
Dynamic Topology Aware Load Balancing Algorithms for
Molecular Dynamics Applications

Abhinav Bhatelé
Dept. of Computer Science

University of Illinois at
Urbana-Champaign

Urbana, Illinois 61801
bhatele@illinois.edu

Laxmikant V. Kalé
Dept. of Computer Science

University of Illinois at
Urbana-Champaign

Urbana, Illinois 61801
kale@illinois.edu

Sameer Kumar
IBM Thomas J. Watson

Research Center
Yorktown Heights,
New York 10598

sameerk@us.ibm.com

ABSTRACT
Molecular Dynamics applications enhance our understand-
ing of biological phenomena through bio-molecular simula-
tions. Large-scale parallelization of MD simulations is chal-
lenging because of the small number of atoms and small time
scales involved. Load balancing in parallel MD programs
is crucial for good performance on large parallel machines.
This paper discusses load balancing algorithms deployed in a
MD code called Namd. It focuses on new schemes deployed
in the load balancers and provides an analysis of the perfor-
mance benefits achieved. Specifically, the paper presents the
technique of topology-aware mapping on 3D mesh and torus
architectures, used to improve scalability and performance.
These techniques have a wide applicability for latency intol-
erant applications.

Categories and Subject Descriptors
C.4 [Performance of Systems—Performance attributes];
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—network topology

General Terms
Algorithms, Performance

Keywords
load balancing, mapping, topology, torus, mesh

1. INTRODUCTION
Accurate understanding of biological phenomena is aided

by bio-molecular simulations using Molecular Dynamics (MD)
programs [1, 2, 3]. MD programs involve simulation of mil-
lions of time steps, where each time step is typically 1 fem-
tosecond (10−15 secs.) Simulating a millisecond in the life
of a biomolecule can take years on a single processor. Hence
it becomes imperative to parallelize MD programs. Paral-
lelization of MD programs involves atom, spatial or force

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’09, June 8–12, 2009, Yorktown Heights, New York, USA.
Copyright 2009 ACM 978-1-60558-498-0/09/06 ...$5.00.

decomposition [4]. Atom and force decomposition are not
scalable in the sense of their isoefficiency [1]. Spatial decom-
position is scalable but creates load balancing issues because
of relatively non-uniform distribution of atoms (especially
the variation in density between water and protein.) It be-
comes a challenging problem because atoms migrate as the
simulation proceeds and because the force computation has
heterogeneous components.

In this paper, we describe load balancing algorithms de-
ployed in a highly scalable MD code called Namd [5, 6].
Namd is written using the Charm++runtime framework [7]
and benefits from its load balancing support. Load-balancing
in Namd is measurement-based and dynamic [8]. A few hun-
dred time steps are instrumented to record the time spent
by each object doing useful work. This instrumented data
enables the load balancer to make decisions for the next
phase. Two load balancers are used in Namd: a comprehen-
sive load balancer which is used once at startup and moves
lots of objects around, and a refinement load balancer which
is used in the subsequent steps and refines the load balanc-
ing decisions from the previous phases and tries to bring the
maximum load on any processor closer to the average.

This paper describes the existing load balancing infras-
tructure and performance metrics to assess its effectiveness.
Then, we present new techniques which have been deployed
in the load balancers to improve load balance and perfor-
mance. Specifically, this refers to adding architecture aware-
ness to the load balancers. Many modern supercomputers
today are three-dimensional (3D) meshes or tori with n-way
SMP nodes. The application (and in our case, the load
balancer) can utilize this information to map communicat-
ing tasks on processors which are physically close-by. This
can reduce the distance traveled by messages on the net-
work, thereby decreasing contention and message latencies
and improving performance. Techniques outlined in this pa-
per can be used by applications with similar communication
patterns and by other latency intolerant applications also.

Traditional molecular dynamics codes which used atom or
spatial decomposition divided the atoms or space to achieve
load balance. The use of force or hybrid decomposition
makes load balancing more difficult if the number of par-
ticles for which a processor does the force calculations is
variable. Namd has used the benefits of the Charm++’s
dynamic load balancing framework for a long time. In con-
trast codes such as Desmond and Blue Matter do an intel-
ligent static initial distribution of the work and ignore load
variations which might occur later. NWChem is a compu-

Figure 1: VMD visualization of the 30, 591-atom
WW simulation using Namd

tational chemistry software suite which developed sophisti-
cated load balancing techniques to handle periodic atomic
reassignments [9].

