
A Pattern Language for Topology Aware Mapping

Abhinav Bhatelé, Laxmikant V. Kalé, Nicholas Chen and Ralph E. Johnson

Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{bhatele, kale, nchen, johnson}@illinois.edu

Abstract

Obtaining the best performance from a parallel program involves four important
steps: 1. Choice of the appropriate grainsize; 2. Balancing computational and com-
munication load across processors; 3. Optimizing communication by minimizing inter-
processor communication and overlap of communication with computation; and 4.
Minimizing communication traffic on the network by topology aware mapping. In this
paper, we will present a pattern language for the fourth step where we deploy topol-
ogy aware mapping to minimize communication traffic on the network and optimize
performance.

Bandwidth occupancy of network links by different messages at the same time
leads to contention which increases message latencies. Topology aware mapping of
communicating tasks on the physical processors can avoid this and improve application
performance significantly.

1 Introduction

Arguably, writing parallel programs is hard. Optimizing parallel programs so that they
obtain the best performance possible is even harder. There are some fundamental things
which every programmer has to consider irrespective of whether the program will be run on
a multi-core desktop or a large supercomputer.

Grainsize: The amount of computation a processor does before communicating with other
processors should be chosen to allow maximum overlap of communication and computation
while still minimizing the overhead of dividing the work.

Load Balancing: All processors should do similar amounts of work (inclusive of both
computation and communication) since the time to execute a parallel program is bound by
the processor with the most work.

Communication Optimization: For applications running on large machines, we should
minimize inter-node communication and maximize computation-communication overlap wher-
ever possible. This reduces the communication volume on the network i.e. the total amount
of bytes transferred over the network, thereby minimizing the time for which processors are
idle, waiting for messages.



Figure 1: (a) An arbitrary object communication graph, (b) Object communication graph
for a regular communication pattern, (c) A processor topology graph - 3D mesh

Minimizing Contention: Sometimes these three steps are not enough. A fourth step
is necessary to minimize contention and communication traffic. Communication traffic is
quantified by the hop-bytes metric, where hop-bytes for a message is the message size times
the number of hops it travels. Hop-bytes for an application is the sum of the hop-bytes of all
its messages. Contention is caused by different messages sharing a network link. Topology
aware mapping is a technique for reducing contention and communication traffic by placing
communicating tasks on physically nearby processors.

The problem of topology aware mapping can be stated as follows: Given a object com-
munication graph and a processor topology graph, how can we map the first graph onto the
second such that most messages travel a small number of hops (links) on the network. Figure
1(a) and (b) present an irregular and regular object communication graph and Figure 1(c)
presents a 4 x 4 x 2 dimension mesh (processor graph). Many of the large parallel machines
today have a three-dimensional mesh or torus interconnect with large network diameters. If
most messages in a program travel a large number of hops, they share the bandwidth on each
link with other messages and hence suffer delays. In other words, contention for the same
links on the network leads to increase in message latencies [1, 2]. Topology aware mapping of
tasks or objects helps us avoid this by co-locating communicating tasks on nearby physical
processors [3, 4, 5]. Reducing the total hop-bytes for an application signifies a reduction in
the communication traffic on the network.

This paper presents a pattern language for topology aware mapping of parallel appli-
cations. Depending upon the communication graph of a particular application and the
processor topology, the problem statement and correspondingly, the solution for mapping
changes. This paper will discuss the different patterns which these problems present, set a
context for them and discuss generic solutions in each case. It should be noted that solutions
presented here are general techniques and specific implementations would differ depending
on the nature of the specific problem.

We will mostly be discussing three-dimensional (3D) torus and mesh topologies for par-
allel machines for the patterns in this paper. Such topologies are commonly used in some

2



Figure 2: Projections overview snapshots showing a delay in phases

of the fastest supercomputers on the top500 list today†. IBM’s Blue Gene/L, Blue Gene/P,
Cray’s XT3, XT4 and XT5 are some examples of highly scalable machines which use this
topology. Topology aware mapping is an important technique for supercomputers, but is not
needed for current multi-cores. However, as multi-cores get larger and more complicated, it
will probably become important for them, too.

