate with
each other in general and placing all of them on one processor inhibits parallelism.
Instead, one can aim at placing communicating tasks on nearby processors. For
machines with flat topologies, such as a fat-tree, the only choice is between local and
remote communication and the concept of physical proximity is non-existent. On
the other hand, the emergence of large machines with non-flat topologies brings in
issues of physical proximity based on the number of links (hops) between processors.
The number of hops traversed by a message can significantly impact its latency in
spite of techniques such as wormhole routing and virtual cut-through. The effect
becomes more pronounced in the presence of contention. In such cases, placing
communicating tasks on nearby processors can lead to performance benefits. This
is becoming an increasing concern for better performance and scaling and is the
topic of our study in this paper.

Some of the fastest and biggest supercomputers today [1, 2] are connected by a
three-dimensional torus interconnect. If the topology of a machine is not flat and
visible to the runtime, it is possible to minimize inter-processor communication and
balance it evenly across processors. The volume of inter-processor communication
can be characterized by hop-bytes which can be defined in terms of hop-count [3].
Hop-count is the number of hops (network links) through which a message has to
pass to reach one processor from another. Hop-bytes are obtained by multiplying the
hop-count for a message by its message size. The sum of hop-bytes for all messages
in a program gives us its total communication volume. Restricting communicating
tasks on nearby processors can reduce the total communication volume on the net-
work. Minimizing inter-processor communication requires two kinds of information
during the actual program run: 1. communication graph of the parallel entities in
a program and, 2. topology information about the processors being used on the
particular machine.

This information is obtained from the Charm++ runtime system which is used
to implement the topology interface and the parallel applications used in this paper.
The Charm++ [4, 5] parallel language and runtime system is based on an object-
oriented parallel programming model. This facilitates mapping at the granularity of
virtual objects instead of processes. Charm++ provides us with a framework for
obtaining the communication properties of the application and flexibility of mapping
tasks to physical processors. It also provides an API to obtain topology information
about the parallel machine we are running on. This framework will be discussed in
Section 2.

A simple application written in Charm++ is used to demonstrate the effec-
tiveness of topology mapping: a n-dimensional k-point stencil. Two sets of values
are used for n and k: a 3-dimensional 7-point stencil and a 2-dimensional 5-point
stencil (referred to as 3D Stencil and 2D Stencil henceforth in this paper). Sten-

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

Benefits of Topology Aware Mapping 3

cil has regular communication to a fixed number of neighbors and hence benefits
from a static mapping of its tasks to processors. The techniques developed specif-
ically for Stencil can be generalized into an automated topology-aware mapping
framework. This relieves the application writer of this burden and improves perfor-
mance. In this context, some preliminary work on a production code called Namd

is presented. Namd [6, 7] is a classical molecular dynamics application and benefits
greatly from the load balancing framework in Charm++. Possible modifications
to the load balancing algorithm to consider topology of the machine are discussed.

1.1. Previous Work

The task mapping problem is NP-complete and has been proven to be computa-
tionally equivalent to the graph embedding problem [8]. A lot of research was done
in this area in the 80s [8, 9, 10, ?]. Most of the work focused on hypercubes which
were the popular networks then [9, 10, 11]. Research in the 80s was in two directions
– physical optimization techniques and heuristic approaches. Physical optimization
techniques involve simulated annealing [9, 12], graph contraction [13, 14] and ge-
netic algorithms [15]. Physical optimization techniques take a long time to arrive at
the solution and hence cannot be used for a time-efficient mapping during runtime.
They are almost never used in practice. Heuristic techniques such as pairwise ex-
changes [10] and recursive mincut bipartitioning [11] were theoretical studies with
no real results on machines. Also, most of these techniques (heuristics techniques
especially) were developed specifically for hypercube or linear array topologies.

Mapping techniques lost significance in the 90s with the appearance of more
efficient interconnects and deployment of wormhole routing. With the emergence
of large machines like Blue Gene/L and XT3, topology-aware mapping has become
important again. The Cray T3D and T3E supercomputers were the first to raise
such issues in the late 90s and the problem of congestion and benefit from PE
mapping were re-evaluated [16, 17, 18]. On IBM’s Blue Gene/L, these issues have
been studied both by system developers [19, 20] and application writers. Bhanot et.
al [21] use initial heuristic mapping and simulated annealing to arrive at efficient
mappings for Blue Gene/L. Yu [22] and Smith [23] discuss embedding techniques for
graphs onto the 3D torus of Blue Gene/L which can be used by the MPI Topology
functions. Application writers have also shown improvement by utilizing topology
awareness in their codes [3, 20, 24, 25].

Our work is however one of the first for Cray XT3. Weisser at al. [1] discuss
the effect of topology on job placement but we do not know of any published work
which discusses topology-aware task-mapping on XT3. However, the developers of
OpenMPI on Red Storm and Cray XT3 saw considerable promise in utilizing such
information on these machines which was a motivation for our work. What differen-
tiates our work from previous machine-specific research is that we have developed
a single API which hides the machine level details from the application writer. It
can be used on different machines with non-flat topologies (like Blue Gene/L, XT3,

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

4 Parallel Processing Letters

XT4 and Blue Gene/P).
This paper is organized as follows: In Section 2, Charm++ and the stencil

benchmarks are introduced. Section 3 discusses topology-aware mapping for the
two variants of Stencil. Section 4 provides detailed analysis of the performance
benefits achieved by topology mapping of Stencil. Namd and preliminary work on
its load balancers are discussed in Section 5.