Significant work was done on developing general tech-
niques for topology-aware mapping in the 80s [10, 11]. With
the emergence of large machines with significant number
of hops, researchers have started using such mapping tech-
niques in their specific applications [12, 13, 14]. This paper
presents topology aware techniques for molecular dynamics
applications and points towards the need to develop more
general techniques.

We present results on IBM Blue Gene/P (Intrepid) at Ar-
gonne National Laboratory (ANL) and Cray XT3 (BigBen)
at Pittsburgh Supercomputing Center (PSC) to substanti-
ate the schemes proposed above. Load balancing algorithms
discussed in this paper are widely applicable and can be used
in many scenarios, especially those involving multiple multi-
cast sources and targets. Topology-aware schemes discussed
here are beneficial for applications running on large super-
computers. They can help in minimizing message latencies
and improving performance and scaling.

2. SCIENCE SIMULATIONS USING NAMD
Molecular dynamics (MD) simulations of protein folding

offer insight that neither structural studies nor computa-
tional prediction of static structures can provide, as both
structural and dynamic information on the folding process
can be obtained. reach the timescales necessary for protein
folding using all-atom, explicit solvent simulations. How-
ever, through a combination of advances in computing and
discovery of new fast-folding mutants, it has recently become
feasible to study the complete folding process of proteins
through all-atom MD simulations [15] allowing direct com-
parison of simulation results with actual experiments. One
early target for such simulations has been the WW domain
(Figure 1), which was simulated for 10 microseconds (over
twice the experimental folding time) using Namd. The pro-
tein failed to fold in the simulations, and follow-up efforts are
currently underway to determine whether this failure is re-
lated to insufficient sampling or inaccuracies in the force field

Figure 2: Placement of patches, computes and prox-
ies on a 2D mesh of processors

used. Similar simulations of another small protein, villin
headpiece, using the name modified version of Namd have
lead to several successful folding trajectories (unpublished
data).

Complete folding simulations of these small proteins re-
quire trajectories of 5-10 µs in duration, at a time when
most molecular dynamics papers report simulations of tens
or hundreds of nanoseconds. When the WW domain simula-
tions commenced, simulation rates of 42 ns/day (4.1 ms/step)
were obtained on 184 processors of NCSA’s Abe cluster. Im-
provements to the serial performance of Namd, including
tuning of frequently used loops, allowed the simulations to
reach 56 ns/day (3.3 ms/step). Improvements to the Namd
load balancers for this 8-way SMP cluster and the particu-
lar atom simulation were made to allow efficient scaling to
329 Abe nodes, allowing the performance to reach an aver-
age of 101 ns/day (1.7 ms/step), enabling completion of a
10 µs simulation in less than four months. This points to-
wards the criticality of optimizing performance of the load
balancers and the direct impact it has on the science which
is simulated using Namd.

3. LOAD BALANCING IN NAMD
Parallelization of Namd involves a hybrid of spatial and

force decomposition. The 3D simulation space is divided
into cells called “patches” and the force calculation between
every pair of patches is assigned to a different “compute”
object. Patches are assigned statically to processors during
program start-up. On the other hand, computes, can be
moved around to balance load across processors. If a patch
communicates with more than one compute on a processor,
a proxy is placed on this processor for the patch. The proxy
receives the message from the patch and then forwards it
to the computes internally (Figure 2). This avoids adding
new communication paths when new computes for the same
patch are added on a processor.

The number of computes on a processor and their individ-
ual computational loads determines its computational load
and the number of proxies on a processor indicates its com-
munication load. Load balancing in Namd is measurement-

based. This assumes that load patterns tend to persist over
time and even if they change, the change is gradual (referred
to as the principle of persistence). The load balancing frame-
work records information about object (compute) loads for
some time steps. It also records the communication graph
between the patches and proxies. This information is col-
lected on one processor and based on the instrumentation
data, a load balancing phase is executed. Decisions are then
sent to all processors. The current strategy is centralized
and we shall later discuss future work to make it fully dis-
tributed and scalable.

It should be noted that communication in Namd is a spe-
cial case of a general scenario. In Namd, every patch mul-
ticasts its atom information to many computes. However,
each compute (or target of the multicast) receives data from
only two patches (the sources). The general case is where
each target can receive from more than two sources and we
shall see in Section 6 how the strategies deployed in Namd
can be extended to other cases.

