
Automated Mapping of Regular Communication
Graphs on Mesh Interconnects

Abhinav Bhatelé, Gagan Raj Gupta, Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

E-mail: {bhatele, gagan, kale}@illinois.edu

I-Hsin Chung
IBM Research

Thomas J. Watson Research Center
Yorktown Heights, NY 10598, USA

E-mail: ihchung@us.ibm.com

Abstract— Network contention has a significantly adverse
effect on the performance of parallel applications with increasing
size of parallel machines. Machines of the petascale era are
forcing application developers to map tasks intelligently to
job partitions to achieve the best performance possible. This
paper presents a framework for automated mapping of parallel
applications with regular communication graphs to two and three
dimensional mesh and torus networks. This framework will save
much effort on the part of application developers to generate
mappings for their individual applications.

One component of the framework is a process topology
analyzer to find regular patterns and if found, to determine the
dimensions of the communication graphs of applications. The
other component is a suite of heuristic techniques for mapping
2D object grids to 2D and 3D processor meshes. The framework
chooses the best heuristic from the suite for a given object grid
and processor mesh pair based on the hop-bytes metric. We show
performance improvements using the framework, for a 2D Stencil
benchmark in MPI and the Weather Research and Forecasting
model running on the IBM Blue Gene/P. We also compare our
algorithms with others discussed in literature.

I. INTRODUCTION

Should parallel applications be written taking the intercon-
nect topology into account? The glib and naı̈ve answer may
be “Of course, yes!”. Yet, since the mid 1980’s until just a few
years ago, the correct answer was “no”. It is significantly more
challenging (and certainly more work) to consider the network
topology while developing an application; so understanding
the nuanced answer to this question is important. Most inter-
connects since the mid 1980’s have used wormhole routing
or its variants. Instead of storing and forwarding the entire
message or even large packets, at each hop along the route,
very short flits are forwarded along a route set up by the first
flit. As a result, for a message beyond a few hundred bytes
in size, the latency is not significantly affected by the number
of hops it traverses. This, combined with the relatively small
number of nodes used, made it a safe assumption to ignore
the interconnect topology.

With the advent of large machines with toroidal topologies,
such as the IBM Blue Gene/P at Argonne National Lab (ANL)
that has 40, 960 nodes, and Cray XT4/5 (Jaguar) at Oak Ridge
National Laboratory (12, 141 nodes), a new and somewhat
subtle issue has made topology important again, at least for
some applications. While the benefits of wormhole routing

remain relatively unaffected, messages that traverse a large
number of hops occupy a larger fraction of the available
bandwidth, and thereby increase the chance of contention in
the network. However, contention might not affect overall
application performance if communication is a small fraction
of the total execution time or if the application is latency
tolerant. So, contention is a second order effect and not all
applications are affected by it. But for the applications that
are affected, the impact can be dramatic. We and a few other
researchers, have demonstrated this effect, and have brought
it to the attention of the community [1]–[4]. It is therefore
necessary now to undertake a research program aimed at
topology aware mapping of tasks to processors.

It should be noted that the level of efficacy of mapping is
hardware dependent but looking at the current trends of some
supercomputers, bandwidth available per flop is decreasing.
For example, the advertised bandwidth per flop for the Cray
XT3, XT4 and XT5 machines is 8.77, 1.36, 0.23 bytes per
flop respectively [5], [6]. Hence, in situations where bandwidth
is insufficient and applications are communication bound, we
should see some benefit from mapping.

Modern supercomputers are forcing application developers
to map tasks intelligently to job partitions to achieve the best
performance possible. This paper presents a framework for
automated mapping of parallel applications. This framework
will save much effort on the part of application developers
to generate mappings for their individual applications. The
paper takes on a specific aspect of topology aware mapping:
how to assign tasks with two-dimensional (2D) near-neighbor
communication graphs, to the prevailing three-dimensional
(3D) mesh and torus topologies. Several classes of parallel
applications fall under this category of regular communication
graphs, a few examples being MIMD Lattice Computation
(MILC) [7], Parallel Ocean Program (POP) [8] and Weather
Research and Forecasting Model (WRF) [9].

We present several mapping algorithms, some new and some
known via the literature, and compare their performance using
the hop-bytes metric. The hop-bytes metric is the weighted
sum of message sizes where the weights are the number of
hops (links) traveled by the respective messages. Hop-bytes
is an indication of the average communication load on each
link on the network. Of course, using this metric as a measure

of contention is tantamount to assuming that the application
generates nearly uniform traffic over all links in the partition.
The metric does not give an indication of hot-spots generated
on specific links on the network. However, it is an easily
derivable metric and correlates well with actual application
performance. Also, it is often better than the prevailing metric
maximum dilation.

The main contribution of the paper, is the framework for
automatic mapping of a wide class of MPI and other applica-
tions with regular communication graphs. We consider point-
to-point communication in this paper because collective oper-
ations involving all ranks in a program cannot be optimized
by a remapping of ranks. From analysis of communication
patterns, to using different heuristics in different situations for
mapping solutions, everything is handled by the framework.
Parallel applications can get performance improvements using
mapping solutions from this framework without any changes
to the code base. We demonstrate the use of this framework
for performance improvements of two parallel applications: a
2D Stencil benchmark in MPI and the Weather Research and
Forecasting (WRF) program.

This paper is organized as follows: Section II builds on
the introduction, motivates the work further and places it
in perspective. The automated mapping framework and the
evaluation metric hop-bytes are discussed in Section III. The
two steps for automatic mapping are presented in the subse-
quent sections: Section IV presents algorithms for identifying
communication patterns from profiling data. Sections V and VI
present mapping algorithms for 2D object grids to 2D and 3D
processor meshes respectively. Section VII presents results on
mapping of applications with regular communication.

II. PREVIOUS WORK AND MOTIVATION

Research on topology aware mapping originated in the fields
of graph embedding, circuit design and parallel computing.
Techniques that embed rectangular 2D grids into square 2D
grids were proposed to optimize VLSI circuits and significant
results were obtained [10]–[12]. Techniques from mathematics
and circuit design are not always applicable to parallel com-
puting. For example, mapping research motivated by reducing
the total area of circuit layouts tried to minimize the length
of longest wire [10]. Longest edge dilation might not be the
best metric for parallel machines.