2. Charm++ and Stencil

We use the Charm++ runtime system (RTS) to facilitate topology-aware mapping
on a variety of machines. Charm++ [4] is an object-oriented parallel programming
framework based on the idea of virtualization. Virtualization refers to the idea of
dividing the problem into a large number of virtual processors (VPs) which are
mapped to physical processors (PEs) by an intelligent runtime system. The number
of VPs is typically much larger than the number of PEs (making the degree of
virtualization greater than one). The benefits of virtualization include an overlap
of computation and communication which hides message latencies by doing useful
computation.

Tasks or VPs in a parallel application are called “chares” in the context of
Charm++. A chare is the basic unit of computation. It can be created on any
processor and accessed remotely (through entry methods). A Chare Array is an
indexed collection of chares. Each element of a chare array is called an array element.
The Charm++ RTS does a default mapping of chares to processors. It also provides
the user with the flexibility to decide his own mapping for the chares. We will see
how we can use this flexibility to do a better mapping than the system’s default.
Eventually we plan to automate such mapping in the RTS.

2.1. Topology Interface in Charm++

Information about the topology of the machine is needed to map objects or VPs to
processors (such as the dimensions of the 3D mesh/torus). On Blue Gene/L, this
information is available in a data structure called “BGLPersonality” and can be
accessed using some system calls. On Blue Gene/P, there is a similar data structure
called DCMF Hardware t which can be used for the purpose. Obtaining topology
information is not straightforward on Cray XT3. There are no system calls which
can provide information about the dimensions of the partition which has been allo-
cated during a run. This information can be derived in several steps. Every node on
the XT3 has a unique node ID. A static routing table is available on the machine
which has the physical coordinates and neighbors for every node. The Charm++

RTS reads this file during program start-up. To get the physical coordinates corre-
sponding to a processor rank, the RTS obtains the node ID for the rank through a
system call and then gets the coordinates from the routing table. Once it has the
coordinates for all processors in an allocation, it can calculate the dimensions of
the torus. This information about the topology collected by the RTS is available to

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

Benefits of Topology Aware Mapping 5

the application through an API [26] in Charm++. We use this Topology API for
running on Blue Gene/L, Blue Gene/P and XT3.

2.2. 3D and 2D Stencil

Having described the implementation framework, we now describe the first applica-
tion which has been used in this paper to demonstrate the benefits of topology-aware
mapping. 3D Stencil is an implementation of a 3-dimensional 7-point stencil. It has
a three dimensional array of doubles. In every iteration, each element of the array
updates itself by computing the average of its six neighbors (two in each dimen-
sion) and itself. A 3D chare array is created to parallelize the computation using
Charm++. Each element of this chare array is responsible for the computation
of some contiguous elements (a 3D sub-partition) of the data array (Figure 1).
These chares communicate with their neighbors to exchange the updated data on
the boundaries.

2D Stencil is an implementation of a 2-dimensional 5-point stencil. It is similar
to 3D Stencil except that it works with a two dimensional data array. In this case,
a 2D chare array is used for the computation. Communication is simpler than in
3D Stencil since every element needs data from four neighbors. This example was
chosen to show that even though the problem’s dimensionality does not match the
dimensionality of the machine, it can still benefit from topology mapping.

3. Mapping 3D and 2D Stencil

The technique of topology-aware mapping is discussed in this section which is the
central theme of this paper. We shall understand the process of making mapping
decisions and then devise a method to analyze the benefit of mapping. To analyze
the advantages of topology-aware mapping, it will be compared to random and
simple round-robin schemes where equal number of objects are mapped to each
processor. These schemes do not have explicit information about the topology of
the machine although the round-robin scheme has an implicit knowledge about the
topology as we shall see later.

The communication properties of Stencil must be clearly understood to map the
chare arrays topologically. 3D Stencil has a fairly simple communication pattern.
Each chare object talks to its six neighbors (two in each dimension) to exchange the
boundary elements. If these six neighbors can be placed on the same or one of the six
neighboring processors, the distance traveled by each message can be minimized.
The most simple scheme is to place the individual chares on the processors in
a round-robin fashion. When we have multiple cores per node, this scheme does
place some communicating chares on the same node. Also, since consecutive ranks
get mapped to nearby physical processors in a job allocation, this scheme is not
completely oblivious of the topology of the machine. Hence for a fair comparison,
chares should be mapped randomly on to different processors, while keeping the
load evenly balanced. This will be referred to as the random mapping.