2 Motivation

OpenAtom is a fine-grained parallelization of the CPAIMD method to understand dynamics
of atoms at a quantum scale [6]. Computation in OpenAtom is divided into a large number
of objects, enabling scaling to tens of thousands of processors. Calculating the electrostatic

†http://top500.org/lists/2008/11

3



WATER 32M 70Ry WATER 256M 70Ry
Cores Default Topology Improvement(%) Default Topology Improvement(%)

512 0.274 0.259 5 - - -
1024 0.189 0.150 20 19.10 16.4 14
2048 0.219 0.112 48 13.88 8.14 41
4096 0.167 0.082 50 9.13 4.83 47
8192 0.129 0.063 51 4.83 2.75 43
16384 - - - 3.40 1.71 50

Table 1: Execution time per step (in secs) of OpenAtom on Blue Gene/L (CO mode)

energy involves computing several terms. Hence, CPAIMD computations involve a large
number of phases with high inter-processor communication. These phases are discretized
into a large number of objects, which generate a lot of communication, but ensures efficient
interleaving of work.

When running on 8192 processors of Blue Gene/L, it was noticed that the scaling and
absolute performance are significantly lower than expected. Using the Projections perfor-
mance analysis tool [7], we obtained a time profile of a particular run. Figure 2 shows the
profiles for two different runs: the top one uses the default mapping and the bottom one uses
a topology aware mapping. The x-axis is the timeline for one iteration and the y-axis has
63 randomly chosen processors (PE) out of the 8192. The top run has a huge white region
where all processors were idle (enclosed in the red box). Using topology aware mapping of
the communicating chare arrays in OpenAtom, we were able to reduce this white region.
This improved the time per iteration of OpenAtom from 8.48 to 5.2 seconds. Time per
iteration for an iterative algorithm determines the total time for the simulation to complete.
Since we were able to nearly halve the time per iteration, a simulation which would normally
take a year to complete can now be done in six months!

We studied the strong scaling (fixed problem size) performance of OpenAtom with
and without topology aware mapping. Two benchmarks commonly used in the CPMD
community: the minimization of WATER 32M 70Ry and WATER 256M 70Ry were used.
As shown in Table 1, performance improvements from topology-aware mapping for Blue
Gene/P (BG/P) can be quite significant. As the number of cores and likewise, the diameter
of the torus grows, the performance impact increases until there is 51% improvement for
WATER 32M 70Ry at 8192 and 50% for WATER 256M 70Ry at 16384 cores.

Improvements obtained for OpenAtom suggest that applications running on large scale
parallel machines can benefit significantly from topology aware mapping if they create con-
tention on the network. Hence application writers who intend to scale their codes to a very
large number of processors would find this work quite useful.

3 Pattern Language

The problem of topology aware mapping can be stated as follows: Given a object communi-
cation graph and a processor topology graph, how can we map the first graph onto the second
such that most messages travel a small number of hops (links) on the network. The aim is to

4



minimize the total hop-bytes for an application which signifies a reduction in communication
traffic and hence contention on the network. The definitions of the terms in the previous
problem statement are as follows:

Object Communication Graph Objects refer to the communicating entities in a par-
allel program. For example, in the case of MPI, these would be MPI ranks and in
Charm++, they would chare array elements. Objects in a parallel program commu-
nicate and define a directed graph with objects as the vertices and a edges between
objects representing communication. Weights on the edges represent the number of
bytes communicated.

Processor Topology Graph The processors in a parallel machine are connected in a cer-
tain topology. It can be a three-dimensional torus or mesh such as in IBM Blue Gene
and Cray XT machines or a tree-based network such as in Infiniband clusters. The
connections between processors define the processor topology graph.

Hops The number of network links a messages travels to reach from the source to destina-
tion.

Hop-bytes Communication traffic is quantified by the hop-bytes metric which is the weighted
sum of the messages sizes where the weights are the number of hops traveled by the re-
spective messages. Reducing the total hop-bytes for an application signifies a reduction
in the communication traffic on the network.

The object communication graph and the corresponding processor topology graph de-
termine the patterns we should use to solve the problem of topology aware mapping. Thus,
the mapping algorithm needs to first obtain both graphs before the actual mapping can be
done.