In parallel computing also, the problem of mapping parallel
programs onto parallel systems has been studied extensively.
Significant research was done on topology aware mapping
to restrict communication to near-neighbors and optimize
performance [13]–[15]. Techniques ranging from physical
optimizations to heuristic approaches were developed. Most of
these techniques (heuristic techniques especially) were devel-
oped specifically for hypercubes, shuffle-exchange networks
or array processors.

In recent times, several groups of application developers
have used mapping techniques to improve performance for
their codes [16]–[21]. The motivation for the work accom-
plished in this paper is to relieve the application developers

from doing the mapping. We are trying to build an intelli-
gent mapping framework which can automate the process of
mapping of applications to parallel machines. In this paper,
we chose applications which have a regular communication
pattern. Several classes of applications in high-performance
computing fall in this category ranging from ocean simula-
tions, weather simulations to lattice QCD simulations.

The general mapping problem is computationally equivalent
to the graph isomorphism problem which belongs to NP,
neither known to be solvable in polynomial time nor NP-
complete. Hence, we have developed various heuristics to
generate mapping solutions. We hope that a wide class of
applications can benefit from the mapping framework and
obtain performance optimizations.

III. AUTOMATIC MAPPING FRAMEWORK

The previous section mentioned that several application
groups have realized the importance of topology aware map-
ping and used it to improve the performance of individual
codes. A general mapping framework which takes the commu-
nication graph of an application as input and outputs efficient
mapping solutions would relieve the application developers of
the mapping burden. A library with several mapping heuristics
for different communication graphs would be a great asset to
the parallel computing community.

All parallel applications can be divided into two categories
depending on their communication graph – regular and irreg-
ular. Regular graphs refer to those where the number of edges
from all the nodes is the same and there is a certain pattern
to the communication. Examples of regular communication
are 2D and 3D stencil-like communication and structured
mesh computations. Graphs with varying number of edges
from different nodes and all others which do not fall under
the regular category can be labeled as irregular. Examples of
irregular communication are unstructured mesh computations.
This paper takes on one specific aspect of mapping: how to
assign tasks with two-dimensional (2D) near-neighbor com-
munication graphs, to the prevailing three-dimensional (3D)
mesh and torus topologies.

The process of automating the mapping of applications can
be divided in to two steps:

1) Obtain the communication graph for an application and
identify specific communication patterns in the commu-
nication graph.

2) Apply heuristics in different cases depending on the
communication patterns to obtain mapping solutions.

The communication graph for an application gives information
about the number of bytes exchanged between tasks or pro-
cesses in the program. For example, in case of MPI, the nodes
of this graph are the MPI ranks or processes in the program and
edges exist between two nodes if the corresponding MPI ranks
communicate through messages. A test run of the application
is performed to obtain a n×n matrix of communication bytes
exchanged between different pairs where n is the total number
of MPI ranks.

Process Topology
Analyzer

Input: Application
communication graph

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

Different
heuristics for

irregular graphs

Fig. 1. Schematic of the automatic mapping framework

The communication graph is obtained by profiling libraries
such as those in the IBM High Performance Computing
Toolkit (HPCT) [22] and information from one run can be
used to develop mapping solutions for subsequent similar runs.
This approach assumes that the communication graph of an
application running with a certain set of input parameters
does not change from run to run. As of now, the situation
where the graph changes with time, within one run, can not
be handled either, since migrating MPI tasks at runtime is
not possible. However, some programming models such as
CHARM++ provide the capability of profiling applications as
they are running [23]. In such cases, the information can be
used for dynamic mapping (and even load balancing if the
need arises).

Figure 1 presents a schematic of the automatic mapping
framework. There are two inputs to the framework:

1) The application communication graph which is used by
the process topology analyzer (referred to as the object
graph or grid in the rest of the paper).

2) The processor topology graph (referred to as the proces-
sor mesh) which is used by the mapping algorithms.

The framework first searches for regular communication pat-
terns. Depending on the communication patterns identified by
the process topology analyzer, the framework chooses the best
heuristic from the suite for a given object grid and processor
mesh pair, based on the hop-bytes metric. If there is no
regular pattern, we assume the graph to be general and use
heuristics for irregular graphs. Mapping of irregular graphs is
out of scope of this paper and will be discussed in a future
publication. The framework outputs a mapping solution in the
form a file to be used for a subsequent run (by providing it to
the job scheduler).

A. Evaluation Metric

The mapping solutions derived by the framework will be
evaluated by the hop-bytes metric which is the weighted

sum of message sizes where the weights are the number
of hops (links) traveled by the respective messages. Hop-
bytes is an indication of the average communication load on
each link on the network. If a significant percentage of all
messages travel multiple links, the total hop-bytes increase
which suggests increased likelihood of contention. Hop-bytes
can be calculated by the equation,

HB =

n∑
i=1

di × bi (1)

where di is the number of links traversed by message i and bi
is the message size in bytes for message i and the summation
is over all messages sent.

Hop-bytes is a measure of the bytes the network has to
deliver for an application to run to completion. This assumes
that the application generates nearly uniform traffic over all
links in the partition. It is also important to remember that hop-
bytes is an approximate indication of the contention created by
an application since it does not capture the specific loads on
each link. The metric does not give an indication of hot-spots
generated on specific links on the network but is an easily
derivable metric and correlates well with actual application
performance.

The rest of the paper discusses various components of the
mapping framework and performance improvements achieved
by using it with different applications.

IV. IDENTIFYING COMMUNICATION PATTERNS

Automatic topology aware mapping, as we shall see in the
next few sections, uses heuristics for fast scalable runtime so-
lutions. Heuristics can yield more efficient solutions if we can
derive concrete information about the communication graph
of the application and exploit it. For this, we need to look
for identifiable communication patterns, if any, in the object
graph. Many parallel applications have relatively simple and
easily identifiable 2D, 3D or 4D communication patterns. If
we can identify such patterns, then we can apply better suited
heuristic techniques for such scenarios. We use relatively
simple techniques for pattern identification. We believe that
these can be extended to detect more complex patterns based
on similar work in literature [24], [25]. Some performance
analysis tools also provide communication pattern identifica-
tion and visualization for identifying performance problems in
parallel applications [26].

