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Abstract

Emergence of new parallel architectures presents new challenges for application de-
velopers. Supercomputers vary in processor speed, network topology, interconnect com-
munication characteristics and memory subsystems. This paper presents a performance
comparison of three of the fastest machines in the world: IBM’s Blue Gene/P installa-
tion at ANL (Intrepid), the SUN-Infiniband cluster at TACC (Ranger) and Cray’s XT4
installation at ORNL (Jaguar). Comparisons are based on three applications selected
by NSF for the Track 1 proposal to benchmark the Blue Waters system: NAMD, MILC
and a turbulence code, DNS. We present a comprehensive overview of the architectural
details of each of these machines and a comparison of their basic performance parame-
ters. Application performance is presented for multiple problem sizes and the relative
performance on the selected machines is explained through micro-benchmarking results.
We hope that insights from this work will be useful to managers making buying deci-
sions for supercomputers and application users trying to decide on a machine to run
on. Based on the performance analysis techniques used in the paper, we also suggest a
step-by-step procedure for estimating the suitability of a given architecture for a highly
parallel application.

Keywords: performance analysis, micro-benchmarking, scientific applications, super-
computers, architecture

1 Introduction

A new era is taking shape with the emergence of very large parallel machines. 2008 saw the
installation of two large machines: Ranger, a Sun Constellation Linux Cluster at Texas Ad-
vanced Computing Center (TACC) and Intrepid, a Blue Gene/P installation at the Argonne
Leadership Computing Facility (ALCF) at Argonne National Laboratory (ANL.) According
to the TACC website, the 62,976-core Ranger is the largest computing system in the world
for open science research. Intrepid was declared the fastest supercomputer in the world for



open science in the Top500 List∗ for June, 2008. This list also announced the first Pflop/s
(peak performance) supercomputer in the world – IBM’s Roadrunner at Los Alamos Na-
tional Laboratory (LANL).† Jaguar (Cray XT5) at Oak Ridge National Laboratory (ORNL)
also broke the Pflop/s barrier in the November, 2008 Top500 List§. A sustained Pflop/s
performance machine, Blue Waters is currently being designed by IBM for the National
Center for Supercomputing Applications (NCSA). With such immense computing power at
our disposal, it becomes essential that the end users (application developers and scientists)
learn how to utilize it efficiently and share their experiences with each other.

This paper compares three of the largest supercomputers in the world - ANL’s Intrepid
(IBM Blue Gene/P), TACC’s Ranger (SUN-Infiniband cluster) and ORNL’s Jaguar (Cray
XT4.) These machines were ranked fifth, sixth and eighth respectively in the Top500 List
released in November, 2008. The three machines are architecturally diverse and present
unique challenges to scientists working to scale their applications to the whole machine.
Although benchmarking results are available for many of these machines (Alam et al. 2008;
Alam et al. 2007), this is the first time in published literature that they are being compared
using an application suite and micro-benchmarks. Among the top 25 systems in the Top500
list, there are six Blue Gene machines and five Cray XT machines. Infiniband (used in
Ranger) is used in 28.4% of the Top500 machines and the XT4 SeaStar interconnect is used
in 3.2% of them. Therefore, the machines in question form a significant percentage of the
Top500 list both in terms of best performance and number of entries in the list. We present
a comprehensive overview of the architectural details of each of these machines and compare
them.

Another important aspect of this work is the use of full-fledged applications to compare
performance across these machines. As part of the Track 1 request for proposals, NSF
identified three categories of applications to serve as acceptance tests for the Track 1 machine:
molecular dynamics (specifically NAMD), Lattice QCD calculation and a turbulence code.
This paper uses NAMD (developed at the University of Illinois), MILC (developed by the
MIMD Lattice Computation collaboration) and DNS (developed jointly by Sandia National
Laboratory and Los Alamos National Laboratory). Together, these applications span a
wide range of characteristics. In their domains, they vary from molecular dynamics to
turbulence. In their programming paradigms, they vary from C++ using Charm++ to
Fortran or C using MPI. Comparisons across these applications will provide us with an
enhanced understanding of factors affecting performance. It should be noted that we did
not tune the applications for the purpose of benchmarking for this paper. Also, we did not
use the specifications of problem sizes to be used for these applications as outlined by NSF.

To understand the observed performance of these applications in terms of machine char-
acteristics, we use multiple micro-benchmarks. We have selected a diverse set of micro-
benchmarks from multiple sources to quantify message latencies, available network band-
width, system noise, computation and communication overlap and on-chip vs. off-chip band-
width. Characteristics of the machines reflected in the micro-benchmark results throw some

∗http://www.top500.org/lists/2008/06
†This machine is not analyzed in this paper because we did not have access to it and also because the

machine is sufficiently different as to require a significant porting effort for all the applications used in the
paper.

§http://www.top500.org/lists/2008/11



light on the results obtained for the application codes.
The analysis of application performance using architectural details and micro-benchmarks

suggests a step-by-step procedure for estimating the suitability of a given architecture for
a highly parallel application. This method can be useful in a variety of scenarios: 1. an
application user when applying for running time can choose the machine depending on this
analysis, 2. project managers can make buying decisions depending on the suitability of
a particular architecture to the class of applications they usually run, and 3. application
developers can analyze the performance of applications on different platforms in a systematic
manner.

Similar performance comparison work has been done using benchmarks, applications and
performance modeling for Blue Gene/L, Red Storm and Purple (Hoisie et al. 2006) and
through multiple scientific applications for Blue Gene/L, XT3 and Power5 machines (Oliker
et al. 2007). Compared to these studies, we also outline a systematic analysis technique based
on our methodology which can be used to qualitatively predict and understand application
performance on new machines. In addition, we describe application characteristics which
govern performance on the analyzed platforms. As the results will show, different machines
appear to be better for different applications and sometimes even for different instances of
the same application.