Most of the patterns described below assume that the processor topology is a 3D torus
or mesh network. For such networks, it is relatively easy to obtain the processor topology
graph through system calls.

Obtaining the object communication graph is harder – if the communication graph is
static, we rely on the application writer’s knowledge for the particular application. If the
communication graph is dynamic, we must use runtime instrumentation to gather the com-
munication graph. And if runtime instrumentation is not possible, we need to perform a test
run of the program under typical conditions, collect information about its communication
patterns and use this collected information to guide the mapping for subsequent executions.

We now describe a pattern language which helps a parallel programmer choose the solu-
tion for topology aware mapping depending on the configuration of the object communication
graph and the processor topology graph. Our pattern language represents a progression from
simpler patterns to more advanced ones. A simpler pattern is not only easier to understand
and implement but also provides more predictability in improvements by taking advantage
of the static nature of the problem. More advanced patterns are harder to implement but
are useful if the nature of the problem is more dynamic and unpredictable.

5



Figure 3: Embedding of one, two and three dimensional object graphs on to a three-
dimensional processor graph

3.1 Static Regular Communication

Problem: How do we map a group of objects with regular/structured communication pat-
terns?

Context: A wide range of parallel applications have fairly regular communication pat-
terns [8, 9, 10]. In some cases, the communication is in a single dimension where processor 0
communicates with 1, processor 1 with 2 and so on. In other cases, there is a two-dimensional
array of objects and each object communicates with its immediate neighbors in the four di-
rections (up, down, left, right). This pattern is seen in a stencil computation where the
value of each element in an array is updated to the average of the values of four elements
surrounding it and itself.

For such applications, the communication is easily defined as a function of the indices of
the objects and there are relatively few cross dependencies which makes mapping relatively
easier.

Forces: The main constraint for this pattern is that the communication graph should be
expressible as an n-dimensional array of objects with structured communication. There are
a few factors which affect the choice of the mapping algorithm to be used. The first is the
dimensionality of the object graph (if it is a line or a 2D or 3D grid). The second factor is
the size of each dimension and if it matches the dimensions of the processor graph or not.
The cardinality of the object and processor graph also affect the mapping decisions.

Solution: Given that the communication is structured and with neighbors whose indices
are close to one’s indices, the solution is to embed the object graph onto the processor graph
so that objects with similar indices are on nearby processors.

First, check the cardinality of the object graph. If the number of objects is more than
the number of processors, then we need to place multiple objects on each processor ensuring
load balance. If the number of objects is not exactly divisible by the number of processors,
it is always advisable to place less number of objects on a few processors than placing more

6



number of objects on a them. For example, if we have to place 100 objects on 8 processors,
we could place 12 objects on 7 processors and 16 objects on one processor. Alternatively, we
could place 13 objects on 7 processors and 9 objects on one. Since the speed of a parallel
program is decided by the slowest processor i.e. the one with the most objects, the second
choice is a better one.

Once the number of objects on each processor is decided and objects have been divided
into blocks, we need to decide how to place these blocks on the processors. If we have a 1D
or 2D array of objects, we fold one or two of the dimensions of the object graph and map it
on the 3D torus. In the case of a 3D object graph, the embedding is simpler. This is simple
if the dimensions of the object graph match the dimensions of the processor graph. If not,
then a careful matching of similar sized dimensions between the object and the processor
graph is required.

Since we know the object communication graph and processor topology graph, the map-
ping can be done once and will not change as the application executes.

Examples: Matrix algorithms such as multiplication, stencil computation in 1D, 2D or 3D,
structured mesh computation are examples where this pattern works well.

The three-dimensional matrix multiplication algorithm [11] creates a 3D virtual topology
of objects. The communication in this algorithm is perpendicular to the planes of the 3D
array of objects. Using the techniques described above, we can map its object graph to a
machine with a 3D torus or a mesh.

In a structured mesh computation application (MILC is one such example [8]), we gen-
erally have a 2D or 3D array of objects which need to be mapped on to the machine.
Communication is near-neighbor and hence, the only consideration is to keep objects which
are near each other in the array on processors which are nearby. In the case of MILC, we
use the embedding of a 4D graph on to a 3D graph.

3.2 Static Irregular Communication

Problem: How do we map an object communication graph which is static but has irregular
communication patterns?