Patches in NAMD are statically mapped in the begin-
ning and computes are moved around by the load balancers
to achieve load balance. Two load balancers are used in
Namd. An initial comprehensive load balancer invoked in
the beginning places the computes evenly on all processors.
A refinement load balancer is invoked multiple times during
a run and it moves a small number of computes to rebalance
the load. Both load balancers follow a greedy approach to
distribute load evenly among the processors.

3.1 The Algorithms
The decision to place patches statically and load balance

the computes is based on the typical number of patches and
computes for a system. For a standard MD benchmark,
92, 227-atom ApoLipoprotein-A1 (ApoA1), the number of
patches and computes in a typical run on 512 cores is 312
and 22212 respectively. Also, atoms in a patch move slowly
and relative density of atoms per patch does not change
much as there is no vacuum inside patches – unlike large
density variations we see in out cosmology applications, for
example. Hence, we do not need to load balance the patches.
Atoms are migrated from one patch to another on after every
20 time steps.
Static Placement of Patches: The 3D simulation space
is divided into patches using a geometric decomposition to
have roughly equal number of atoms in each patch. These
patches are then assigned to a subset of the processors in
a simple round-robin or strided fashion. In a typical highly
parallel run, the number of patches is significantly smaller
than the number of processors.

Comprehensive Strategy: This algorithm iterates over
the list of all computes in decreasing order of their compu-
tational loads and finds a “suitable” processor for each one,
while minimizing load imbalance. A compute is placed on a
processor only if the new load of the processor remains be-
low a threshold value (set to be some factor of the average
load on all processors). It also tries to minimize communi-
cation by avoiding the creation of new proxies (additional
proxies require new communication paths from a particu-
lar patch to the processor on which a new proxy is being
placed). Keeping in mind that each compute communicates
with two patches, following are the steps in the search of a
“suitable” processor for a compute:

Figure 3: Preference table for the placement of a
compute

Step I: Place the compute on an underloaded processor
which hosts both the patches or proxies for both of them
- this does not add any new communication paths to the
graph.
Step II: If Step I fails, place the compute on an underloaded
processor which hosts at least one patch or proxy for one of
the patches - this requires adding one path for the other
patch.
Step III: If both Step I and Step II fail, find the first un-
derloaded available processor from the list of underloaded
processors which can accept this compute.

To summarize the strategy, only underloaded processors
are considered for placing a compute and among them, pro-
cessors with available patches or proxies are given preference
to minimize communication. This is implemented using a
preference table which stores the least underloaded proces-
sors for different categories (Figure 3.) The first three cells in
the table correspond to Step I and the last two correspond
to Step II. The highest preference is given to a processor
with proxies for both patches (cell 1), then to one with one
of the patches and a proxy for the other (cell 2) and then
to a processor with both patches on it (cell 3). If Step I
fails, preference is first given to a processor with a proxy
(cell 4) and then to one with the patch (cell 5). We give
preference to placing computes on a processor with proxies
compared to the patches themselves because it was observed
that performance is better if the processors with patches are
not heavily loaded.

Refinement Strategy: This is algorithmically similar to
the comprehensive strategy. The difference is that it does
not place all the computes all over again. This algorithm
builds a max heap of over-loaded processors and moves com-
putes from them to under-loaded processors. Once it has
reduced the load on all overloaded processors to below a cer-
tain value, it stops. The process of choosing an underloaded
processor on which to move a compute, is similar to that in
the comprehensive strategy. The three steps outlined above
for the search of a suitable processor are followed in order
in this case also. For a detailed and historical perspective
to the NAMD load balancers, read Kalé et al. [8].

3.2 Metrics for Success
Optimal load balancing of objects to processors is NP-

hard, so in practice, the best one can do is to try different
heuristic strategies to minimize load imbalance. A combina-
tion of several metrics decides the success of a load balancer
and we will discuss them now before we compare different
load balancing strategies:

Computational Load: The most important metric which

decides the success of a load balancer is the distribution of
computational load across all processors. A quantity which
can be used to quantify this is the ratio of the maximum to
average load across the set of processors. A high max-to-
average ratio points towards load imbalance.

Communication Volume: As we balance computational
load, we should also aim at minimizing inter-processor com-
munication. This can be achieved by using proxies, as de-
scribed earlier, to avoid duplicate communication paths from
a patch to a processor. Additionally, we need to minimize
the number of proxies by avoiding the addition of new prox-
ies.