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

6 Parallel Processing Letters

Fig. 1. Topology-aware mapping of 3D Stencil’s data array onto the 3D processor grid. Different

colors (shades) signify which chares get mapped to which processors

In the two schemes discussed above, no preference is given to local over remote
communication. Since, in general there are multiple chares per processor, commu-
nicating chares can be placed on the same processor as much as possible. The idea
is to divide the 3D chare array into equal-sized boxes and then map those to cor-
responding processors on the 3D torus. If the dimensions of the chare array are
not exactly divisible by torus dimensions, then some processors get an extra row of
elements compared to others. An effort is still made to minimize load imbalance.
Again as in the case of individual chares, these boxes can be mapped in a random
or round-robin fashion. Let us take a concrete example: say, the data array is of
size 5123 and the size of the torus is 83 (which gives 512 processors). Let each chare
get a partition of size 163 from the data array which gives 5123/163 = 323 chares.
Thus, a 3D chare array of size 323 is to be mapped on a torus of dimensions 83.
Hence each processor gets 323/83 = 43 = 64 chares. So, we can map a block of 43

chares on each processor.
In a topology-aware placement of chares, our intention is to favor local commu-

nication and minimize remote communication. So, the chare array is first divided
into equal-sized boxes as discussed above and then boxes which communicate are
mapped onto nearby physical processors on the torus. Starting from one end of
the chare array, the partitioned boxes are placed on each processor considering the
topology of the machine (Figure 1). The mapping is similar to superimposing a 3D

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

Benefits of Topology Aware Mapping 7

object on another. The different shades in the figure show how the data array gets
mapped to the torus. For the example in the figure, a cube of eight chares is placed
on each processor.

For 2D Stencil, the chare array is folded on to the processor torus. The longer
dimension of the array is folded along the third dimension of the torus. The shorter
dimension of the chare array is matched up with one of the torus’ dimensions (gen-
erally the shorter one). The longer dimension of the chare array is split between
other two dimensions of the torus. This is similar to splitting the 2D array into ’n’
2D arrays where n is one dimension of the torus and then mapping the n arrays to
n planes of the torus. Again, in this case also, chares can be grouped into boxes to
favor local communication and the boxes can be mapped topologically to minimize
remote communication traffic.

4. Evaluation of Mapping Strategies

This section compares three schemes discussed above: 1. Random mapping of chares,
2. Round-robin mapping of chares, and 3. Topology-aware mapping of chares. The
applications were run on Blue Gene/L at IBM T J Watson, Blue Gene/P (Intrepid)
at Argonne National Lab (ANL) and Cray XT3 (BigBen) at Pittsburgh Supercom-
puting Center (PSC) for results in this paper. Watson Blue Gene/L has 20, 480
nodes and the nodes are connected by a 3D torus [27]. Each midplane of Blue
Gene/L (512 nodes) is a complete torus in itself of size 8 × 8 × 8. If one processor
per node is used, it is called the co-processor (CO) mode and if both processors are
used, it is called the virtual node (VN) mode. Instead of using MPI, Charm++ uses
a lower-level one-sided communication library for messaging on Blue Gene/L [28].
The ANL Blue Gene/P machine has 8, 192 nodes and each node has four processors.
Just like Blue Gene/L, the nodes are connected by a 3D torus and a midplane of
512 nodes is a complete torus. BigBen has 2, 112 nodes connected into a 3D torus
of size 11×12×16 by a custom SeaStar interconnect [29]. Out of these 2, 112 nodes
only 2, 068 can be used as compute nodes. Each node has two Opteron processors.
For partitions smaller than the full machine, it is not a torus. Also, one cannot get
a contiguous allocation of nodes on XT3 by default. Runs for this paper were done
with help from the PSC staff to set up a reservation to get a grid of 8×8×16 which
is 1024 nodes.

4.1. Comparison of Hop-bytes

Hop-bytes for an application are an indication of the total volume of communication
on the network. More hop-bytes communicated signifies greater contention for each
link and hence might result in increases message latencies. So, hop-bytes is one
metric used to estimate the success of topology-aware schemes. However, it should
be understood that a mere reduction in the total hop-bytes communicated does not
guarantee better performance. As we shall see later in the paper, a latency-tolerant
application might not benefit from a reduction in hop-bytes.

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

8 Parallel Processing Letters

Table 1 shows the execution time of 3D Stencil for different mapping schemes.
All runs in this table were done with a problem size of 2048×2048×2048 and with 1
chare per processor. Round-robin mapping of chares to processors does better than
a random mapping because the round-robin mapping has an implicit benefit of co-
locating communication objects on nearby physical processors (since consecutive
ranks are mapped to nearby processors by default). The benefit of topology-aware
mapping is seen in the comparison between a round-robin and topology-aware map-
ping of chares. Topology-aware mapping improves the performance by nearly 20%
in some cases. Detailed scaling results comparing round-robin and topology-aware
mapping are given in Section 4.2.