In some cases, the process topology can be presented by the
application user to the mapping framework. However, there
are two reasons for adding the process topology analyzer: 1.
Often the application developer would know the application
topology but the application end user might not, and 2. The
process topology discovery is a part of the automation of the
mapping process. This rules out any intervention by the user in
the mapping process. Also, we need profiling to know which
MPI rank communicates with which other ranks where the
topology analyzer can be useful.

Here, we explain the algorithm for identifying if the com-
munication in an application has a near-neighbor stencil-like

pattern with four neighbors in 2D. Algorithms for doing the
same in 3D and 4D are similar. We first begin by ensuring
that the number of communicating neighbors for each MPI
rank is the same and is 5 or less. For a 2D communication
pattern, a given rank would typically have four communicating
neighbors and may have some communication (through global
operations) with rank 0. Broadcasts from and reductions to
rank 0 cannot be optimized by reordering of ranks and hence
we ignore that. We also ignore any communication edges
whose weight is less than a threshold, say 20% of the average
across all edges in the graph. This is a heuristic and the
threshold can be changed.

For a 2D communication pattern, if there is no wraparound,
ranks on the boundaries may have fewer neighbors. Filtering
these aberrations, we choose a random rank and find its
“distance” (difference between the ranks IDs) from its four
neighbors. The distance from two of its neighbors (left and
right) would be 1 and from its top and bottom neighbors would
be one of the dimensions of the 2D grid. This assumes that
ranks are ordered in a row or column major order. Then, for all
other ranks, we ensure that the distances from their respective
neighbors are either 1 or the value of distance obtained for
the previously chosen random rank. If this holds true for all
other ranks, then the communication is indeed a uniform 2D
near-neighbor pattern.

Algorithm 1 Pseudo-code for identifying regular communica-
tion graphs

Input: CMn,n (communication matrix)
Output: isRegular (boolean, true if communication is regular)

dims[] (dimensions of the regular communication graph)
for i = 1 to n do

find the maximum number of neighbors for any rank in CM i,n

end for
if max neighbors ≤ 5 then

// this might be a case of regular 2D communication
select an arbitrary rank startpe find its distance from its neighbors
dist = difference between ranks of startpe and its top or bottom

neighbor
for i := 1 to n do

if distance of all ranks from their neighbors == 1 or dist then
isRegular = true
dim[0] = dist
dim[1] = n/dist

end if
end for

end if

Algorithm 1 shows the pseudo code for identifying one
possible 2D communication pattern. Currently, this algorithm
can only identify a 5-point stencil pattern. However, the
algorithm can be extended trivially so that it can identify other
regular patterns such as a 9-point stencil or a communication
with all 8 neighbors around a rank in 2D. The algorithms
for identifying 3D and 4D near-neighbor patterns are similar.
Once the information about communicating ranks has been
extracted and identified, the mapping algorithms can use it to
map communicating neighbors on nearby physical processors.

V. 2D TO 2D MAPPING ALGORITHMS

Let us say that processes in an application have a 2D stencil-
like communication pattern where each task communicates
with four neighbors, two in each direction. So the commu-
nication graph for this application is a planar graph which
resembles a 2D grid. We want to map this 2D grid to a 2D
processor mesh. For heuristics in this paper, we assume that
all edges in the communication graph have the same weight.
Further, we are targeting MPI applications, so, the number
of ranks (nodes in the communication graph) is the same as
the number of processors (in the mesh). Therefore, we can
assume that the number of nodes in the two graphs is the same.
Of course, if the object grid has the same dimensions as the
processor mesh, the best mapping is trivial. Heuristic strategies
are needed when the aspect ratios are different. We describe
five heuristics to map a 2D object grid to a 2D processor mesh.
All of these heuristics are designed to optimize different cases
and as we shall see in the results section, they perform best
for grids of different aspect ratios.

Heuristic 1 - Maximum Overlap: This heuristic attempts to
find the largest possible area of the object grid which overlaps
with the processor mesh and maps it one-to-one. For the
remaining area of the object grid and the processor mesh,
we then make a recursive call to the algorithm. The intuition
behind this heuristic is that we get the best hop-bytes for
a large portion of the grid, although for a few nodes at the
boundaries of the recursive calls, we might have longer hops.
However, the hope is that the average hop-bytes for the entire
object grid will be low and a few distant messages will not
affect performance.

Figure 2 illustrates this mapping technique, where an object
grid of dimensions 9×8 is to be mapped to a processor mesh
of dimensions 6 × 12. We first map the largest possible sub-
grid with dimensions 6× 8 to the processor mesh. Once this
is done, a recursive call is made for the object grid of size
3× 8 to be mapped onto a processor mesh of size 6× 4.

9
6

8

12

6

8

Fig. 2. Maximum Overlap (MXOVLP)

Algorithm 2 presents the pseudo-code for this heuristic
(referred to as MXOVLP in figures and tables). Ox and Oy

refer to the x and y dimensions of the object grid and Px and
Py refer to the x and y dimensions of the processor mesh.

Heuristic 2 - Maximum Overlap with Alignment: This is
similar to Heuristic 1 but it tries to align the longer dimension
of the object grid with that of the processor mesh (referred

Algorithm 2 Maximum Overlap Heuristic (MXOVLP) for 2D
to 2D mapping

procedure MXOVLP(Ox, Oy , Px, Py)
if Ox == Px then

do a one-to-one mapping and return
end if
if Ox > Px then

map the area Px ×Oy

MXOVLP(Ox − Px, Oy , Px, Py −Oy)
copy the mapping into the main array and return

else
map the area Ox × Py

MXOVLP(Ox, Oy − Py , Px −Ox, Py)
copy the mapping into the main array and return

end if
end procedure

to as MXOV+AL in figures and tables). This realignment is
done at each recursive call and yields a better mapping than
MXOVLP in most cases. Heuristics 1 and 2 lead to dilation at
each recursive call at the boundaries where the object grid
is split during recursion. However, as long as the average
hop-bytes is low, we should obtain a good mapping. All the
following heuristics (including Heuristic 1 above) also do an
initial alignment of the longer dimensions of the object grid
and the processor mesh.