2 Architectures

A thorough understanding of the architectures of the machines being compared in this paper
will guide us in our analysis. Below, we outline the major architectural features of the three
supercomputers and discuss their expected behavior. In the rest of the paper, we will refer
to the IBM system at ANL as Intrepid or BG/P, to the Sun machine at TACC as Ranger,
and to the Cray at ORNL as Jaguar or XT4.

Intrepid: Intrepid∗ at Argonne National Laboratory (ANL) is a 40-rack installation of
IBM’s Blue Gene/P supercomputer (IBM Blue Gene Team 2008). Each rack contains 1024

compute nodes. A node is a 4-way SMP consisting of four PowerPC450 cores running at 850

MHz for a peak performance of 3.4 Gflop/s per core. There is a total of 2 GB of memory
per node. Every core has a 64-way set-associative 32 KB L1 instruction cache and a 64-way
set-associative 32 KB L1 data cache, both with 32-byte line sizes. The second level (L2R
and L2W) caches, one dedicated per core, are 2 KB in size and fully set-associative, with
a line size of 128 bytes. Each node is also equipped with two bank interleaved, 8-way set-
associative 8 MB L3 shared caches with a line size of 128 bytes. The L1, L2 and L3 caches
have latencies of 4, 12 and 50 cycles, respectively (IBM System Blue Gene Solution 2008). In
terms of absolute time, the latencies are 4.7 ns, 14.1 ns and 58.8 ns, respectively. Memory
latency is 104 cycles, or 122 ns.

Each node is attached to five communication networks: (1) six links to a 3D Torus
network providing peer-to-peer communication between the nodes, (2) a collective network
for MPI collective communication, (3) a global barrier/interrupt network, (4) an Optical
10 Gigabit Ethernet network for machine control and outside connectivity and (5) a control

∗http://www.alcf.anl.gov/support/usingALCF/usingsystem.php



network for system boot, debug and monitoring of the nodes. A midplane of 512 nodes forms
a 3D torus of dimensions 8 × 8× 8. Larger tori are formed from this basic unit. The peak
unidirectional bandwidth on each torus link is 425 MB/s which gives a total of 5.1 GB/s
shared between 4 cores of each node. The nodes can be used in three different modes: (1)
VN mode, where one process runs on each core, (2) DUAL mode where two processes run
per node and multiple threads can be fired per process and (3) SMP mode where one process
runs per node and multiple threads can be fired per process.

Comparing Blue Gene/P (BG/P) with its earlier counterpart, Blue Gene/L (BG/L),
cores are 15% faster on BG/P and have twice as much memory (256 MB vs. 512 MB).
Link bandwidth has increased from 175 MB/s to 425 MB/s but is now shared by twice as
many cores. So bandwidth available per core has increased only slightly (1.05 GB/s to 1.275

GB/s.) However, the addition of a DMA engine to each node, offloads the communication
load from the processors and improves performance.

Jaguar: Jaguar† at Oak Ridge National Laboratory (ORNL) comprises 7, 832 compute
nodes. Each node contains a quad-core 2.1 GHz Barcelona AMD Opteron processor and
8 GB of memory. Each processing core has a peak performance of 8.4 Gflop/s. Barcelona
Opterons have an integrated memory controller and a three level cache system, with 2× 64

KB, 512 KB and 2 MB L1, L2 and L3 cache sizes, respectively. L1 and L2 caches are private,
while the L3 cache is shared. The L1 cache is 2-way set-associative and has a latency of 3

cycles. The L2 cache is 16-way set-associative and its latency is about 15 cycles. The 32-way
set associative L3 cache has a latency of about 25 cycles. In terms of absolute time, the L1,
L2 and L3 cache latencies are 1.4 ns, 7.1 ns and 11.9ns, respectively. The memory latency
is about 143 ns§. The nodes run Compute Node Linux (CNL), which features low system
overhead.

Each node is connected through a HyperTransport (HT) link to a Cray Seastar router.
The routers form a 3-dimensional mesh of dimensions 21 × 16 × 24. It is a mesh in the
X dimension and a torus in the Y and Z dimensions. The rate at which packets can be
injected on the network is bound by the bandwidth of the HT link (6.4 GB/s.) Each link
on the torus has a unidirectional link bandwidth of 3.8 GB/s which gives a total of 45.6

GB/s shared between four cores. Comparing an XT4 node with an older XT3 node, there
are twice as many cores per node. However, the link bandwidth has not increased and the
same, admittedly high bandwidth is now shared by 4 cores instead of 2. This can negatively
impact performance for communication bound applications.

Ranger: Ranger‡ at Texas Advanced Computing Center (TACC) consists of 3, 936 nodes
connected using Infiniband technology in a full CLOS fat-tree topology. The machine com-
prises 328 12-node compute chassis, each with a direct connection to the 2 top-level switches.
The nodes are SunBlade x6420 quad-socket blades with AMD quad-core Barcelona Opteron
processors. The processors run at 2.3 GHz, with a peak performance of 9.2 Gflop/s per core.
Architecturally, the processors are the same as the ones used in Jaguar, so the cache sizes
and latencies are the same. Each node has 32 GB of DDR2/667 memory. The compute

†http://nccs.gov/computing-resources/jaguar/
§http://www.tacc.utexas.edu/services/training/materials/parallel_programming/T06_HW-2.pdf
‡http://www.tacc.utexas.edu/services/userguides/ranger/



Intrepid Ranger Jaguar

Location, Year ANL, 2007 TACC, 2008 ORNL, 2008
No. of Nodes (Cores per Node) 40, 960 (4) 3, 936 (16) 7, 832 (4)
CPU Type (Clock Speed, MHz) PowerPC 450 (850) Opteron (2300) Opteron (2100)
Peak Tflop/s (Gflop/s per Core) 557 (3.4) 579 (9.2) 260 (8.4)
Memory per Node (per Core), GB 2 (0.5) 32 (2) 8 (2)
Memory BW per Node (per Core), GB/s 13.6 (3.4) 21.3 (1.3) 10.6 (2.65)
Type of Network (Topology) Custom (3D Torus) Infiniband (full-CLOS) SeaStar2 (3D Mesh)
Link Bandwidth GB/s 0.425 1 3.8

L1, L2, L3 Cache Sizes KB, KB, MB 64, 2, 8 128, 512, 2 128, 512, 2

Table 1: Specifications of the parallel machines used for the runs
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Figure 1: Roofline model

nodes run a Linux operating system. The peak peer-to-peer bandwidth on the network is 1

GB/s.