Table 1. Execution time (in milliseconds) of 3D Stencil on Blue Gene/L (CO mode)

for different mapping schemes (Data Size: 2048× 2048× 2048)

Processors Random Round-robin Topology-aware

512 4072.5 1560.9 1538.5
1024 2705.6 964.8 821.9

2048 1814.5 497.4 421.1

4096 1155.6 256.1 212.7
8192 534.4 106.7 108.1

Random
Round−robin
Topology

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

 1.80

 2.00

512 1,024 2,048 4,096 8,192

H
op

−
by

te
s

pe
r

lin
k

pe
r

se
c

(M
B

)

No. of processors

Traffic load per link for 3D Stencil

Fig. 2. Hop-counts for 3D Stencil running on Blue Gene/L (Data Size: 2048× 2048× 2048)

The reduction in hop-bytes needs to be quantified, to measure the improvement
in performance analytically. Hop-counts quantify the hop-bytes for Stencil, since
the size of each message in this application is the same. For each run, the total hop-
bytes communicated per link per second is calculated. Figure 2 shows the hop-bytes
in MB for running the application on 512 to 8,192 processors of Blue Gene/L. At

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

Benefits of Topology Aware Mapping 9

1,024 processors, hop-bytes reduce by 60% compared to the random strategy and
by 35%, compared to the round-robin strategy. The strange variation in the hop-
counts for any particular strategy with increasing number of processors is probably
due to the shape of the torus for these runs. This benefits certain torus shapes more
than others. In the next section, we shall look at the performance benefits from this
technique which motivate its automation in the runtime system.

Table 2. Execution time (in milliseconds) of 3D Stencil on Blue Gene/P (VN mode)

for different mapping schemes (Data Size: 2048× 1024× 1024)

Processors Random Round-robin Topology-aware

512 348.18 335.34 334.82

1024 184.70 170.98 170.77
2048 87.39 86.19 86.07

4096 49.46 43.88 43.35

Random
Round−robin
Topology

 0.00

 10.00

 20.00

 30.00

 40.00

 50.00

 60.00

 70.00

 80.00

512 1,024 2,048 4,096

H
op

−
by

te
s

pe
r

lin
k

pe
r

se
c

(M
B

)

No. of processors

Traffic load per link for 3D Stencil

Fig. 3. Hop-counts for 3D Stencil running on Blue Gene/P (Data Size: 2048× 1024× 1024)

Table 2 presents similar results for running 3D Stencil on Blue Gene/P for a
problem size of 2048 × 1024 × 1024. These runs were also done with 1 chare per
processor. We see a smaller impact of topology-awareness on Blue Gene/P if we
compare runs at a specific number of processors. This might be due to one or
a combination of several reasons: 1. At a given number of cores, the size of the
torus on Blue Gene/P is smaller than that on Blue Gene/L. For example at 4, 096
processors, the torus is 8 × 8 × 16 on Blue Gene/P in VN mode and 16 × 16 × 16
on Blue Gene/L in CO mode. Hence, the average number of hops traversed by each
message are smaller, 2. Link bandwidth on Blue Gene/P is 2.5 times more than
that on Blue Gene/L and message latencies are also smaller, 3. On Blue Gene/P,

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

10 Parallel Processing Letters

communication gets offloaded to the DMA engine which does not exist on Blue
Gene/L.

On Blue Gene/P, we use strategies similar to those on Blue Gene/L and hence,
we see similar considerable reduction in hop-bytes as we go from random to round-
robin to topology-aware mapping (Figure 3). The total number of hop-bytes in-
creases for random and round-robin strategies as we increase the size of the torus
but remains nearly the same for topology-aware mapping across different torus
sizes. In the next subsection, we will analyze the effects of virtualization and also
see performance results on Cray XT3.

4.2. Effects of Virtualization

A fine-grained decomposition leading to a degree of virtualization greater than one
can help in overlapping communication with computation and hence reduce the
effects of message latencies. As we will see, topology mapping still benefits perfor-
mance because it reduces contention by different messages for the same network
links. Contention increases with finer decomposition because of greater number of
short messages and hence a benefit from mapping. Next, we will compare round-
robin versus topology mapping on Blue Gene/L and Cray XT3 for different degrees
of virtualization and compare between them.

Table 3. Execution time (in milliseconds) of 3D Stencil on Blue Gene/L

for different chare sizes (RR: Round-robin, TO: Topology-aware)

Data Size CO mode (512× 512× 512) VN mode (1024× 512× 512)

Chare Size 16× 16× 16 32× 32× 32 16× 16× 16 32× 32× 32
Processors RR TO RR TO RR TO RR TO

512 23.06 20.49 29.11 24.86 62.15 51.09 78.44 47.08
1024 11.54 10.23 17.42 14.78 30.72 25.22 38.48 29.86

2048 6.66 5.29 8.29 7.74 23.24 11.23 19.49 17.10

4096 3.15 2.82 4.05 3.43 9.08 5.73 9.34 9.81
8192 1.68 1.51 - - 4.02 3.25 4.63 5.25

16384 0.89 0.86 - - 2.07 1.95 - -

32768 - - - - 2.47 1.23 - -

Table 3 compares the time taken per iteration of 3D Stencil on Blue Gene/L
for round-robin vs. topology-aware mapping. Topology-aware (TO) mapping does
better than round-robin (RR) at all processor counts. The maximum improvement is
at 2K processors in VN mode for the 163 chare size, where the performance improves
by nearly two times. This matches the huge reduction in hop-counts in Figure 2.
The chare size here refers to the number of data elements per chare which governs
the grain-size of the computation. The table also shows the effect of virtualization
(number of chares per processor) on performance. A bigger chare size (signifying
coarser granularity) helps on 512 processors in VN mode but for all other runs,
smaller chare size gives us the best performance. Size of the chares decides the
number of chares per processor. Chare size of 163 gives 64 chares per processor for

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

Benefits of Topology Aware Mapping 11

a 512-processor run while a chare size of 323 gives 8 chares per processor. At 4, 096
processors in CO mode, for the 323 chare size, there is just one chare per processor.
We do not have timings beyond 4, 096 cores, since once the degree of virtualization
becomes one, the problem cannot be parallelized further.