Figure 4: Example of an Unstructured
Mesh

Context: For some parallel applications, the ob-
ject communication graph is irregular – it does not
match any identifiable patterns. Objects which
communicate with one another do not have any
relationship with respect to their place in the data
structures used to represent them.

For example, consider an unstructured mesh
used in representing the surface of a solid (Fig-
ure 4). The mesh is represented as a collection of
triangle elements and each triangle element stores
a list of its neighbors. Similarly each node in the
mesh stores a list of all the triangle elements which share this node. The number of neighbors
each triangle or node has is unbounded and each can potentially communicate with a lot of

7



neighbors and not just with 4 neighbors like the case of structured grid.

Forces: Any given object might communicate with any number of objects in the communi-
cation graph. This would create opposing forces wherein mapping in a certain fashion favors
some communication arcs but penalizes others. In essence, finding the optimal solution for
mapping is hard. It has been proven that the general mapping problem can be reduced to
the graph isomorphism problem which is NP-hard [12, 13]. Heuristic techniques can be used
for the regular pattern also but they might not perform as good as embedding techniques.

Solution: In the case of irregular communication, use heuristic techniques to generate a
solution which is close to optimal. For example in the case of a mesh application, we can
apply a simple heuristic of placing an element in the mesh and then attempting to place
all its neighbors on processors around it, ensuring load balance. Once all its neighbors are
placed, we pick one of the neighbors and try to place its neighbors around it. The choice
of which node to start with and which neighbor to pick when mapping the second level and
so on depends on the exact problem. Depending on the application, we might have to try
several heuristics before we find a good solution.

Since we know the object communication graph and processor topology graph the map-
ping can be done once and will not change as the application executes.

Example: A variety of scientific applications which use unstructured meshes for their com-
putation fall in this category. The photo transport code UMT [14] and Explicit Finite
Element codes such as [15] and [16] are good examples. For unstructured mesh codes, one
possible heuristic is described above where we start with one element in the mesh, place its
neighbors around it and continue this with the neighbors. Another possible solution would
be to create a space filling curve [17] from the mesh elements which will linearize the ob-
jects. We would then place this linear curve by folding in onto the 3D processor graph. The
expectation is that mesh elements which are spatially close to one another will also be close
on the space filling curve.

3.3 Dynamic Communication

Problem: How do we map an object communication graph which changes at runtime as
the application progresses?

Context: For some applications such as molecular dynamics, as the simulation proceeds,
particles move from one processor to another to support dynamic load balancing. Particles
that used to communicate with one another now need to communicate through a proxy and
the actual object that the proxy points to might have been moved to a different, further
location. In other words, the communication graph changes significantly.

In this case, a static mapping done once at the beginning of the application is not suffi-
cient.

Forces: In the first two patterns, since the communication graph was static, we relied on
the application writer’s knowledge of the graph. If the graph changes at runtime, we need
to find an automatic solution to obtain the communication graph. Charm++ provides a

8



Figure 5: Structured Mesh Computation with Adaptive Mesh Refinement

load balancing framework to instrument the code at runtime which can be used to provide
this information [18].

Unfortunately this dynamic instrumentation is not supported on all platforms. For in-
stance, MPI does not provide this facility. Thus, the only solution requires obtaining this
data in a test run and then use that data to do the mapping.

Solution: When the object communication graph is dynamic, use the technique of dynamic
load balancing at runtime instead of initial static mapping.

The dynamic load balancing has to consider the changing topology of the problem, cap-
ture a snapshot of that change, and use the information in the snapshot to reassign objects
to processors.

Different load balancing techniques should be used depending on the problem:

• If the communication graph does not vary significantly as the application progresses,
a simple refinement scheme might be good where we move a few objects around to
account for the change in computational and communicational loads.

• If the changes in load are drastic, it might take more work to refine the topology. In
that case it is better to reassign all the objects and hence do a fresh mapping of all
objects all over again.

A combination of refinement and re-mapping from scratch can be done based on the
degree of change for each snapshot.

The techniques for performing the actual mapping algorithm for a particular snapshot
are similar to the ones used in Section 3.1 and Section 3.2. Depending on whether the object
graph is regular or irregular we use folding/embedding or heuristic techniques.