There are some optimization possibilities for Heuristics 1
and 2 which will be explored in future work – After the
mapping for recursively smaller sub-graphs is complete, at the
end of each recursive call, it is possible to rotate the mapping
for the sub-graph by 180 degrees or flip it. There are several
possibilities at each recursive call leading to a combinatorial
explosion of arrangements. Hence we will not discuss this
post-rotation in this paper.

Heuristic 3 - Expand from Corner: In this algorithm, we
start at one corner of the object grid and order all other
objects by their increasing Manhattan distance from the chosen
corner. We also order the processors in a similar fashion
starting from one corner. Then the objects are placed in order,
starting from the chosen corner of the processor grid (pseudo-
code for EXCO in Algorithm 3). The intuition is that objects
which communicate with one another will be close in the new
ordering based on the Manhattan distance and hence, will get
mapped nearby. Figure 3 shows how we start from the upper
left corner of the object grid and map objects successively
starting from the corresponding corner of the processor mesh.

Heuristic 4 - Corners to Center: This is similar to Heuristic
3 but in this case, we start simultaneously from all four corners
of the 2D object grid and move towards the center. The objects
are again picked based on their Manhattan distance from the
corner closest to them (this heuristic is referred to as COCE in
figures and tables). This modification to Heuristic 3 achieves
better proximity for a larger number of objects since we
start simultaneously from four directions. However, for certain
aspect ratios, as we move closer to the center, objects may be
placed farther from their communicating neighbors leading to

Ox

Oy

Px

Py

1 3 6

2 5 9

4 8

7

1 3 6

2 5 9

4 8

7

Fig. 3. Expand from Corner (EXCO)

Algorithm 3 Expand from Corner (EXCO) Heuristic for 2D
to 2D mapping

procedure EXCO(Ox, Oy , Px, Py)
nox = noy = npx = npy = 0
for i := 1 to Ox ×Oy do

< cox, coy >=< nox,noy >
< cpx, cpy >=< npx,npy >
Map[cox][coy] = cpx × Py + cpy
< nox,noy > = findNearest2D(cox, coy , Ox, Oy)
< npx,npy > = findNearest2D(cpx, cpy , Px, Py)

end for
end procedure

larger hop-bytes.

Heuristic 5 - Affine Mapping: The idea is to stretch/shrink
the object grid in both dimensions and align it to the processor
mesh. It is expected that such a mapping will preserve the
relative orientations of the objects, thereby minimizing the
dilation. A destination processor is calculated for each object
based on its position, (x, y) in the communication graph:

(x, y)→ (bPx ×
x

Ox
c, bPy ×

y

Oy
c) (2)

Algorithm 4 Affine Mapping (AFFN) Heuristic for 2D to 2D
mapping

procedure AFFN(Ox, Oy , Px, Py)
for i := 1 to Ox do

for j := 1 to Oy do
af x = bPx × i

Ox
c

af y = bPy × j
Oy
c

< freex, freey > = findNearest2D(af x, af y , Px, Py)
Map[i][j] = freex × Py + freey

end for
end for

end procedure

Since the coordinates are constrained to be integers, it is
possible that two objects may be mapped to the same proces-
sor. To resolve this, we use the function findNearest2D
which returns an unused processor closest to (af x, af y). It
should be noted that this mapping is not strictly affine since we
use findNearest to resolve conflicts for the same processor
(see Algorithm 4). This mapping is referred to as AFFN in
figures and tables.

Heuristic 6 - Step Embedding: This algorithm is an imple-

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6

Row 1 Row 1

Row 2

Row 1

Row 2

Row 3

Row 1

Row 2

Row 3

Row 4

Row 1

Row 2

Row 3

Row 4

Row 5

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6map to

Fig. 4. Mapping of a 6× 5 object graph to a 10× 3 processor graph using the STEP algorithm

mentation of the step embedding technique (STEP) presented
in [10]. Techniques in [10] were written to optimize chip
layout and hence they try to minimize the length of the longest
wire. The paper presents ways to “square up” an arbitrary
rectangular grid. However, unlike our mapping algorithms, for
STEP, the number of nodes in the processor mesh can be
greater than that in the object grid. We borrow the idea of
visualizing the mappings for the object grids from this paper.

Heuristic 7 - Pairwise Exchanges: Several research papers
in the past have used the technique of pairwise exchanges by
itself or with an intelligent initial mapping [15], [27]. In this
technique (PAIRS), we start with a chosen initial mapping,
choose two objects randomly and swap the processors they are
placed on. We retain this swap if a chosen metric improves
otherwise we discard it. This is continued until the improve-
ment in the chosen metric falls below a certain threshold.
The pairwise exchange algorithm with probabilistic jumps,
presented in [15] has a O(n3) time complexity. This algorithm
is too expensive to be practical. However, in absence of the
knowledge of the true optimal mapping, we use this algorithm
to produce an approximation of the optimal mapping, to which
other (faster) heuristic strategies can be compared. We use a
simpler implementation for our purposes to obtain values for
the hop-byte metric which are close to the optimal solution.

A. Time Complexity

Among the five heuristics presented in this chapter, MXOVLP
and MXOV+AL visit each node in the object grid only once
and decide on its mapping. Hence, they have a time com-
plexity of O(n) where n is the number of objects to be
mapped. However, EXCO, COCE and AFFN algorithms use
the findNearest2D function, which in the worst case can
take O(n) time. Hence the worst case running time of these
three algorithms is O(n2). In the era of petascale machines
with hundreds of thousands of cores, it is crucial to use linear
or linearithmic running time algorithms for mapping and all
presented heuristics adhere to that on the average.