Experiments similar to those on Blue Gene/L were repeated on Cray XT3 to
test our mapping schemes and the topology interface written in Charm++ for
XT3. Table 4 shows performance numbers for scaling of 3D Stencil from 256 to
2, 048 processors. As expected, we get a performance improvement of up to 20%.
On XT3, the impact of topology-aware mapping is smaller and that this needs
further investigation. We can conclude that XT3 is a more forgiving architecture
because of higher bandwidth per node. The story of hop-counts is exactly similar
to that of Blue Gene/L (Figure 2). We get a reduction of five to six times in the
hop-count.

Table 4. Execution time (in ms per iteration) and hop-counts for 3D Stencil on Cray XT3

for different chare sizes (Data Size: fixed at 512× 512× 512)

Chare Size 16× 16× 16 32× 32× 32

Metric Time (secs) Hop-count Time (secs) Hop-count

Processors RR TO RR TO RR TO RR TO

256 28.05 22.51 296960 53248 16.81 16.65 37888 13312

512 14.51 12.17 335872 69632 9.15 8.98 69632 17408
1024 8.21 7.14 479232 86016 5.51 5.31 94720 21504

2048 6.70 5.65 445952 118784 4.57 4.42 86992 29696

 Communication
 Computation
Idle Time

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

RR TO RR TO RR TO RR TO

T
im

e
(s

ec
s)

No. of processors

3D Stencil with chare size 16 x 16 x 16

256 512 1,024 2,048

Fig. 4. Effect of topology mapping on latency on Blue Gene/L (RR: Round-Robin, T0: Topology,
Data Size: 512 x 512 x 512)

Although the hop-count improves by a factor of five to six, overall performance
does not improve as much. Reduction in hop-bytes quantifies the reduction in com-

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

12 Parallel Processing Letters

munication traffic on the network. This reduces the latency of messages over the
network and hence processors do not have to wait as long for incoming messages.
Hence, the reduction in hop-counts removes the bottleneck of message latency on the
network and cannot linearly reflect on the performance improvement achieved. To
understand the effect of topology-aware mapping, we used the performance anal-
ysis tool Projections [30], a part of the Charm++ distribution. Figure 4 shows
the time spent in communication and computation (added across all processors)
for different runs. The time when a processor is waiting for messages to arrive is
referred to as “idle time”. As is clearly visible, idle time decreases substantially
for the case of topology-aware mapping which signifies that message latency is
significantly reduced. The reduction is consistent across different number of pro-
cessors. It should be noted that the benchmark is very fine-grained and has a very
high communication-to-communication ratio. But this still signifies that for heav-
ily communication-bound applications, topology-aware mapping has a significant
impact on performance.

Table 5. Execution time and hop-counts for 2D Stencil on Blue Gene/L (CO mode)

for different decompositions (Data Size: fixed at 1 billion elements)

Chare Size 128× 128 256× 256
Metric Time (secs) Hop-count Time (secs) Hop-count

Processors RR TO RR TO RR TO RR TO

512 55.29 53.03 149504 25600 53.58 46.75 298736 12800

1024 27.23 26.21 149504 34816 28.21 23.24 298736 17408

2048 14.00 12.91 1197824 51200 16.19 11.44 308604 25600
4096 6.98 6.63 672512 83968 10.49 5.77 467972 41984

8192 3.62 3.47 401664 100352 6.00 2.93 806844 50176
16384 1.94 1.89 266240 133120 3.10 1.51 575360 66560

Topology mapping of 2D Stencil was done to prove that the dimensionality
of the problem need not be the same as the dimensionality of the torus. Similar
performance results are seen for 2D Stencil on Blue Gene/L (see Table 5). Two
chare sizes (1282 and 2562) are used. An improvement of more than two times is
seen on 8, 192 processors in VN mode for the 2562 chare size. Various results for
3D and 2D Stencil support our claim of the benefit obtainable from topology-aware
mapping on 3D mesh/torus machines.

It is observed that for Stencil computations, round-robin mapping does better
than random mapping and topology-aware mapping does better than round-robin
mapping in general. It is also important to keep in mind that round-robin map-
ping can only benefit applications where rank i communicates only with rank i + 1
(Stencil-like near-neighbor communication). For any other complex communication
patterns which is what we find for most applications, it becomes imperative to
explicitly map objects. We will see in the next section that we need to develop a
strategy depending on the communication patterns of the application to get perfor-
mance improvements.