Example: Various parallel applications have dynamic communication patterns: structured
mesh computation codes with adaptive mesh refinement (AMR) such as FLASH [19], Molec-
ular Dynamics codes such as NAMD [20] and Barnes-Hut [21] codes such as ChaNGa [22].
We discussed some techniques for mapping mesh codes in the previous section. We can use
similar techniques in every load balancing phase after refinement occurs (Figure 5).

As a second example of this pattern, we will discuss the mapping in a molecular dynamics
code. The communication pattern in NAMD involves multicasts from one set of objects
called patches to another set called computes. Every patch does a multicast to some computes
and each compute receives a message from two patches. The patches are statically assigned to

9



Figure 6: Topology aware mapping in
NAMD

the processor graph initially. Since each compute
communicates with two patches, we want to place
it close to its communicators. A simple heuristic
is used for this: a compute is placed within a 3D
box defined by the two processors which host the
compute’s communicators. The number of hops
from the two processors to any processor within
the box is the same (Figure 6). For further details,
refer to [23].

3.4 Applications with Multiple
Object Graphs

Problem/Context: How do we map an applica-
tion which has multiple arrays of objects commu-
nicating within themselves and with one another?

Context: The three patterns described in the previous sections cover the communication
graphs for many common parallel applications and should be sufficient for most programmers’
needs. This particular pattern addresses a more complex problem.

All patterns we discussed above have a single object communication graph. For some
applications, especially in those written in Charm++, it is possible to have multiple object
graphs at different levels. These graphs have communication among their own internal nodes
and with one another. This increases the complexity of the mapping problem manifold
because there are now many more factors to consider for doing the mapping.

Unfortunately, simply considering the top level object communication graph and ignoring
the internal object communication graphs does not always improve performance.

Forces: This pattern should be used when there are multiple object graphs with strong
dependencies between them. As mentioned in the previous section, NAMD has two object
graphs (patches and computes) but the communication between patches is limited. So, in
that case we simplify the situation by mapping the patches first statically and then mapping
the computes around them. Hence, in some cases it might be possible to simplify the situation
by mapping one object graph statically and placing the other object graph based on the first.

Solution: When there are multiple object graphs, the first step is to understand the various
communication graphs for the application and dependencies across them. Graphs which have
weaker dependencies can be mapped independently. For graphs with strong communication
dependencies, they need to be considered together when mapping each of those graphs.
For these graphs, it is important to identify which graph depends on which other graph and
then map them in order.

Example: OpenAtom [6], which was introduced in Section 2 has a fairly involved com-
munication. There are fifteen chare arrays each of which is an object graph (eight of them
are shown in Figure 7). We first decide which object graphs create maximum contention

10



Figure 7: Communication Phases in OpenAtom

and which of those can be mapped independently. The GSpace, RSpace and PairCalculator
graphs have closely-tied communication and the RhoR and other density objects commu-
nicate closely with RSpace. Hence we first map GSpace and then map RSpace and Pair-
Calculators based on the GSpace mapping. Once this group has been mapped, we map the
RhoR and density objects according to the RSpace mapping. For details on the mapping
algorithm, please refer to [24].

3.5 Arbitrary Object and Processor Graphs

Problem: How do we map an object graph onto a processor graph when both graphs are
irregular?

Context: The four patterns discussed above assumed a three-dimensional torus or mesh
topology which is found in some of the prevalent supercomputers today. But there are
other supercomputers with topologies such as a fat-tree or Kautz graph or something else.
When we consider this general case where the processor topology can be one of the many
possible options, the mapping problem becomes even harder. Most research on mapping
in the past has focused on specific processor topologies such as mesh networks [4, 5, 25] or
hypercubes [13, 26, 27] or other topologies.

Forces: When both the communication graph and the processor graph are arbitrary and
we do not have any specific information to help our mapping decisions, it is hard to find
optimal solutions. Also, it is hard to find solutions which will do a good mapping when the
application is run on different topologies.