B. Quality of Mapping Solutions: Hop-bytes

This section evaluates the mapping algorithms presented
above. We use the hop-bytes metric to compare across them.
For better intuition, the graphs in this section present the
average hops per byte for each algorithm. The ideal value for
average hops per byte is 1 and so the closer to 1 we get, the
better the mapping algorithm is. In an effort to find the hops
per byte for close to optimal solutions, we also implemented
the O(n3) algorithm of pairwise exchanges (PAIRS) used in
literature [15], [27].

Visualization of the mapping of an object graph to a
processor graph helps understand mapping algorithms better
and also helps in fixing potential problems with them. Figure 4
shows a step-by-step process of mapping individual rows of
the object graph on to the processor graph. We used the
STEP algorithm for this figure which maps rows one by one.
Each dot represents a node in the graph and the edges are
communication arcs (object graph on extreme left). The 7
graphs with dimensions 10× 3 show how individual rows of
the object graph are mapped on to the processor mesh. Similar
diagrams are used to show the mapping of individual rows for
other heuristics even though they do not map graphs by rows.
It helps one compare across the various mapping solutions in
a graphical manner.

Fig. 5. Mapping of a 6×5 grid to 10×3 grid using MXOVLP, MXOV+AL,
EFC, COCE, AFFN and STEP heuristics

Figure 5 presents mappings of a 6 × 5 to 10 × 3 grid to a

10×3 grid pictorially. The six 2D grids in the figure illustrate
mappings of the object graph onto the processor graph based
on the six heuristic algorithms: MXOVLP, MXOV+AL, EFC,
COCE, AFFN and STEP. We can see that the first three
heuristics stretch some edges significantly while the rest try
to minimize both hop-bytes and maximum dilation.

Figure 6 compares the hops per byte for the different algo-
rithms assuming that communication is 2D near-neighbor and
regular. The representative object grids and processor meshes
were chosen so as to cover a wide range of aspect ratios. The
maximum overlap with alignment heuristic (MXOV+AL) gives
the best solution in most cases. The AFFN heuristic which
does a affine inspired mapping also performs quite well. In
the case of mapping of a 100× 40 grid to a 125× 32 mesh,
AFFN does considerably better than the other algorithms.

 PAIRS

 1

 10

 100

27x44to36x33 100x40to125x32 64x64to256x16 320x200to125x512

A
v
er

ag
e

h
o
p
s

p
er

 b
y
te

Different mapping configurations

Comparison of regular mapping strategies

MXOVLP

 MVOV+AL

 EXCO

 COCE

 AFFN

Fig. 6. Hop bytes for different techniques compared to the lower bound

VI. 2D TO 3D MAPPING ALGORITHMS

Some of the largest and fastest supercomputers in the
Top500 [28] list today have a 3D torus or mesh interconnect.
So, in order to use our mapping algorithms on these real
machines, we need to develop algorithms to map 2D commu-
nication graphs to 3D processor topologies. We now present
algorithms for mapping 2D grids to 3D processor meshes.
Some algorithms presented in this section use the 2D to 2D
mapping algorithms developed in the previous section. The
significance of 2D to 2D mapping heuristics is in using them
as “base cases” for the 2D to 3D mapping because different
heuristics perform best for different aspect ratios.

Heuristic 1: Stacking: The general idea is to use the algo-
rithms developed in the previous section for mapping 2D
object grids to 2D processor meshes. We find the longer
dimension of the 2D object grid and split the object graph
along it, into several smaller grids (subgrids). The number of
subgrids equals the length of the smallest dimension of the
3D processor mesh. We then take the first subgrid and map
it onto a plane perpendicular to the smallest dimension of the
3D processor mesh. The mapping framework chooses the best
heuristic to map the 2D subgrid to the 2D processor mesh. A
simple translation is used to map the remaining subgrids to

other planes of the processor mesh. For example, if we wish
to map a 16×32 object grid onto a 8×8×8 processor mesh,
we split the longer dimension (32) into 8 pieces (the smallest
dimension of the processor mesh) and then map a 16×4 object
subgrid to a 8× 8 processor mesh.

Heuristic 2: Folding: If the processor topology is a 3D mesh,
then in the previous heuristic, elements at the boundaries of
the subgrids are separated by a large distance in the processor
mesh. To avoid this, we use a more general strategy where
we fold the 2D object grid like an accordion folder and place
the folded parts perpendicular to the smallest dimension. To
achieve this, once we obtain the mapping for the first subgrid,
instead of a simple translation, we flip the mapping for every
alternate subgrid by 180 degrees. Figure 7 shows the stacking
and folding heuristics to map a 2D grid to a 3D torus or mesh.

Fig. 7. Stacking and folding of 2D graph to 3D

Heuristic 3: Space Filling Curve: A space filling curve is
a continuous functions whose domain is the unit interval
[0,1]. These curves (discovered by Peano in 1890 [29], [30]
and generalized later on) can be used to fill the entire n-
dimensional Euclidean space (where n is a positive integer).
We use a space filling curve to map the 2D object grid to a
1D line and another space filling curve to map the 1D line
to a 3D processor mesh. Space filling curves preserve locality
and hence we expect the dilation and hop bytes to be small
under this construction.

VII. APPLICATION RESULTS

Using the algorithms developed in the previous sections,
we attempted topology aware mapping of two applications:
a 2D Stencil benchmark in MPI and the Weather Research
and Forecasting (WRF) program. All performance runs were
done on the IBM Blue Gene/P machines at Argonne National
Laboratory and Watson Research Center. We use TXYZ map-
ping as the default mapping. This means that MPI ranks are
mapped in order on the four cores of a node first, then along
the increasing X dimension, then Y and Z respectively.

A. 2D Stencil

Many scientific applications [8], [9] have a communication
structure similar to a five-point stencil. We use a representative
code where there is some computation followed by the ex-
change of data with neighbors in every iteration. Each element
communicates with four neighbors in the 2D grid.

We study the weak scaling behavior of the application. In
other words, the amount of computation and communication
on each processor remains the same as we scale to more and
more processors. The effect of congestion in the network,
however, may be different with varying partition sizes (number
of processors) owing to the difference in topology and corre-
sponding mapping. We compare the performance of the default
mapping with the “folding” scheme presented in Section VI.