2.1 Comparison Across Machines

Table 1 presents the basic specifications for these systems. Based on these data, we can
see that Ranger has the highest floating point performance per core (at 9.2 Gflop/s per
core), followed by Jaguar (8.4 Gflop/s per core). These values are contrasted by Intrepid’s
3.4 Gflop/s per core. This suggests that computation-bound applications will run faster on
Jaguar and Ranger compared to Intrepid when the same number of cores is used on each
machine.

Single core performance is also affected by the memory subsystem if the application is
memory-bound. BG/P has the highest memory bandwidth to the DRAM per core (3.4
GB/s) followed by Jaguar (2.65 GB/s) and then Ranger (1.3 GB/s, see Table 1.) Plotting
the attainable flop/s performance on a single core for a given value of arithmetic intensity
(ratio of floating point operations computed per byte of memory bandwidth used), we get
the roofline model (Williams et al. 2009) presented in Figure 1. This model gives a bound
on what flop/s performance an application can achieve on a specific architecture given the
application’s theoretical flop per byte ratio. If the ratio is small the performance is likely to



Comm. Bandwidth Comm. Bandwidth Mflop/s
System per Core (MB/s) per flop (bytes) per W

Blue Gene/P 1,275 0.375 357
Ranger 1,000 0.109 217
XT4 11,400 1.357 130

Table 2: Comparison of network bandwidth and flop ratings for the parallel machines

be bound by the bandwidth (upward-sloped portion of the line). On the other hand, if the
ratio is large enough the performance will be bound by the machine’s flop/s performance
(horizontal portion of the line). We can compare the shift between these two bounds on
different machines. The plot suggests that memory-bound applications would likely achieve
a larger portion of the machine’s flop/s performance on BG/P - if the application can do
a little more than one floating point computation for each byte loaded from DRAM, it can
achieve close to the peak Gflop/s for each core. On the other hand, applications that can
obtain significant reuse of data loaded from memory might achieve highest performance on
Ranger despite its comparatively low bandwidth per core.

We mapped the three applications onto the roofline plot by calculating the bandwidth uti-
lization to memory for the three applications. This was done using the PerfSuite toolkit (Kufrin
2005) on the NCSA Abe cluster. The applications were run on small problem sizes using
just a single core of the machine. The flop per byte ratios of the three applications span a
wide range in the plot. The performance of DNS is likely to be memory bandwidth bound
on all three machines. On the other hand, both NAMD and MILC have high flop per byte
ratios and are unlikely to experience a significant memory bottleneck. In fact, MILC runs
almost completely in the L1 cache for the small input that was used. The flop per byte ra-
tios should remain similar for weak scaling runs, although with strong scaling, the ratios will
change for the three applications. Nevertheless, the plot allows us to roughly characterize
the applications as being either memory or computation bound.

Communication-heavy applications are typically limited by the network bandwidth and
latency characteristics of the machine even more than by the peak floating point performance.
We can compare the network bandwidth per core on these machines. Intrepid, with its 3D
Torus topology where each node is connected to two neighbors in each dimension through
a dedicated link, has a bandwidth of 1.275 GB/s per core. The peer-to-peer bandwidth
available on Ranger is 1 GB/s. The actual bandwidth available per core when using all 16

cores per node might be lower. The bandwidth per core on Jaguar in comparison is 11.4

GB/s but the limiting factor on Jaguar would be the Hyper Transport link which gives 1.6

GB/s per core.
Dividing the network bandwidth per core by the peak floating point performance per core

in flop/s gives us a useful metric indicating the amount of data that can be transferred per
operation in an application running at peak performance. The values for BG/P, Ranger and
XT4 are 0.375, 0.109 and 1.357 bytes per flop. For network bandwidth-bound applications,
Jaguar would perform the best, followed by BG/P and then Ranger.

As processor count and complexity of supercomputers grows over time, power consump-
tion is becoming an increasingly important factor relating to the cost of executing code on



these systems. Intrepid has the lowest total power consumption of the three systems consid-
ered, at 1.26 MW. Ranger, in comparison, consumes 2.00 MW of power and Jaguar consumes
1.58 MW. We can estimate the power efficiency of these systems by dividing the peak float-
ing point performance by the power draw. This shows Intrepid as the most power-efficient,
yielding 442 Gflop/s per kW. Ranger, at 290 Gflop/s per kW, is 34% less power-efficient than
Intrepid, while Jaguar, at 165 Gflop/s per kW, is 63% less power-efficient than the BG/P
machine. Table 2 summarizes these results.

Another important factor when evaluating a supercomputer is the cost of the machine.
Cost is typically considered in a relative sense, by dividing the purchase price of a system by
its performance. Delivered performance per dollar would be a better metric for evaluation
than the performance per core metric used in this paper. Unfortunately, cost evaluation is
difficult due to shifting or unavailable prices and varying maintenance costs across machines.
As a result, we decided not to incorporate cost data into this paper.

3 Micro-benchmarks

Micro-benchmarking results are useful to characterize various aspects of parallel machines.
Not only do they reveal the actual communication and computation characteristics of the
supercomputers as opposed to the vendor-advertised values, but they also help to explain per-
formance results of real applications. We have carefully chosen a range of micro-benchmarks
to assess the communication and computation characteristics of the three machines under
consideration. Of the five benchmarks presented here, the first, third, and fourth were writ-
ten by us and the others were obtained from other sources, as indicated in the text. We
used the vendor-supplied MPI implementations on BG/P and XT4 and MVAPICH (version
1.0.1) on Ranger.