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

Benefits of Topology Aware Mapping 13

Fig. 5. Parallelization of force calculations in Namd

5. NAMD: Preliminary Study

In an effort to automate the process of topology-aware mapping for “real” applica-
tions, a molecular dynamics code was chosen as the test bed. Namd [6, 7, 25] is a
production molecular dynamics code that is used for simulating small to very large
molecular systems on large parallel machines. Let us first motivate why is Namd

a good fit for such schemes. Any molecular dynamics code involves the calculation
of forces due to bonds and non-bonded forces on each atom. Non-bonded forces are
composed of electrostatic and Van der Waal’s forces. A simple parallelization scheme
is to divide the simulation box into smaller cells (referred to as patches in Namd)
and to calculate forces between them. To make this scheme scalable beyond more
processors than there are cells, Namd does a hybrid of spatial and force decompo-
sition to combine the advantages of both. For every pair of interacting patches, a
chare (called a compute) is created which is responsible for calculating the pairwise
forces between the patches. Thus patches hold the information about the atoms and
computes do the actual calculation. These chares do not have to necessarily reside
on the same processor as the patches they communicate with. As shown in Figure 5,
a compute responsible for the force calculation between two patches can be on a
third processor. Namd leverages the load balancing framework in Charm++ to
spread out these computes evenly among all processors. In the following sections,
we will see how can topology information be used during load balancing.

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

14 Parallel Processing Letters

Fig. 6. Topology-aware placement of computes close to their patches

5.1. Load Balancing

Namd depends heavily on the load balancing framework provided by Charm++ for
good performance. Computational load in Namd is persistent across iterations and
hence, load information from previous iterations can be used in future iterations.
Every few hundred or thousand iterations, a few iterations are instrumented and the
load information from these steps is used during the load balancing phase to unload
the overloaded processors. Patches and bonded computes are non-migratable chares
which means they do not move from their home processor once assigned. Patches
are assigned by a topology-aware Orthogonal Recursive Bisection [25]. Non-bonded
computes on the other hand are migratable and can be moved around during load
balancing. The load balancing framework records the communication information
about the application and the topology API discussed earlier gives us the required
information about the machine. With these two things, it should be possible to
automate the process of topology mapping in the load balancers.

5.2. Topology-aware Enhancements

During load balancing, when the runtime is trying to find a processor to place the
compute on, it can consider the topology of the machine. This can reduce the dis-
tance (in terms of hops) between the patches and the computes they communicate
with. It is best to place a compute on a processor such that the sum of the dis-
tance from its two patches is minimized. To ensure this, the coordinates of the two
processors which host the patches with which the given compute interacts are ob-
tained. The RTS then tries to find a processor within the region enclosed by these
two processors on the torus (see Figure 6). For any point within this region (called
the inner brick), the sum of distances from the two patches (at the corners) to the

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

Benefits of Topology Aware Mapping 15

compute is same. Hence the RTS tries to find the least overloaded processor within
this brick first. If it fails, then it tries the rest of the torus (called the outer brick).
The idea is to spiral around the inner brick on the outside and to find the first
underloaded processor. The compute is then placed on it.

Table 6. Reduction in hop-bytes for Namd on Blue Gene/L (Benchmark:ApoA1)

CO Mode (MB/iter) VN mode (MB/iter)
PEs Näıve Topology Näıve Topology

512 202.39 150.10 297.38 307.49
1024 437.01 316.29 505.34 434.62

2048 776.79 514.13 813.06 512.25

4096 1672.93 1193.04 1435.57 1155.41
8192 2920.12 2321.7 2910.08 2290.12

The topology-aware scheme discussed above reduces the hop-bytes considerably
which is one metric for the evaluation of the mapping algorithm. Table 6 shows
the reduction in hop-bytes as a result of topology-aware mapping of patches and
topology-aware load balancing of computes for a molecular system Apolipoprotein-
A1 (ApoA1). This system has 92,224 atoms and a patch grid of size 108.86 ×
108.86 × 77.76 Å. The numbers given are hop-bytes in MB per iteration added
across all processors for all messages. We get nearly 30% improvement (reduction
in hop-bytes) at 4K processors in CO mode. Likewise at this point, we also get an
improvement in time-step per iteration from 4.68 to 3.88 milliseconds (ms). We just
have preliminary performance numbers at this point. We do not get performance
improvements at all processor counts in spite of the reduction in hop-bytes. One
possible reason for this might be the latency-tolerant nature of the computation in
Namd. This needs more investigation and we hope to present detailed performance
results in a later publication.

6. Future Work and Conclusion

This preliminary work has shows benefits from topology-aware mapping of chare
arrays in 3D and 2D Stencil. It also provides us with useful insights on important is-
sues which one might have to face during topology mapping. We wish to extend this
idea to automate mapping for any application with heavy communication (where
such schemes will have an impact). Given the communication dependencies between
objects and topology of a machine, the runtime should automatically do an intel-
ligent mapping. This would remove the burden of mapping from the user and give
optimized performance compared to a random topology-oblivious mapping.