Cores Torus Stencil 2D to 2D Map

256 (4, 4, 4) (32, 8) (4, 4) to (4, 4)
512 (4, 4, 8) (16, 32) (8, 4) to (4, 8)

1024 (8, 4, 8) (64, 16) (8, 8) to (8, 8)
2048 (8, 8, 8) (32, 64) (16, 4) to (8, 8)
4096 (8, 8, 16) (32, 128) (16, 8) to (8, 16)
8192 (8, 8, 32) (64, 128) (32, 8) to (8, 32)
16384 (8, 16, 32) (64, 256) (32, 16) to (16, 32)

TABLE I
DIMENSIONS OF THE 2D STENCIL, 3D TORUS AND ASPECT RATIOS OF

THE 2D TO 2D BASE CASES

The results from this experiment are presented in Figure 8.
The aspect ratios of the Stencil at different core counts and the
dimensions of the torus partitions are given in Table I. Each
processor holds a 2D array of doubles (size 64× 64) and ex-
changes 4 messages (containing 64 doubles corresponding to
the first and last rows and columns). Topology aware mapping
leads to performance improvements for most processor counts,
the maximum being 11% at 16, 384 cores (refer to the line
plots in Figure 8). A peculiar observation is the reduction of
time per step from 1, 024 to 2, 048 cores for the default TXYZ
mapping. This is because the torus links become available
only at 2, 048-core and larger allocations. The availability of
these links reduces the congestion significantly. We observe
that as the application is scaled to larger number of cores,
the congestion in the network and hence the time per step
keeps increasing for the TXYZ Mapping. On the other hand,
by using the topology aware mapping, the time per iteration
for all the runs remains practically unchanged. We conclude
that topology aware mapping can lead to performance benefits
and improve scaling for this class of applications.

It is interesting to compare the improvement in performance
(line plots) in Figure 8 with the improvement in hops per byte
(bar graph in the same figure) in each of the above cases.
It is evident that decreasing the hops per byte ratio leads
to decreased congestion in the network. As demonstrated by
the 1, 024 and 16, 384-core runs, a larger reduction in hop-
bytes translates into larger performance improvements from

256 512 1,024 2,048 4,096 8,192 16,384

A
v

er
ag

e
h

o
p

s
p

er
 b

y
te

Number of cores

 0

 5

 10

 15

 20

 25

 400

 420

 440

 460

 480

 500

256 512 1K 2K 4K 8K 16K

T
im

e
 p

e
r

st
e

p
 (

u
s)

Number of cores

Weak Scaling of 2D Stencil

 400

 420

 440

 460

 480

 500

256 512 1K 2K 4K 8K 16K

T
im

e
 p

e
r

st
e
p
 (

u
s)

Number of cores

Weak Scaling of 2D Stencil

Hops (Default Map)
Hops (Topology Map)
Time (Default Map)
Time (Topology Map)

 400

 420

 440

 460

 480

 500

256 512 1K 2K 4K 8K 16K

T
im

e
 p

e
r

st
e
p
 (

u
s)

Number of cores

Weak Scaling of 2D Stencil

Default Map
Topology Map

 25

256 512 1,024 2,048 4,096 8,192 16,384

A
v

er
ag

e
h

o
p

s
p

er
 b

y
te

Number of cores

Default Mapping
 Topology Mapping

 0

 5

 10

 15

 20

 25

256 512 1,024 2,048 4,096 8,192 16,384

A
v

er
ag

e
h

o
p

s
p

er
 b

y
te

Number of cores

Default Mapping
 Topology Mapping

 0

 5

 10

 15

 20

 400

 420

 440

 460

 480

 500

256 512 1K 2K 4K 8K 16K

Ti
m

e
pe

r s
te

p
(u

s)

Number of cores

Weak Scaling of 2D Stencil

Default Map
Topology Map

 400

 420

 440

 460

 480

 500

256 512 1K 2K 4K 8K 16K

T
im

e
 p

e
r
 s

te
p

 (
u

s
)

Number of cores

Weak Scaling of 2D Stencil

Default Map
Topology Map

 400

 420

 440

 460

 480

 500

256 512 1K 2K 4K 8K 16K

T
im

e
 p

e
r
 s

te
p

 (
u

s
)

Number of cores

Weak Scaling of 2D Stencil

Default Map
Topology Map

Fig. 8. Weak scaling experiment results for 2D Stencil

topology aware mapping.
We also study the effect of varying the ratio of computation

and communication for this application. This is motivated by
the following factors:

• Different supercomputers have varying processing and
communication characteristics. For example, comparing
the network bandwidth available per floating point op-
eration, Blue Gene/P can transfer 0.375 bytes per flop
whereas Cray XT4 can transfer 1.357 bytes per flop
to the network. The general trend for building faster
supercomputers is to increase the number of cores per
node and use faster processors. As a result, computation
will tend to be faster and communication will be a
bottleneck.

• The same application may use a bigger stencil (e.g. a
nine-point stencil) for the purpose of achieving faster con-
vergence at the cost of doubling the communication and
communication per time step. Increased communication
will lead to an increased congestion in the network.

 0.1

 1

 10

 100

512 2K 8K 32K 128K

T
im

e
pe

r s
te

p
(m

s)

Message Size (Bytes)

Messaging effects on benefit from mapping

Default Map 1K Cores
Default Map 4K Cores

Topology Map 1K Cores
Topology Map 4K Cores

Fig. 9. Effect of increasing communication per step for 2D Stencil

The ratio of computation versus communication was varied
by increasing the message size while keeping the amount of
computation constant. The results for this experiment are pre-

Percentage reduction in
Nodes Torus Dimensions WRF Dimensions Hops Comm. Time Total Time

256 8× 4× 8 16× 16 33.9 0.7 0.3
512 8× 8× 8 32× 16 41.8 −1.4 −1.4
1024 8× 8× 16 32× 32 63.2 11.1 16.7
2048 8× 16× 16 64× 32 66.3 −19.4 −40.7
4096 16× 16× 16 64× 64 60.4 1.5 4.8

TABLE II
PERCENTAGE REDUCTION IN AVERAGE HOPS PER BYTE, COMMUNICATION TIME AND TOTAL TIME USING TOPOLOGY AWARE MAPPING

sented in Figure 9. On the X-axis, we have increasing message
sizes for a fixed amount of computation. This experiment was
run on two partitions of dimensions 8 × 4 × 8 (1K cores)
and 8 × 8 × 16 (4K cores). Notice that the default mapping
leads to significant congestion in the network leading to long
delays and a considerable increase in the running time of
the application. However topology aware mapping minimizes
congestion and hence the message delivery times, especially
for large message sizes. The performance improvements for 8
KB messages at 1, 024 cores and 4, 096 cores are 66% and
53% respectively.