Solution: The solution in this case is to use heuristics to arrive at a solution which is
close to optimal. Various techniques have been discussed in the literature for this most
general case ranging from physical optimization techniques to heuristic approaches. Physical
optimization techniques involve simulated annealing [26, 28], graph contraction [29, 30] and
genetic algorithms [31]. Physical optimization techniques take a long time to arrive at
the solution and hence cannot be used for a time-efficient mapping during runtime. They
are almost never used in practice. Heuristic techniques such as pairwise exchanges [13]
and recursive mincut bipartitioning [27] were theoretical studies with no real results on
machines. Most of the recent work has been focused on specific applications and use of one

11



of the patterns in the previous sections for the solution.

Example: Much work was done in the 80s on embedding an arbitrary object graph on a
processor graph [13, 26, 29, 31]. Most of this work is theoretical and has not been tried
on science applications running on real machines. It is always beneficial to use application-
specific information to assist the mapping algorithm in arriving at a better solution.

4 Conclusion

This paper presents a pattern language for optimizing communication in parallel applications
running on large supercomputers using the technique of topology aware mapping. Which
pattern to use depends on the object communication graph of the application and processor
topology graph of the machine. We present our patterns in increasing order of difficulty for
doing the mapping. Nonetheless, a harder pattern does not always guarantee better results;
in fact, using a simpler pattern might actually lead to better results since the mapping is more
predictable and easier to arrange statically. Use advanced patterns only when the dynamic
nature of the communication and topology graphs precludes using the simpler patterns.

References

[1] Thierry Cornu and Michel Pahud. Contention in the Cray T3D Communication Net-
work. In Euro-Par ’96: Proceedings of the Second International Euro-Par Conference
on Parallel Processing-Volume II, pages 689–696, London, UK, 1996. Springer-Verlag.

[2] Abhinav Bhatele and Laxmikant V. Kale. An Evaluation of the Effect of Interconnect
Topologies on Message Latencies in Large Supercomputers. In Proceedings of Workshop
on Large-Scale Parallel Processing (IPDPS ’09), May 2009.

[3] Brian E. Smith and Brett Bode. Performance Effects of Node Mappings on the IBM
Blue Gene/L Machine. In Euro-Par, pages 1005–1013, 2005.

[4] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. C. Sexton, and R. Walkup. Opti-
mizing task layout on the Blue Gene/L supercomputer. IBM Journal of Research and
Development, 49(2/3):489–500, 2005.

[5] Abhinav Bhatelé and Laxmikant V. Kalé. Benefits of Topology Aware Mapping for
Mesh Interconnects. Parallel Processing Letters (Special issue on Large-Scale Parallel
Processing), 18(4):549–566, 2008.

[6] Eric Bohm, Abhinav Bhatele, Laxmikant V. Kale, Mark E. Tuckerman, Sameer Ku-
mar, John A. Gunnels, and Glenn J. Martyna. Fine Grained Parallelization of the
Car-Parrinello ab initio MD Method on Blue Gene/L. IBM Journal of Research and
Development: Applications of Massively Parallel Systems, 52(1/2):159–174, 2008.

[7] Laxmikant V. Kale, Gengbin Zheng, Chee Wai Lee, and Sameer Kumar. Scaling ap-
plications to massively parallel machines using projections performance analysis tool.
In Future Generation Computer Systems Special Issue on: Large-Scale System Perfor-
mance Modeling and Analysis, volume 22, pages 347–358, February 2006.

12



[8] MILC Collaboration. MIMD Lattice Computation (MILC) Collaboration Home Page.
http://www.physics.indiana.edu/∼sg/milc.html.

[9] Young Yoon, James C. Browne, Mathew Crocker, Samit Jain, and Nasim Mahmood.
Productivity and performance through components: the asci sweep3d application: Re-
search articles. Concurrency and Computation: Practice and Experience, 19(5):721–742,
2007.

[10] Lattice QCD Collaboration. US Lattice Quantum Chromodynamics Collaboration
Home Page. http://www.usqcd.org.

[11] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-
dimensional approach to parallel matrix multiplication. IBM Journal of Research and
Development, 39(5):575–582, 1995.

[12] Shahid H. Bokhari. On the Mapping Problem. IEEE Trans. Computers, 30(3):207–214,
1981.

[13] Soo-Young Lee and J. K. Aggarwal. A Mapping Strategy for Parallel Processing. IEEE
Trans. Computers, 36(4):433–442, 1987.