3.1 Message Latencies: Absence and Presence of Contention

Latency of messages directly impacts the performance of parallel programs. Message la-
tencies can vary significantly between the no-contention and contention scenarios. Two
benchmarks (Bhatele and Kale 2009) are used to quantify these scenarios. The first bench-
mark, WOCON, sends a message from a pre-decided master rank to every other rank one by
one. The average time for the message transmission is recorded and plotted against varying
message sizes. The second benchmark, WICON, groups the ranks into pairs and each pair
sends multiple messages to its partner. The pairs are randomly chosen so that messages are
sent all over the job partition, hence creating contention. Once again, average latencies are
plotted against varying message sizes§.

Figure 2 shows the results of these two benchmarks on BG/P, Ranger and XT4. In
the left plot, we see that for small messages, BG/P has the lowest latencies followed by
Ranger and then XT4. Around 4 KB, the situation inverts and XT4 has the lowest latencies
followed by Ranger and then BG/P. This is consistent with the higher bandwidth of XT4.
In many parallel applications, there are several messages in flight at the same time, sharing
multiple links which leads to network contention. The plot on the right presents results for

§The benchmarks can be downloaded here: http://charm.cs.illinois.edu/˜bhatele/phd/MPI_Contention_Suite.tar.gz
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Figure 2: Latency Results from the WOCON and WICON Benchmarks
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Figure 3: Bandwidth per flop/s comparisons using WOCON and WICON Benchmarks

the scenario where random contention is created. At message size of 1 MB, the latency for
XT4 is 14 times that of the no-contention case, whereas it is 27 times for BG/P and 32 times
for Ranger. This shows that for large messages (> 4 KB), XT4 is much more well behaved
in presence of contention compared to BG/P and Ranger. On the other hand for very small
messages (< 128 bytes), BG/P and Ranger perform better than XT4 as can be seen on the
left side of the right plot.

Another metric to compare the communication characteristics of the interconnect fabric
is bandwidth per flop/s, obtained by dividing the available bandwidth by the peak floating
point execution rate of the processor. Figure 3 shows the bandwidth per flop/s metric plotted
vs. message size for the WOCON and WICON benchmarks. Bandwidth per flop indicates
the amount of data that can be transferred per floating point operation in an application
executing at the peak floating point rate. Results show that although absolute bandwidth is
higher on XT4 and Ranger than on BG/P for most message sizes, in terms of bandwidth per
flop, BG/P is the best choice for small message sizes, and remains better than Ranger for
large message sizes as well. Although XT4 has a poor bytes/flop ratio for small messages, it
is the best for large message sizes, especially in the presence of contention. We do not have
an explanation for the convex shape of Ranger’s curve.



Max Ping Random Order Min Ping Pong Natural Order Random Order
Pong Latency Ring Latency Bandwidth Ring Bandwidth Ring Bandwidth

System µs µs MB/s MB/s MB/s

Blue Gene/P 4.6 6.5 374.3 187.2 9.6
Ranger 7.3 35.5 504.2 201.4 18.2
XT4 11.6 35.2 1057.1 368.6 63.0

Table 3: Results from the HPCC Latency and Bandwidth Benchmark

3.2 Communication Bandwidth and Latency

This benchmark from the HPC Challenge suite measures communication bandwidth and
latency for point-to-point and ring exchanges (Dongarra and Luszczek 2005). The benchmark
consists of three separate experiments:

1. Ping pong exchange for a set of two randomly selected cores; when repeating the
experiment, the ping pong exchanges are serialized so that no two exchanges happen
simultaneously.

2. In a naturally ordered ring (built by the sequence of ranks in MPI_COMM_WORLD), each
process sends in parallel a message to its neighbor; bandwidth and latency are measured
per process.

3. For a set of 10 different and randomly ordered rings, each process sends a message
to its neighbor. Ring creation is serialized, with each new ring created only after the
completion of measurements for the previous ring.

The ping pong experiments were performed using several thousand pairs of cores ran-
domly selected from a group of 8, 192 cores. The benchmark used 8 byte messages for
measuring latency and 2, 000, 000 byte messages for bandwidth measurements. MPI stan-
dard sends and receives were used for ping pong benchmarks. Ring patterns were performed
in both directions on 8, 192 cores, where the best result of two implementations was used:
(a) two calls to MPI_Sendrecv, (b) two non-blocking receives and two non-blocking sends
(allowing duplex usage of network links). Results in Table 3 show BG/P having much lower
communication latencies and bandwidth than the other two machines. XT4 has both the
highest bandwidth and highest latency of the three systems. Results imply that BG/P
would tend to be better for applications with small messages, while bandwidth-intensive
applications would perform the best on XT4.

3.3 System Noise

Noise on a supercomputer can disrupt application performance but it is difficult to diag-
nose as the cause of performance degradation. To quantify hardware and operating system
interference on the three parallel machines, we used a benchmark that runs a sequential com-
putation for several thousand iterations and compares the running time for the computation
across iterations and across cores. The sequential computation is a for loop that runs a
specified number of times. There are two loops in the benchmark that control the execution
of the sequential computation. The outer loop does 100 iterations and each iteration consists
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Figure 4: Plot showing system noise plotted against all ranks in a 8192-core run
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Figure 5: Histograms for the execution time of the sequential computation on Ranger and
XT4

of running the inner loop and four MPI_Allreduce operations across all the cores. Each inner
loop does 100 iterations of the sequential computation. So, each of the 8, 192 cores executes
the sequential computation 10, 000 times in total. We record the minimum and maximum
execution times for the sequential computation and the inner loop.