B. WRF Experiments

WRF stands for Weather Research and Forecasting
Model [9]. This code is a next-generation mesoscale numerical
weather prediction system that is being designed to serve
operational forecasting and atmospheric research. For our ex-
periments, we used the weather data from the 12 km resolution
case over the Continental U.S. (CONUS) domain on October
24, 2001. We used profiling tools to obtain the communication
graph of WRF which was given as input to the mapping
framework. The process topology analyzer found that WRF
has a 2D near-neighbor communication pattern (the specific
dimensions when running on specific number of nodes are
tabulated in Table II.) Based on the process topology findings,
the framework output mapping files which were passed as an
option to the job scheduler on Blue Gene/P. As an example, for
WRF running on 1024 nodes, the application grid is 32× 32
and the processor mesh is 8× 8× 16. We use folding and the
base case requires mapping a subgrid of dimensions 32×4 to
a 8× 16 mesh.

WRF was run in the SMP mode (using 1 process per node)
because it uses OpenMP to create threads on each node.
We compare the topology aware mapping results with the
default XYZ mapping on Blue Gene/P using average hops per
byte. The hops per byte are obtained by using IBM’s HPCT
profiling tools [22]. Figure 10 shows the actual weighted hops
(hops per byte averaged over all MPI ranks) obtained from
profiling data for WRF. The corresponding percent perfor-
mance improvements in total communication time and elapsed
time are shown in Table II. The empirically obtained values
correlate strongly with the algebraically calculated hops. It is
evident that topology aware mapping of MPI ranks to physical

processors is successful in decreasing the average hops per
rank and bringing it close to the lower bound. The average
hops for WRF reduce by more than 60% for runs using more
than 1, 024 nodes. This is quite significant and should lead to
a dramatic drop in the load on the network.

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

256 512 1,024 2,048 4,096

A
v

er
ag

e
h

o
p

s
p

er
 b

y
te

Number of nodes

Average weighted hops per byte

 Default Map
 Topology Map

 0.0

 0.5

 1.0

Lower Bound

Fig. 10. HPCT data for actual hops per byte for WRF

Using topology aware mapping, we were able to bring the
average hops per rank close to 1 (Figure 10). This suggests
that most MPI ranks are sending messages only 1 hop away
and we should see performance improvements. When running
WRF on 1, 024 nodes, the average hops per byte reduced by
63% and communication time reduced by 11%. We see an
overall performance improvement of 17%. At 4, 096 nodes,
we see a reduction in total execution time by 5%. Such
performance improvements can be quite significant for the
overall completion time of long running simulations. On 2, 048
nodes, the communication time and overall time increases with
topology aware mapping although the hops per byte reduces
and we have not been able to analyze this further yet. This
information is summarized in Table II above.

It is important to reiterate the point made in Section I that
the performance of a parallel application is a complex function
of various factors. The routing protocols, latency tolerance of
the application and fraction of time spent in communication
can affect performance in varying degrees. Hence, a reduction
in hop-bytes and a corresponding improvement in the commu-
nication behavior of an application may not always lead to an
overall performance improvement.

VIII. CONCLUSION

This paper presents a framework for automatic mapping
of parallel applications with regular communication graphs
onto parallel machines with 3D mesh and torus networks.
The two steps involved in automating the process are: 1.
obtaining the communication graph and identifying 2D, 3D
or higher-dimensional regular patterns, 2. intelligent and fast
heuristic solutions for mapping such graphs. Several heuristic
techniques for mapping 2D object grids to 2D and 3D pro-
cessor meshes have been developed. These heuristics along
with pattern identification techniques form a framework, for
automatic mapping of a wide class of parallel applications
with regular communication graphs. This framework will save
much effort on the part of application developers to generate
mappings for their individual applications.

There are several directions for future research. The map-
ping framework can be enhanced with more sophisticated
algorithms for process topology discovery and topology aware
mapping. The topology analyzer only identifies communi-
cation with a small number of neighbors. Other cases for
consideration are complex communication patterns such as
many-to-many and multicasts. The mapping framework does
not handle simultaneous multiple communication patterns in
an application. The class of applications which has not been
targeted in this paper is that with irregular communication.
We plan to build on the framework developed in this paper by
including techniques for mapping such applications.

ACKNOWLEDGMENTS

This work was supported in part by a DOE Grant DE-
SC0001845 for HPC Colony II and NSF Grant 0720827
for BigSim. We used running time on the Blue Gene/P at
Argonne National Laboratory, which is supported by DOE
under contract DE-AC02-06CH11357.

REFERENCES

[1] Eduardo Huedo and Manuel Prieto and Ignacio Martı́n Llorente and
Francisco Tirado, “Impact of PE Mapping on Cray T3E Message-
Passing Performance,” in Euro-Par ’00: Proceedings from the 6th
International Euro-Par Conference on Parallel Processing. London,
UK: Springer-Verlag, 2000, pp. 199–207.

[2] Brian E. Smith and Brett Bode, “Performance Effects of Node Mappings
on the IBM Blue Gene/L Machine,” in Euro-Par, 2005, pp. 1005–1013.

[3] A. Bhatelé and L. V. Kalé, “Quantifying Network Contention on Large
Parallel Machines,” Parallel Processing Letters (Special Issue on Large-
Scale Parallel Processing), vol. 19, no. 4, pp. 553–572, 2009.