[14] ASC Sequoia Benchmark Codes. Lawrence Livermore National Laboratory Page.
https://asc.llnl.gov/sequoia/benchmarks.

[15] Sandhya Mangala, Terry Wilmarth, Sayantan Chakravorty, Nilesh Choudhury,
Laxmikant V. Kale, and Philippe H. Geubelle. Parallel adaptive simulations of dy-
namic fracture events. Engineering with Computers, 24(4):341–358.

[16] Isaac Dooley, Sandhya Mangala, Laxmikant Kale, and Philippe Geubelle. Parallel sim-
ulations of dynamic fracture using extrinsic cohesive elements. Journal of Scientific
Computing, 39(1):144–165, April 2009.

[17] A. J. Fisher. A new algorithm for generating hilbert curves. Software Practice and
Experience, 16:5–12, 1986.

[18] Sanjeev Krishnan and L. V. Kale. Automating Runtime Optimizations for Load Bal-
ancing in Irregular Problems. In Proc. Conf. on Parallel and Distributed Processing
Technology and Applications, San Jose, California, August 1996.

[19] Greg Weirs, Vikram Dwarkadas, Tomek Plewa, Chris Tomkins, and Mark Marr-Lyon.
Validating the Flash Code: Vortex-Dominated Flows. In Astrophysics and Space Sci-
ence, volume 298, pages 341–346. 2005.

[20] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C. Phillips, Gengbin Zheng, and
Laxmikant V. Kale. Overcoming Scaling Challenges in Biomolecular Simulations across
Multiple Platforms. In Proceedings of IEEE International Parallel and Distributed Pro-
cessing Symposium 2008, April 2008.

[21] Josh Barnes and Piet Hut. A hierarchical O(N log N) force-calculation algorithm. Na-
ture, 324:446–449, December 1986.

[22] Pritish Jetley, Filippo Gioachin, Celso Mendes, Laxmikant V. Kale, and Thomas R.
Quinn. Massively Parallel Cosmological Simulations with ChaNGa. In Proceedings of
IEEE International Parallel and Distributed Processing Symposium 2008, 2008.

13



[23] Abhinav Bhatelé, Laxmikant V. Kalé, and Sameer Kumar. Dynamic Topology Aware
Load Balancing Algorithms for Molecular Dynamics Applications. In 23rd ACM Inter-
national Conference on Supercomputing, 2009.

[24] Abhinav Bhatelé, Eric Bohm, and Laxmikant V. Kalé. A Case Study of Communication
Optimizations on 3D Mesh Interconnects. In Euro-Par 2009, LNCS 5704, pages 1015–
1028, 2009.

[25] P. Sadayappan and F. Ercal. Nearest-Neighbor Mapping of Finite Element Graphs onto
Processor Meshes. IEEE Trans. Computers, 36(12):1408–1424, 1987.

[26] S. Wayne Bollinger and Scott F. Midkiff. Processor and Link Assignment in Multicom-
puters Using Simulated Annealing. In ICPP (1), pages 1–7, 1988.

[27] F. Ercal and J. Ramanujam and P. Sadayappan. Task allocation onto a hypercube
by recursive mincut bipartitioning. In Proceedings of the 3rd conference on Hypercube
concurrent computers and applications, pages 210–221. ACM Press, 1988.

[28] S. Wayne Bollinger and Scott F. Midkiff. Heuristic Technique for Processor and Link
Assignment in Multicomputers. IEEE Trans. Comput., 40(3):325–333, 1991.

[29] Francine Berman and Lawrence Snyder. On mapping parallel algorithms into parallel
architectures. Journal of Parallel and Distributed Computing, 4(5):439–458, 1987.

[30] N. Mansour and R. Ponnusamy and A. Choudhary and G. C. Fox. Graph contraction
for physical optimization methods: a quality-cost tradeoff for mapping data on parallel
computers. In ICS ’93: Proceedings of the 7th international conference on Supercom-
puting, pages 1–10. ACM, 1993.

[31] S. Arunkumar and T. Chockalingam. Randomized Heuristics for the Mapping Problem.
International Journal of High Speed Computing (IJHSC), 4(4):289–300, December 1992.

14