To see if specific cores were responsible for most of the noise, we plotted the minimum
and maximum execution times for the 10, 000 executions of the sequential computation on
each of the 8, 192 cores. The results shown in Figure 4 demonstrate that BG/P shows no
noticeable noise behavior while both Ranger and XT4 suffer from significant noise problems.
BG/P’s behavior is expected because of its use of a micro-kernel instead of a full fledged
operating system on the compute nodes. On Ranger and XT4, noise was observed on a large
number of cores and did not seem to be limited to a certain region of the system. On XT4,
the maximum execution times are clustered into regions which suggests that daemons taking
a fixed amount of time might have interfered with the job. Based on these observations, we
conclude that operating system interference is a serious problem on Ranger and XT4. Noise
of this magnitude needs to be taken into account by application users, as it could cause poor
performance, especially in applications using short time steps.

The plots in Figure 4 only show data points for up to 200 µs. The stretches are much
longer in some cases on Ranger and XT4. We plotted histograms for the two machines to
observe the phenomenon more closely (Figure 5). The histograms display the number of
occurrences of the sequential computation in 1 µs bins. It is to be noted that the y-axis
is logarithmic and more than 98% of the occurrences are clustered around the mean. The
average times for Ranger and XT4 are 17.5 and 19 µs respectively. On Ranger, we see a
spread from 16 to 157 µs with 27 occurrences in the last bin (> 200 µs). Stretches on
Ranger for the computation are as large as 8 ms. Execution times on XT4 range from
16 µs to 174 µs. The largest stretch in the computation on XT4 is 778 µs and there are 33

occurrences of execution times being larger than 200 µs.
Figure 6 shows a plot of the “expected” minimum value and the maximum values for

execution time of each iteration of the outer loop. Expected minimum value is the low-
est observed execution time for any iteration of the outer loop. Maximum execution time
is the most meaningful metric for noise in most cases, indicating the amount of time by
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Figure 6: Plots showing system noise across
iterations of the outer loop for the three ma-
chines

which a lagging core may slow down the re-
maining cores in applications. Each outer
loop of the noise benchmark executes the inner
loop (100 executions of the sequential compu-
tation) and a few MPI collective operations.
We included the collective operations to more
closely model a typical iteration in a paral-
lel application. As before, no noise is noticed
on BG/P while Ranger and XT4 demonstrate
noise across iterations of the outer loop. We
do not know what was the specific source of
the observed noise on Ranger and XT4.

Experiments (not shown in the paper) us-
ing a single core of XT4 did not show any
noise whatsoever. However, when we used all
four cores on a node, we started noticing some
noise. This could be an indication that oper-
ating system interference is indeed responsible
for the noise we observe in our large experi-
ments, since any daemons which cause perfor-
mance degradation could be executed on one
of the idle cores in the single core experiment.

3.4 Overlap of Computation and

Communication

Application performance is affected signifi-
cantly by the capability of a machine to over-
lap communication with computation. We de-
veloped a simple benchmark which does the
following: Two MPI processes on different
nodes post an MPI_Irecv, then send a mes-
sage to each other, do some amount of work
and then post an MPI_Wait for the send from
the other node. The total time from the post-
ing of the MPI_Irecv to the completion of the
MPI_Wait is recorded and plotted against the time for the computation. If communication is
effectively overlapped with computation, we would expect to see a horizontal line while work
is completely overlapped within the communication latency and then the total execution
time should rise linearly with the work done.

Figures 7 and 8 (left) present the results obtained by running this benchmark on two
nodes of each machine using one core per node. The x-axis is the amount of work in µs done
between the message send and receive. The y-axis is the sum of the time for the message
send and receive and the work interval. Three messages sizes were used: 16 bytes, 1 KB
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Figure 7: Results of the Communication-Computation Overlap benchmark for 16 and 1024

byte messages
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Figure 8: Results of the Communication-Computation Overlap benchmark for 16 KB mes-
sages (left) and various optimization possibilities on BG/P (right)

and 16 KB. For the 16 byte messages, only XT4 shows an overlap up to work intervals of
10 µs. This means, that of the 12 µs latency, 10 can used for doing useful computation on
the processor. The Ranger curve may also have a flat portion at the left end, but since its
latency is very low (4 µs), it is not seen. In other words: the ideal we would expect for
Ranger is a flat line indicating overlap up to 4 µs, and it seems to be so. For 1 KB messages
XT4 shows an overlap up to 14 µs and Ranger shows a small overlap up to 5 µs. For 16 KB
messages, again only XT4 shows overlap.

It is interesting that BG/P, despite having DMA engines, shows no overlap. We reran
the test on BG/P with the environment variable DCMF_EAGER=1000000000, which led to
significant overlap for 16384 bytes messages (see the right plot in Figure 8). This is similar
to what we see for XT4 in the left plot. Another option, DCMF_INTERRUPTS=1 also increases
the overlap but using this option increases the message latency to nearly 100 µs.



On-Chip Off-Chip Internode On-Chip Off-Chip Internode
Latency Latency Latency Bandwidth Bandwidth Bandwidth

(Intranode) (Intranode) (Intranode) (Intranode)
System µs µs µs MB/s MB/s MB/s

BG/P 5.77 N/A 6.55 2287 N/A 374
Ranger 3.43 5.11, 5.79 10.25 1062 972, 864 902
XT4 1.70 N/A 11.45 1959 N/A 1252

Table 4: Communication Latency and Bandwidth for On-Chip and Off-Chip Communication

3.5 On-chip and Off-chip Communication Bandwidth and Latency

This benchmark† measures latency and bandwidth for a series of MPI ping pong programs
with varying proximity of the processes performing the exchange. The cases explored are
intra-socket communication for two cores in the same processor, inter-socket communication
for two processors in the same node and inter-node communication. Standard MPI_Send and
MPI_Recv calls are used for the ping pong exchange. Results are averaged over message sizes
from 125 to 5000 bytes (in increments of 125 bytes), with 100 messages sent for each message
size. The benchmark serves to quantify the benefit of placing two communicating processes
on the same chip or node.