Communication Traffic: Another optimization possible
on non-flat topologies is to reduce the total amount of traffic
on the network at any given time. This can be done by
reducing the number of hops each message has to travel
and thus reducing the sharing of links between messages.
Number of hops can be reduced by placing communicating
objects on nearby processors. This reduces communication
contention and hence, the latency of messages. This will
be the main focus of this paper. Communication traffic is
quantified by the hop-bytes metric which is the weighted sum
of the messages sizes where the weights are the number of
hops traveled by the respective messages.

4. TOPOLOGY-AWARE TECHNIQUES
Recent years have seen the emergence of large parallel

machines with a 3D mesh or torus interconnect topology.
Performance improvements can be achieved by taking the
topology of the machine into account to optimize communi-
cation. Co-locating communicating objects on nearby pro-
cessors reduces contention on the network and message la-
tencies, which improves performance [16, 14]. Let us now see
the deployment of topology-aware techniques in the static
placement of patches and the load balancers.

Topology placement of patches: Since patches form a
geometric decomposition of the simulation space, they con-
stitute a 3D group of objects which can be mapped nicely
onto the 3D torus of machines. An ORB of the torus is used
to obtain partitions equal in number to the patches and then
a one-to-one mapping of the patches to the processor parti-
tions is done. This is described in detail in [17]. This idea
can be used in other applications with a geometric decom-
position such as cosmological and meshing applications.

Topology-aware Load Balancers: Once patches have
been statically assigned onto the processor torus, computes
which interact with these patches should be placed around
them. We will now discuss modifications to the load bal-
ancing algorithm that try to achieve this heuristically. The
three steps for choosing a suitable processor to place a com-
pute on (for both the comprehensive as well as refinement
load balancer) are modified as follows:

Step I: If the compute gets placed on a processor with both
the patches, then no heuristic can do better than that be-
cause both messages are local to the processor (and no new
communication paths are added). However, if we are search-
ing for a processor with proxies for both patches, we can give
topological preference to some processors. Consider Figure 4

Figure 4: Topological placement of a compute on a
3D torus/mesh of processors

which shows the entire 3D torus on which the job is running.
When placing a compute, it should be placed topologically
close to the two processors that house the patches it inter-
acts with. The two patches define a smaller brick within
the 3D torus (shown in dark grey in the figure). The sum
of distances from any processor within this brick to the two
patches is minimum. Hence, if we find two processors with
proxies for both patches, we give preference to the processor
which is within this inner brick defined by the patches.

Step II: Likewise, in this case too, we give preference to a
processor with one proxy or patch which is within the brick
defined by the two patches that interact with the compute.

Step III: If Step I and II fail, we are supposed to look for
any underloaded processor to place the compute on. Under
the modified scheme of things, we first try to find an under-
loaded processor within the brick and if there is no suitable
processor, we spiral around the brick to find the first under-
loaded one.

To implement these new topology-aware schemes in the
existing load balancers, we build two preference tables (sim-
ilar to Figure 3) instead of one. The first preference ta-
ble contains processors which are topologically close to the
patches in consideration (within the brick) and the second
one contains the remaining processors (outside the brick).
We look for underloaded processors in the two tables with
preference in order to the following: number of proxies, hops
from the compute and then the load on the processor.

4.1 Performance Improvements
Performance runs were done to validate the theoretical ba-

sis behind the topology-aware schemes discussed in the pa-
per. Two supercomputers were used for this purpose: IBM
Blue Gene/P (Intrepid) at ANL and Cray XT3 (BigBen) at
PSC. The default job scheduler for XT3 does not guarantee
a contiguous partition allocation and hence those runs were
done with a special reservation on the whole machine.

Figure 5 shows the hop-bytes for all messages per itera-
tion when running NAMD on Blue Gene/P on different sized
partitions. A standard benchmark used in the MD commu-
nity was used for the runs: 92, 227-atom ApoLipoprotein-A1
(ApoA1). All runs in this paper were done with the PME

No. of cores 512 1024 2048 4096 8192 16384

Topology Oblivious 13.93 7.96 5.40 5.31 - -
TopoPlace Patches 13.85 7.87 4.57 3.07 2.33 1.74
TopoAware LDBs 13.57 7.79 4.47 2.88 2.03 1.25

Table 1: Performance of NAMD (ms/step) on IBM Blue Gene/P

Topology Oblivious
TopoPlace Patches
TopoAware LDBs

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

512 1,024 2,048 4,096

H
op

−b
yt

es
 (M

B
pe

r
ite

ra
tio

n)