[4] T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage switches are
not crossbars: Effects of static routing in high-performance networks,”
in Cluster Computing, 2008 IEEE International Conference on, October
2008, pp. 116–125.

[5] Deborah Weisser, Nick Nystrom, Chad Vizino, Shawn T. Brown, and
John Urbanic, “Optimizing Job Placement on the Cray XT3,” 48th Cray
User Group Proceedings, 2006.

[6] Cray Inc., “Cray XT Specifications,” http://www.cray.com/Products/XT/
Specifications.aspx, 2009.

[7] C. Bernard, T. Burch, T. A. DeGrand, C. DeTar, S. Gottlieb, U. M.
Heller, J. E. Hetrick, K. Orginos, B. Sugar, and D. Toussaint, “Scaling
tests of the improved Kogut-Susskind quark action,” Physical Review D,
no. 61, 2000.

[8] J. K. Dukowicz and R. D. Smith, “Implicit free-surface method for
the Bryan-Cox-Semtner ocean model,” Journal of Geophysics Research,
vol. 99, pp. 7991–8014, Apr. 1994.

[9] Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Ska-
marock, and W. Wang, “The Weather Research and Forecast Model:
Software Architecture and Performance,” in Proceedings of the 11th
ECMWF Workshop on the Use of High Performance Computing In
Meteorology, October 2004.

[10] Aleliunas, R. and Rosenberg, A. L., “On Embedding Rectangular Grids
in Square Grids,” IEEE Trans. Comput., vol. 31, no. 9, pp. 907–913,
1982.

[11] Ellis, J.A., “Embedding rectangular grids into square grids,” Computers,
IEEE Transactions on, vol. 40, no. 1, pp. 46–52, Jan 1991.

[12] Melhem, Rami G. and Hwang, Ghil-Young, “Embedding Rectangular
Grids into Square Grids with Dilation Two,” IEEE Trans. Comput.,
vol. 39, no. 12, pp. 1446–1455, 1990.

[13] P. Sadayappan and F. Ercal, “Nearest-Neighbor Mapping of Finite Ele-
ment Graphs onto Processor Meshes,” IEEE Trans. Computers, vol. 36,
no. 12, pp. 1408–1424, 1987.

[14] S. Wayne Bollinger and Scott F. Midkiff, “Processor and Link Assign-
ment in Multicomputers Using Simulated Annealing,” in ICPP (1), 1988,
pp. 1–7.

[15] Shahid H. Bokhari, “On the Mapping Problem,” IEEE Trans. Computers,
vol. 30, no. 3, pp. 207–214, 1981.

[16] A. Bhatelé, E. Bohm, and L. V. Kalé, “A Case Study of Communication
Optimizations on 3D Mesh Interconnects,” in Euro-Par 2009, LNCS
5704, 2009, pp. 1015–1028.

[17] A. Bhatelé and L. V. Kalé, “Benefits of Topology Aware Mapping
for Mesh Interconnects,” Parallel Processing Letters (Special issue on
Large-Scale Parallel Processing), vol. 18, no. 4, pp. 549–566, 2008.

[18] A. Bhatelé, L. V. Kalé, and S. Kumar, “Dynamic topology aware load
balancing algorithms for molecular dynamics applications,” in 23rd ACM
International Conference on Supercomputing, 2009.

[19] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M. Gi-
ampapa, and M. C. Pitman, “Blue matter: Approaching the limits of
concurrency for classical molecular dynamics,” in SC ’06: Proceedings
of the 2006 ACM/IEEE conference on Supercomputing. New York, NY,
USA: ACM Press, 2006.

[20] Kei Davis and Adolfy Hoisie and Greg Johnson and Darren J. Kerbyson
and Mike Lang and Scott Pakin and Fabrizio Petrini, “A Performance
and Scalability Analysis of the Blue Gene/L Architecture,” in SC ’04:
Proceedings of the 2004 ACM/IEEE conference on Supercomputing.
IEEE Computer Society, 2004, p. 41.

[21] L. Oliker, A. Canning, J. Carter, C. Iancu, M. Lijewski, S. Kamil,
J. Shalf, H. Shan, E. Strohmaier, S. Ethier, and T. Goodale, “Scien-
tific Application Performance on Candidate PetaScale Platforms,” in
Proceedings of IEEE Parallel and Distributed Processing Symposium
(IPDPS), March 2007.

[22] H. Wen and S. Sbaraglia and S. Seelam and I. Chung and G. Cong and
D. Klepacki, “A Productivity Centered Tools Framework for Application
Performance Tuning,” in QEST ’07: Proceedings of the 4th International
Conference on the Quantitative Evaluation of Systems. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 273–274.

[23] G. Zheng, “Achieving high performance on extremely large parallel
machines: performance prediction and load balancing,” Ph.D. disserta-
tion, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2005.

[24] R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R. de Supin-
ski, and D. J. Quinlan, “Detecting Patterns in MPI Communication
Traces,” Parallel Processing, International Conference on, vol. 0, pp.
230–237, 2008.

[25] D. J. Kerbyson and K. J. Barker, “Automatic Identification of Appli-
cation Communication Patterns via Templates,” in In Proc. Int. Conf.
Parallel and Distributed Computing Systems (PDCS), Las Vegas, NV,
August 2005.

[26] N. Bhatia, F. Song, F. Wolf, J. Dongarra, B. Mohr, and S. Moore,
“Automatic experimental analysis of communication patterns in virtual
topologies,” Parallel Processing, International Conference on, vol. 0,
pp. 465–472, 2005.

[27] Soo-Young Lee and J. K. Aggarwal, “A Mapping Strategy for Parallel
Processing,” IEEE Trans. Computers, vol. 36, no. 4, pp. 433–442, 1987.

[28] “Top500 supercomputing sites,” http://top500.org.
[29] G. Peano, “Sur une courbe, qui remplit toute une aire plane,” Mathe-

matische Annalen, vol. 36, no. 1, pp. 157–160, 1890.
[30] D. Hilbert, “Ueber die stetige Abbildung einer Line auf ein

Flächenstück,” Mathematische Annalen, vol. 38, pp. 459–460, 1891.