Table 4 summarizes our results for this benchmark. The on-chip latency on Cray XT4
is half of that on Ranger and one-third of that on BG/P. In terms of on-chip bandwidth,
BG/P slightly edges out XT4, while Ranger has about half the bandwidth of XT4. In tests
of internode latency, BG/P has the lowest latency, with a value only 14% higher than its
maximum intranode latency. By comparison, latency on Ranger and XT4 suffers greatly
when moving to internode communication. In tests of internode bandwidth, Ranger’s band-
width results are only slightly lower than intranode. XT4 has 36% lower bandwidth off-chip
than on-chip, while BG/P has nearly 84% lower bandwidth off-chip compared to on-chip
communication.

On Ranger, which contains four sockets (processor chips) per node, we also include results
for intranode, but off-chip communication. The table contains two values for latency and
bandwidth. The first corresponds to communication with a neighboring socket within the
node, while the latter value represents communication between the two sockets in the node
which are not directly connected through a Hyper Transport link.

4 Applications

This section describes the three applications: NAMD, MILC and DNS, and outlines the
performance results obtained on the three machines. For each application, we use two input
datasets of different sizes to understand scaling issues better. NAMD and DNS are run in
strong scaling mode whereas MILC datasets are run in weak scaling mode as is typical for
this application. Strong scaling refers to running a fixed size input on a varying number of
processors. Weak scaling refers to a mode where the input size is increased to keep the total

†ftp://ftp.mcs.anl.gov/pub/mpi/mpi-test/mpich-test.tar.gz
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Figure 9: Performance (strong scaling) of NAMD on the three machines

work per processor constant as the number of processors is increased.

4.1 NAMD

NAMD is a highly scalable production Molecular Dynamics code (Phillips et al. 2005;
Bhatele et al. 2008). It is used at most supercomputing centers in US and elsewhere and
scales well to a large number of cores. NAMD provides us with an application which is
used in the regime of strong scaling and hence stresses the machines. It runs in L2 cache on
most machines and is latency-tolerant. NAMD is written in Charm++ (Kalé and Krishnan
1993) and uses the Charm++ runtime for parallelization and load balancing.

We use two simulation systems in this paper for benchmarking: one is a 92, 222-atom
system called Apolipoprotein-A1 (ApoA1) and the other is a 1-million atom simulation called
STMV. Performance of NAMD on the three machines (Figure 9) is roughly consistent with
the ratio of peak flop/s ratings of the three machines. As we scale the problems to a large
number of cores the lines start converging, which can be attributed to the communication
bottlenecks in that regime (Bhatele et al. 2008).

4.2 MILC

MILC stands for MIMD Lattice computation and is used for large scale numerical solutions
to study quantum chromodynamics (Bernard et al. 2000). For benchmarking in this paper,
we use the application ks_imp_dyn for simulating full QCD with dynamical Kogut-Susskind
fermions. Two input datasets are used, one which is expected to fit in cache and the other
to fit in memory. The smaller input is a grid with dimensions 4× 4× 4× 4 on 1 core. The
bigger input is a grid with dimensions of 8 × 8× 8× 8 on 1 core, 16 times bigger than the
small input.

We run MILC in weak scaling mode, doubling the value along one of the dimensions
when doubling the number of cores we run on. For weak scaling runs, a horizontal line on
the plot indicates perfect scaling. Figure 10 presents MILC performance for the two inputs.
For the small input, XT4 and Ranger have similar execution times, which are nearly half of
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Figure 11: Performance (strong scaling) of DNS (Turbulence code) on the three machines

that on BG/P. For the bigger input, MILC is 33% faster on Ranger than on BG/P at 256

cores and the performance on XT4 is marginally better and more consistent than on Ranger.

4.3 DNS

DNS is a turbulence code developed at Sandia National Laboratory (Taylor et al. 2003).
This code solves viscous fluid dynamics equations in a periodic rectangular domain (2D or
3D) with a pseudo-spectral method or 4th order finite differences and with the standard RK4
time stepping scheme. For benchmarking, we use the purest form of the code: Navier-Stokes
with deterministic low wave number forcing. Results show strong scaling for two grid sizes:
1283 and 5123. We did not search the configuration space for the optimal parameters at each
processor count.

Figure 11 shows strong scaling results of DNS for two input sizes. For the smaller input,
BG/P has the best performance and scales reasonably well. On XT4 and Ranger, on the
other hand, the application performs poorly and does not scale. For the larger input, the
application shows scaling on all platforms, but Ranger performs roughly on the same level
as BG/P despite having faster processors, and XT4, though it executes well on up to 2K
cores, shows no scaling past that point.
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Figure 12: Communication characteristics of the three applications on XT4 using 512 cores
(average values per core)

5 Performance Evaluation

In this section, we aim to explain the performance of the applications using their commu-
nication characteristics and results obtained from the presented micro-benchmarks. Com-
munication profiles for the applications were obtained using the FPMPI interface on XT4.
Figures 12 and 13 present the communication characteristics on Jaguar. The runs for Fig-
ure 12 were done with the smaller inputs and the numbers include all types of MPI messages
including MPI_Barrier, MPI_Wait, MPI_Waitall, MPI_Allreduce, MPI_Bcast, MPI_Isend
and MPI_Irecv. Runs for Figure 13 were done with both large and small inputs for the
respective applications on 512 cores. These histograms only include MPI_Isend’s.

NAMD and MILC have a fairly large communication volume (measured in MB/s), nearly
ten times that of DNS. Messages in NAMD are comparatively large in size. Hence, the
number of messages sent per second in NAMD is about one-sixth of that in MILC and half
of that in DNS (Figure 12). A large number of messages can lead to large overheads at the
NIC or co-processor. To obtain a further breakdown, histograms showing the distribution
of MPI_Isend message sizes were obtained for both the large and small inputs for each
application. We will use these plots to explain the performance behavior of MILC and DNS.