No. of cores

ApoA1 running on Blue Gene/P

Figure 5: Hop-bytes for different schemes on IBM
Blue Gene/P

No. of cores 128 256 512 1024

Topology Oblivious 17.43 8.83 5.14 3.08
TopoPlace Patches 17.50 8.88 5.34 3.15
TopoAware LDBs 17.47 8.78 5.10 3.01

Table 2: Performance of NAMD (ms/step) on Cray
XT3

computation turned off to isolate the load balancing issues
of interest. As we would expect, hop-bytes consistently in-
crease as we go from a smaller partition to a larger one. The
three strategies compared are: topology oblivious mapping
of patches and computes (Topology Oblivious), topology-
aware static placement of patches (TopoPlace Patches) and
topology-aware placement for both patches and load balanc-
ing for computes (TopoAware LDBs).

Topology aware schemes for the placement of patches and
the load balancer help in reducing the hop-bytes for all pro-
cessor counts. Also, the decrease in hop-bytes becomes more
significant as we go to larger-sized partitions. This is due to
the fact that the average distance traveled by each message
increases as we increase the partition size in the case of de-
fault mapping, but it gets controlled when we do a topology-
aware mapping. Since the actual performance of the load
balancers depends on several metrics, so the question re-
mains that does the reduction in hop-bytes lead to an actual
improvement in performance. As it turns out, we also see a
reduction in the number of proxies and in the max-to-average
ratio for topology-aware load balancers, which is reflected in
the overall performance of Namd on Blue Gene/P (Table 1).
The topology oblivious scheme stops scaling around 4, 096
cores and hence we did not obtain numbers for it beyond
that. We see an improvement of 28% at 16, 384 cores with
the use of topology-aware load balancers.

Similar tests were done on Cray XT3 to assess if a faster

Topology Oblivious
TopoPlace Patches
TopoAware LDBs

 0

 100

 200

 300

 400

 500

 600

128 256 512 1,024

H
op

−b
yt

es
 (M

B
pe

r
ite

ra
tio

n)

No. of cores

ApoA1 running on Cray XT3

Figure 6: Hop-bytes for different schemes on Cray
XT3

No. of cores 512 1024 2048 4096

Topology Oblivious 4907 15241 22362 38421
TopoPlace Patches 4922 15100 22280 28981
TopoAware LDBs 4630 14092 20740 29572

Table 3: Reduction in total number of proxies on
Blue Gene/P

interconnect can hide all message latencies and make topology-
mapping unnecessary. Figure 6 shows the hop-bytes for all
messages per iteration when running NAMD on Cray XT3
on different sized partitions. We could only run on up to
1024 nodes (1 core per node) on XT3 and as a result we do
not see a huge benefit on the lower processor counts. How-
ever, if we compare the 512 processor runs on XT3 with
2048 processor (512 node) runs on Blue Gene/P, we see a
similar reduction in hop-bytes. It is also reflected in a slight
improvement in performance at this point (Table 2).

Improvement in performance indicates that computational
load is balanced. Reduction in hop-bytes indicates a reduc-
tion in the communication traffic on the network. A re-
duction in communication volume can be inferred from the
number of proxies during a simulation. Table 3 presents
the number of proxies being used in a particular run with
different topology schemes. It is clear from the table that
topology aware schemes reduce the total number of proxies
also apart from reducing hop-bytes.

4.2 Improving Communication Load
Prediction

As a part of the ongoing efforts to improve load balance in
Namd, it was noticed that NAMD uses a simplified model
for communication as only total communication load per
processor is recorded. This was leading to non-optimal load
balancing results. To address this issue, we modified the

Figure 7: Adding SMP-awareness to the preference
table for compute placement

load balancer to consider the addition/deletion of a proxy
to/from a processor. Whenever we add a proxy to a pro-
cessor, we increase the load of that processor by a small
pre-determined value. When we remove a proxy from a pro-
cessor because it is no longer needed, we decrease the pro-
cessor load by similar amount. This optimization leads to
performance improvements (up to 10%) when running at a
small atoms-to-processor ratio on a large number of proces-
sors. The results in Table 1 are inclusive of the performance
improvements from this technique.

5. FUTURE WORK
We present some research ideas which were out of the

scope of this paper but will be used to effectively use the
upcoming architectures and scale the code to a large number
of processors.