In this direction, Namd shows a reasonable improvement in terms of hop-bytes
and some improvement in performance for higher processor counts. The strategy
developed for Namd’s load balancers can be applied elsewhere quite easily. Namd

is a specific case of section multicasts where each multicast target receives the
multicast message from only two sources. Hence, the scheme can be generalized to

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

16 Parallel Processing Letters

work for section-multicast and topology-aware load balancers. This is the final goal
we are aiming for. This is useful for communication scenarios such as in matrix
multiplication.

The work presented in this paper demonstrates the benefit of topology-awareness
in mapping of objects on to a parallel machine statically or during load balancing.
Results presented for Blue Gene/L, Blue Gene/P and Cray XT3 validate our hy-
pothesis that topology considerations are important on all torus machines. We hope
to utilize the insights gained from the study of Stencil and Namd to create a gener-
alized automatic framework for topology-aware mapping. This would benefit many
applications running on three-dimensional machines in the future.

Acknowledgments

This work was supported in part by DOE grants B341494 funded by the Cen-
ter for Simulation of Advanced Rockets and W-7405-ENG-48 funded by Lawrence
Livermore National Laboratory and a NIH Grant PHS 5 P41 RR05969-04 for
Molecular Dynamics. This research was supported in part by NSF through Ter-
aGrid resources [31] provided by NCSA and PSC through grants ASC050040N and
MCA93S028. We thank Shawn T. Brown and Chad Vizino from Pittsburgh Super-
computing Center for help with system reservations and runs on BigBen. They had
to do considerable changes to the batch scheduler to accommodate our runs. We
also thank Fred Mintzer and Glenn Martyna from IBM for access and assistance
in running on the Watson Blue Gene/L. This research also used running time on
Blue Gene/P of the Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-06CH11357.

References

[1] Deborah Weisser, Nick Nystrom, Chad Vizino, Shawn T. Brown, and John Urbanic.
Optimizing Job Placement on the Cray XT3. 48th Cray User Group Proceedings,
2006.

[2] M.Blumrich, D.Chen, P.Coteus, A.Gara, M.Giampapa, P.Heidelberger, S.Singh,
B.Steinmacher-Burow, T.Takken, and P.Vranas. Design and Analysis of the Blue
Gene/L Torus Interconnection Network. IBM Research Report, December 2003.

[3] Tarun Agarwal, Amit Sharma, and Laxmikant V. Kalé. Topology-aware task mapping
for reducing communication contention on large parallel machines. In Proceedings of
IEEE International Parallel and Distributed Processing Symposium 2006, April 2006.

[4] Laxmikant V. Kale, Eric Bohm, Celso L. Mendes, Terry Wilmarth, and Gengbin
Zheng. Programming Petascale Applications with Charm++ and AMPI. In D. Bader,
editor, Petascale Computing: Algorithms and Applications, pages 421–441. Chapman
& Hall / CRC Press, 2008.

[5] L. V. Kale and Sanjeev Krishnan. Charm++: Parallel Programming with Message-
Driven Objects. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming
using C++, pages 175–213. MIT Press, 1996.

[6] Klaus Schulten, James C. Phillips, Laxmikant V. Kale, and Abhinav Bhatele.

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

Benefits of Topology Aware Mapping 17

Biomolecular modeling in the era of petascale computing. In D. Bader, editor, Petas-
cale Computing: Algorithms and Applications, pages 165–181. Chapman & Hall /
CRC Press, 2008.

[7] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C. Phillips, Gengbin Zheng,
and Laxmikant V. Kale. Overcoming Scaling Challenges in Biomolecular Simulations
across Multiple Platforms. In Proceedings of IEEE International Parallel and Dis-
tributed Processing Symposium 2008, April 2008.

[8] Shahid H. Bokhari. On the Mapping Problem. IEEE Trans. Computers, 30(3):207–
214, 1981.

[9] S. Wayne Bollinger and Scott F. Midkiff. Processor and Link Assignment in Multi-
computers Using Simulated Annealing. In ICPP (1), pages 1–7, 1988.

[10] Soo-Young Lee and J. K. Aggarwal. A Mapping Strategy for Parallel Processing.
IEEE Trans. Computers, 36(4):433–442, 1987.

[11] F. Ercal and J. Ramanujam and P. Sadayappan. Task allocation onto a hypercube
by recursive mincut bipartitioning. In Proceedings of the 3rd conference on Hypercube
concurrent computers and applications, pages 210–221. ACM Press, 1988.

[12] S. Wayne Bollinger and Scott F. Midkiff. Heuristic Technique for Processor and Link
Assignment in Multicomputers. IEEE Trans. Comput., 40(3):325–333, 1991.

[13] Francine Berman and Lawrence Snyder. On mapping parallel algorithms into parallel
architectures. Journal of Parallel and Distributed Computing, 4(5):439–458, 1987.

[14] N. Mansour and R. Ponnusamy and A. Choudhary and G. C. Fox. Graph contrac-
tion for physical optimization methods: a quality-cost tradeoff for mapping data on
parallel computers. In ICS ’93: Proceedings of the 7th international conference on
Supercomputing, pages 1–10. ACM, 1993.

[15] S. Arunkumar and T. Chockalingam. Randomized Heuristics for the Mapping Prob-
lem. International Journal of High Speed Computing (IJHSC), 4(4):289–300, Decem-
ber 1992.