A general trend which we noticed in the performance plots of all the applications is
that BG/P performs as expected, achieving a high fraction of its peak performance. This
can be attributed to some of the design features and characteristics of BG/P which govern
performance in many cases: 1. Highest memory bandwidth per core (3.4 GB/s), 2. Biggest
L3 cache (2 MB per core), 3. Smallest latencies for small-sized messages (4 to 1024 bytes),
4. No evidence of noise and 5. Well-implemented MPI collectives (see (Kumar et al. 2008)).
Next, we compare the performance of Ranger and XT4 with that of BG/P for MILC and
DNS. Performance of NAMD on these machines is as expected and hence, NAMD is not a
part of the future discussion.

MILC: MILC shows unusual performance behavior (quite different from NAMD) which
might throw some light on the performance characteristics of the machines (Figure 10). For
the small input, XT4 and Ranger have similar execution times, which are nearly half of that
on BG/P. For the bigger input, MILC is 33% faster on Ranger than on BG/P at 256 cores
and the performance on XT4 is slightly better than on Ranger.

The small input stresses the communication fabric of the machine by sending a large
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Figure 13: Message size histogram for the three applications on XT4 using 512 cores (average
values per core)

number of messages (about 59, 000 messages per second per core, see Figure 12 right). On
XT4, this can lead to contention for the Hyper Transport link (shared between four cores).
Since the messages range from 0.5-8 KB (see top left in Figure 13), there could be contention
on the network, which would not be handled well by XT4 (refer to the WICON results in
Figure 3). Performance for the small benchmark is primarily bound by small message latency
and collective latency, which means that Ranger’s faster CPUs cannot be utilized efficiently
by its network under these conditions.

The large input stresses memory bandwidth in addition to the network. Ranger, which
has the lowest memory bandwidth (see Figure 1), is thus able to perform only slightly better
than BG/P while XT4, with reduced network contention, now outperforms the other two
machines. Reducing the number of cores used per node for the runs eases the stress both on
the memory subsystem and the network. Table 5 shows comparisons of runs on XT4 and
Ranger using 4 vs. 2 cores and 16 vs. 8 cores per node respectively. On Ranger, using half
the number of cores on each node improves performance by 32% and 40% for the small and
large input respectively on 256 cores, although it involves leaving 256 cores idle. Greater
improvement for the large input suggests that memory bandwidth is the major bottleneck
for this application which prevents XT4 and Ranger from performing three times faster than
BG/P (which is the ratio of their peak flop/s per core). However, network bandwidth is also
a problem, as suggested by the improvement in performance of the small input runs. The
performance of MILC for the large input size is a reflection of the three architectures’ ability
to handle bandwidth-bound applications.



MILC (s/step) DNS (s/step)
Input Small Input Large Input 128

3
512

3

#cores 256 512 256 512 256 512 256 512

XT4 4 cpn 0.41 0.58 7.70 7.57 0.219 0.626 4.96 2.74
XT4 2 cpn 0.35 0.43 5.25 5.68 115.46 121.70
Ranger 16 cpn 0.46 0.55 13.09 15.02 0.402 0.983 10.63 5.86
Ranger 8 cpn 0.31 0.49 7.76 7.98 0.292 0.928 7.55 4.04

Table 5: Runs on XT4 and Ranger using fewer than all cores per node

DNS: Figure 11 shows strong scaling results of DNS for two input sizes. For the smaller
input, BG/P has the best performance and scales reasonably well. On XT4 and Ranger, on
the other hand, the application performs poorly and does not scale. For the larger input,
the application shows scaling on all platforms, but Ranger performs roughly on the same
level as BG/P despite having faster processors, and XT4, though it executes well on up to
2K cores, shows no scaling past that point.

DNS is a turbulence code and does a large number of small FFTs, which lead to all-to-all
communication. It sends a large number of small messages (128 to 256 bytes) - approximately
6700 MPI_Isend’s per second per processor (see bottom left in Figure 13). Communication
performance for small messages is determined by the overhead of message sending on the
target machine. XT4 and Ranger have large overhead for small messages, as is apparent
from the WOCON results in Figure 2. Secondly, a large number of MPI_Waitall calls (6700

calls per second per processor) indicates that the application could be susceptible to noise
for the smaller dataset, as was demonstrated in Figure 6. For the large input, the number of
messages sent per second drops by a factor of four and the size of the messages increases. As
a result, the performance of both XT4 and Ranger is significantly better on the large input.
The results also confirm our prior observation that applications running on BG/P seem to
be less susceptible to latency and noise overheads.

Table 5 shows results similar to MILC for DNS using fewer cores per node on Ranger
and XT4. On Ranger, there is a substantial benefit to using 8 instead of 16 cores per
node for the 256-core runs for both the small and large input. Using fewer cores per node
brings the performance closer to XT4. This can be attributed to higher memory bandwidth
available per core for these runs. As is clear from the roofline plot 1, DNS has a very small
flop/byte ratio and hence stresses the memory subsystem severely. Using fewer cores per
node alleviates some of this stress. Leaving some of the cores idle on a node could also
reduce OS noise, assuming the idle cores would be used for OS-related tasks, and also reduce
network contention and communication volume resulting from the large number of messages.
The benefit on Ranger is smaller when running on 512 cores. On XT4, using fewer cores
per node produced performance three orders of magnitude worse than expected. We do not
have an explanation for this anomaly.

Finally, Figure 14 shows the flop/s for NAMD, MILC and DNS on the three machines.
The runs were done with the smaller inputs for the one core case (left plot) and with the larger
inputs for the 512 core case (right plot). The flop counts for NAMD were obtained using
the PerfSuite toolkit available on NCSA’s Abe cluster. The numbers for MILC and DNS are
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Figure 14: Flop/s comparisons of the three applications on BG/P, Ranger and XT4

estimates obtained from the outputs of actual runs. The one core performance for NAMD

and DNS is as expected. In the case of MILC, Ranger’s flop/s performance is 5 times that of
BG/P. This gap appears inconsistent with the earlier results (Figure 10) where BG/P is only
two times worse in performance on a larger number of cores. This change can be explained by
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Figure 15: MILC Performance (weak scal-
ing)

the low network bandwidth per core and low
memory bandwidth of Ranger compared to
BG/P (see Figure 1), which start affecting per-
formance on large runs. For further insight,
we did MILC runs on the three machines from
1 to 256 cores which shows that performance
on Ranger gradually degrades and becomes
7 times worse from 1 to 256 cores for weak
scaling (Figure 15). There is a difference in
the performance between the debug and batch
queues of Ranger because of faster processors
(2.6 GHz) and more importantly, because of
lesser interconnect contention on the debug
queue. Note that this is the only test for which
we used Ranger’s debug queue. For all other Ranger runs in the paper, we used the batch
queue.