5.1 SMP-aware Techniques
Most big cluster machines and supercomputers today con-

sist of SMP nodes ranging from 4 to 16 cores per node. On
such machines, communication can be further optimized by
considering the fact that intra-node communication is faster
than inter-node communication and that favoring intra-node
communication reduces contention on the network. Load
balancers in Namd can utilize the fact that there are multi-
ple cores per node.

Let us consider Blue Gene/P or XT4 and assume 4 cores
per node for this analysis. However, the technique is gen-
eral and applies to any number of cores on a node. We can
make changes to the preference table while choosing a suit-
able processor, to give preference to processors which are on
the same node at each step of the algorithm (I, II and III.)
Thus, we can make two preference tables (Figure 7) to ac-
commodate new scenarios. We first consider placing on the
processor with a proxy or patch (first five cells in the table),
then consider a processor whose neighbors on the same node
contain a proxy or patch (next five cells) and then consider
other external processors.

5.2 Hierarchical Load Balancers
The load balancers used in the production version of Namd

are centralized – this means that the instrumentation infor-
mation is collected on one processor and the decisions are
sent out from that processor. Although load balancing hap-
pens infrequently in a simulation run (once in every 5000
steps), it is more frequent in a benchmarking run and can
take a large time on a very large number of processors.

To effectively scale NAMD to petascale machines such as
Blue Waters, we need to modify the centralized scheme and
use hierarchical ones [18]. In hierarchical load balancing,
we divide all the processors into groups. Every group has
a master rank which communicates with masters of other
groups and takes the load balancing decisions for its own
group. The load balancing strategy used within a group

and across groups can be different and hence, these load
balancers are also referred to as hybrid load balancers.

6. CONCLUSION
This paper discussed load balancing algorithms deployed

in the highly scalable MD application, Namd. It demon-
strated the impact of topology-aware mapping techniques
on application performance on 3D torus/mesh architectures.
We presented results on two machines, ANL’s Blue Gene/P,
which is a 3D torus and PSC’s XT3, which is a 3D mesh.
In both cases, we saw a reduction in hop-bytes, which is a
measure of available link bandwidth used by the application,
and an improvement in performance up to 10%. We expect
larger performance improvements on machines with larger
torus sizes and on machines with faster processors.

The scenario which the application presents points to a
more general situation where every object multicasts to some
target objects and every target of the multicast receives from
multiple sources. Schemes similar to those used in this paper
can be deployed in such a scenario to restrict communica-
tion to a smaller portion of the torus. The best place for a
multicast target is within the brick formed by enclosing all
multicast sources for this target. Any processor within this
brick gives the minimum number of hops from the sources
to the target.

The paper also presented different factors which affect the
success of load balancers. Heuristic-based load balancing
involves a complex interplay of such metrics and a deeper
understanding of these issues will be part of future work. La-
tency tolerant applications, including Namd, also mitigate
the effect of communication contention, typically at some
cost in overhead due to fine-graining. The trade-off between
grainsize and topology-aware balancers also needs further
analysis.

Acknowledgements
This work was supported in part by a DOE Grant B341494
funded by Center for Simulation of Advanced Rockets, DOE
Grant W-7405-ENG-48 for load balancing and by a NIH
Grant PHS 5 P41 RR05969-04 for Molecular Dynamics. We
thank Brian W. Johanson and Chad Vizino from PSC for
help with system reservations and runs on BigBen (under
TeraGrid allocation grant MCA93S028 supported by NSF).
We also used running time on the Blue Gene/P at Argonne
National Laboratory, which is supported by DOE under con-
tract DE-AC02-06CH11357. We thank Peter L. Freddolino
for providing the text and figure for Section 2.

7. REFERENCES
[1] Laxmikant Kalé, Robert Skeel, Milind Bhandarkar,

Robert Brunner, Attila Gursoy, Neal Krawetz, James
Phillips, Aritomo Shinozaki, Krishnan Varadarajan,
and Klaus Schulten. NAMD2: Greater scalability for
parallel molecular dynamics. Journal of
Computational Physics, 151:283–312, 1999.

[2] Kevin J. Bowers, Edmond Chow, Huafeng Xu, Ron O.
Dror, Michael P. Eastwood, Brent A. Gregersen,
John L. Klepeis, Istvan Kolossvary, Mark A. Moraes,
Federico D. Sacerdoti, John K. Salmon, Yibing Shan,
and David E. Shaw. Scalable algorithms for molecular
dynamics simulations on commodity clusters. In SC
’06: Proceedings of the 2006 ACM/IEEE conference

on Supercomputing, New York, NY, USA, 2006. ACM
Press.