[16] M. Muller and Michael Resch. PE mapping and the congestion problem in the T3E. In
Proceedings of the Fourth European Cray-SGI MPP Workshop, Garching, Germany,
1998.

[17] Eduardo Huedo and Manuel Prieto and Ignacio Mart́ın Llorente and Francisco Tirado.
Impact of PE Mapping on Cray T3E Message-Passing Performance. In Euro-Par ’00:
Proceedings from the 6th International Euro-Par Conference on Parallel Processing,
pages 199–207, London, UK, 2000. Springer-Verlag.

[18] Thierry Cornu and Michel Pahud. Contention in the Cray T3D Communication Net-
work. In Euro-Par ’96: Proceedings of the Second International Euro-Par Conference
on Parallel Processing-Volume II, pages 689–696, London, UK, 1996. Springer-Verlag.

[19] George Almasi and Siddhartha Chatterjee and Alan Gara and John Gunnels and
Manish Gupta and Amy Henning and Jose E. Moreira and Bob Walkup. Unlocking
the Performance of the Blue Gene/L Supercomputer. In SC ’04: Proceedings of the
2004 ACM/IEEE conference on Supercomputing, page 57. IEEE Computer Society,
2004.

[20] Kei Davis and Adolfy Hoisie and Greg Johnson and Darren J. Kerbyson and Mike
Lang and Scott Pakin and Fabrizio Petrini. A Performance and Scalability Analysis
of the Blue Gene/L Architecture. In SC ’04: Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, page 41. IEEE Computer Society, 2004.

[21] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. C. Sexton, and R. Walkup.
Optimizing task layout on the Blue Gene/L supercomputer. IBM Journal of Research
and Development, 49(2/3):489–500, 2005.

[22] Hao Yu, I-Hsin Chung, and Jose Moreira. Topology mapping for Blue Gene/L super-

April 16, 2010 17:43 WSPC/INSTRUCTION FILE paper

18 Parallel Processing Letters

computer. In SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercom-
puting, page 116, New York, NY, USA, 2006. ACM.

[23] Brian E. Smith and Brett Bode. Performance Effects of Node Mappings on the IBM
Blue Gene/L Machine. In Euro-Par, pages 1005–1013, 2005.

[24] Eric Bohm, Abhinav Bhatele, Laxmikant V. Kale, Mark E. Tuckerman, Sameer Ku-
mar, John A. Gunnels, and Glenn J. Martyna. Fine Grained Parallelization of the
Car-Parrinello ab initio MD Method on Blue Gene/L. IBM Journal of Research and
Development: Applications of Massively Parallel Systems, 52(1/2):159–174, 2008.

[25] Sameer Kumar, Chao Huang, Gengbin Zheng, Eric Bohm, Abhinav Bhatele, James C.
Phillips, Hao Yu, and Laxmikant V. Kalé. Scalable Molecular Dynamics with NAMD
on Blue Gene/L. IBM Journal of Research and Development: Applications of Mas-
sively Parallel Systems, 52(1/2):177–187, 2008.

[26] Abhinav Bhatele. Application specific topology aware mapping and load balancing for
three dimensional torus topologies. Master’s thesis, Dept. of Computer Science, Uni-
versity of Illinois, 2007. http://charm.cs.uiuc.edu/papers/BhateleMSThesis07.shtml.

[27] N. R. Adiga, G. Almasi, , Y. Aridor, R. Barik, D. Beece, R. Bellofatto, G. Bhanot,
R. Bickford, M. Blumrich, and A. A. Bright. An Overview of the Blue Gene/L Su-
percomputer. In Supercomputing 2002 Technical Papers, Baltimore, Maryland, 2002.
The Blue Gene/L Team, IBM and Lawrence Livermore National Laboratory.

[28] Michael Blocksome, Charles Archer, Todd Inglett, Pat McCarthy, Mike Mundy, Joe
Ratterman, Albert Sidelnik, Brian Smith, Gheorghe Almasi, Jose Castanos, Derek
Lieber, Jose Moreira, Sriram Krishnamoorthy, Vinod Tipparaju, and Jarek Nieplocha.
Design and Implementation of a One-Sided Communication Interface for the IBM
eServer Blue Gene Supercomputer. In SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, 2006.

[29] Jeffrey S. Vetter, Sadaf R. Alam, Thomas H. Dunigan Jr., Mark R. Fahey, Philip C.
Roth, and Patrick H. Worley. Early evaluation of the cray xt3. In Proceedings of the
IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2006.

[30] Laxmikant V. Kale, Gengbin Zheng, Chee Wai Lee, and Sameer Kumar. Scaling
applications to massively parallel machines using projections performance analysis
tool. In Future Generation Computer Systems Special Issue on: Large-Scale System
Performance Modeling and Analysis, volume 22, pages 347–358, February 2006.

[31] C. Catlett and et al. TeraGrid: Analysis of Organization, System Architecture, and
Middleware Enabling New Types of Applications. In Lucio Grandinetti, editor, HPC
and Grids in Action, Amsterdam, 2007. IOS Press.