Looking at Figure 14, we notice a trend. Ranger performance is best on a single core
(attributed to its high flop/s rating). XT4 gives the best performance on 512 cores (some-
times twice as that on Ranger, for MILC and DNS). Not only that, Ranger’s performance
drops quite close to BG/P. This can be attributed to the memory bandwidth and network
contention issues in these two applications which are not handled well on Ranger. NAMD

on the other hand runs in cache and is latency tolerant and hence is largely unaffected by
these issues.

6 Systematic Analysis Technique

The analysis of application performance using architectural details and micro-benchmarks
suggests a step-by-step procedure for estimating the suitability of a given architecture for



a highly parallel application. This method can be useful in a variety of scenarios: 1. an
application user when applying for running time can choose the machine depending on this
analysis, 2. project managers can make buying decisions depending on the suitability of
a particular architecture to the class of applications they usually run, and 3. application
developers can analyze the performance of applications on different platforms in a systematic
manner. We now outline the steps involved in this analysis technique.

Step 1: Obtain application and architecture information

We first need to identify various application characteristics which affect performance. It is
useful to measure the flop per byte and communication requirements of the application. The
architecture of the machines in question also needs to be carefully analyzed. It is important
to take into account factors such as: 1. The peak flop/s rating 2. Memory bandwidth and
cache sizes, and 3. Network bandwidth and latency.

Step 2: Check whether application is computation or memory-bandwidth bound

To ascertain if the application is computation bound or memory bandwidth bound, we can
map the flop per byte ratio for the application onto the roofline model for the different
machines in question. This calculation gives a rough idea of whether the application will
be memory bandwidth or computation bound (if the value is in the slanted portion of the
model, application will likely be memory bound). If the application is computation bound,
we can choose a machine with high peak flop/s rating. If the program is memory bandwidth
bound, we should try to estimate what portion of peak flop/s the application might achieve
on the machines given the specific memory demands of the application.

Step 3: Determine communication characteristics

Based on the application specifications or a small parallel run on an available machine, one
should be able to get a sense of whether the application is communication-bound. One way to
do this is to build a histogram of message sizes, such as the one in Figure 13. A large number
of messages over time, or frequent collective communication operations, may also indicate
that the application will be hindered by network contention on the target machine. Based
on the message size histogram and a rough estimate of whether contention will be a problem,
we can use bandwidth and latency graphs on the target machine, such as were presented in
Figures 2 and 3, to see which machine performs best for the range of message sizes used in
the application. If the application does a significant amount of collective communication,
an important factor to consider is the MPI implementation of collective operations on the
machine. System noise is another factor to consider, especially for fine-grained applications
with frequent barriers.

Step 4: Benchmark the application on the real machine

If access to the machine is available, we can obtain additional and more reliable information
about the application performance and do a more concrete analysis. In this scenario (possibly
useful to application developers), architecture or micro-benchmarking data can be used to
explain the scaling performance of the application on that machine. The capability of an
application to overlap communication with computation and the tendency to create network
contention are important factors affecting communication performance, but they can only be



deduced through actual runs on a certain number of processors on the real machine. Grain
size of the application is another important consideration; it can be used to estimate the
effect of noise on application performance. Results in Figure 5 show noise of up to 8 ms on
Ranger and up to 778 µs on XT4. For these systems, we believe that applications with short
step sizes (on the order of tens of milliseconds or less), where the steps are separated by
barriers, may suffer from system noise. If access to the machine is not available, then getting
a better grasp of such issues often requires performance modeling using simulations (Zheng
et al. 2004).

7 Conclusion

In this paper, we compared the performance of three diverse applications (NAMD, MILC
and DNS) on three machines (Intrepid, Ranger and Jaguar) which represent the common
architectures of the top supercomputers available for open science research. We analyzed the
performance of those applications on both small and large problems and explained their per-
formance variation across the platforms in the context of each application’s characteristics,
using both the vendor machine specifications and selected micro-benchmarks.

The micro-benchmarks chosen illustrate key differences in how each platform responds
to various load conditions. The standard flop and bandwidth benchmarks are further illu-
minated by the WICON and WOCON benchmarks to provide insights into the performance
problems encountered in the small input runs for the applications on Ranger and XT4. The
noise benchmark demonstrates that significant performance variation occurs on both Ranger
and Jaguar, despite negligible single core noise results on Jaguar. We cannot fully explain
the inter node noise on XT4, though it seems likely that some of it is due to network con-
tention with applications running at the same time that share links. This is due to the Cray
scheduler not allocating dedicated partitions.

As expected, applications which are latency intolerant (such as DNS) scale best on the
low latency Blue Gene architecture. However, those applications which are computation
bound can achieve excellent performance on the Cray XT4 architecture. Ranger’s memory
bandwidth limitations restrict the performance for applications of this type. Although some
of these performance issues can be ameliorated by running on fewer cores per node, system
users will be charged for the entire node, so such users should prefer systems with higher
bandwidth per core by design. Latency tolerant applications, such as NAMD or MILC in
weak scaling, can make effective use of supercomputers based on commodity interconnects,
like Ranger, but will experience their best performance for larger scale problems on Cray
style architectures.

In summary, vendor specifications, benchmarking results and application characteristics
can and should be combined to form a more complete picture of application performance
to guide the expectations of the supercomputer user community. We hope that the system-
atic analysis technique presented in the previous section will contribute towards developing
effective guidelines for application developers, users and others trying to do similar analyses.
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