[3] Blake G. Fitch, Aleksandr Rayshubskiy, Maria
Eleftheriou, T. J. Christopher Ward, Mark Giampapa,
and Michael C. Pitman. Blue matter: Approaching
the limits of concurrency for classical molecular
dynamics. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, New York,
NY, USA, 2006. ACM Press.

[4] S. J. Plimpton and B. A. Hendrickson. A new parallel
method for molecular-dynamics simulation of
macromolecular systems. J Comp Chem, 17:326–337,
1996.

[5] James C. Phillips, Gengbin Zheng, Sameer Kumar,
and Laxmikant V. Kalé. NAMD: Biomolecular
simulation on thousands of processors. In Proceedings
of the 2002 ACM/IEEE conference on
Supercomputing, pages 1–18, Baltimore, MD,
September 2002.

[6] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C.
Phillips, Gengbin Zheng, and Laxmikant V. Kale.
Overcoming Scaling Challenges in Biomolecular
Simulations across Multiple Platforms. In Proceedings
of IEEE International Parallel and Distributed
Processing Symposium 2008, April 2008.

[7] L.V. Kalé and S. Krishnan. CHARM++: A Portable
Concurrent Object Oriented System Based on C++.
In A. Paepcke, editor, Proceedings of OOPSLA’93,
pages 91–108. ACM Press, September 1993.

[8] L. V. Kalé, Milind Bhandarkar, and Robert Brunner.
Load balancing in parallel molecular dynamics. In
Fifth International Symposium on Solving Irregularly
Structured Problems in Parallel, volume 1457 of
Lecture Notes in Computer Science, pages 251–261,
1998.

[9] T. P. Straatsma and J. A. McCammon. Load
balancing of molecular dynamics simulation with
NWChem. IBM Syst. J., 40(2):328–341, 2001.

[10] Shahid H. Bokhari. On the mapping problem. IEEE
Trans. Computers, 30(3):207–214, 1981.

[11] P. Sadayappan and F. Ercal. Nearest-neighbor
mapping of finite element graphs onto processor
meshes. IEEE Trans. Computers, 36(12):1408–1424,
1987.

[12] Francois Gygi, Erik W. Draeger, Martin Schulz,
Bronis R. De Supinski, John A. Gunnels, Vernon
Austel, James C. Sexton, Franz Franchetti, Stefan
Kral, Christoph Ueberhuber, and Juergen Lorenz.
Large-Scale Electronic Structure Calculations of
High-Z Metals on the Blue Gene/L Platform. In
Proceedings of the International Conference in
Supercomputing. ACM Press, 2006.

[13] Hideaki Kikuchi, Bijaya B. Karki, and Subhash Saini.
Topology-aware parallel molecular dynamics
simulation algorithm. In PDPTA, pages 1083–1088,
2006.

[14] Abhinav Bhatelé and Laxmikant V. Kalé. Benefits of
Topology Aware Mapping for Mesh Interconnects.
Parallel Processing Letters (Special issue on
Large-Scale Parallel Processing), 18(4):549–566, 2008.

[15] Peter L. Freddolino, Anton S. Arkhipov, Steven B.
Larson, Alexander McPherson, and Klaus Schulten.
Molecular dynamics simulations of the complete
satellite tobacco mosaic virus. 14:437–449, 2006.

[16] Abhinav Bhatele and Laxmikant V. Kale. An
Evaluation of the Effect of Interconnect Topologies on
Message Latencies in Large Supercomputers. In
Proceedings of Workshop on Large-Scale Parallel
Processing (IPDPS ’09), May 2009.

[17] Sameer Kumar, Chao Huang, Gengbin Zheng, Eric
Bohm, Abhinav Bhatele, James C. Phillips, Hao Yu,
and Laxmikant V. Kalé. Scalable Molecular Dynamics
with NAMD on Blue Gene/L. IBM Journal of
Research and Development: Applications of Massively
Parallel Systems, 52(1/2):177–187, 2008.

[18] Gengbin Zheng. Achieving High Performance on
Extremely Large Parallel Machines: Performance
Prediction and Load Balancing. PhD thesis,
Department of Computer Science, University of
Illinois at Urbana-Champaign, 2005.

