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201, North Goodwin Avenue, MC-258,
Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.

SUMMARY

Optimal network performance is critical for efficient parallel scaling of communication-
bound applications on large machines. No-load latencies do not increase significantly with
number of hops traveled when wormhole routing is deployed. Yet, we and others have
recently shown that in presence of contention, message latencies can grow substantially
large. Hence task mapping strategies should take the topology of the machine into
account on large machines. In this paper, we present topology aware mapping as a
technique to optimize communication on three-dimensional mesh interconnects and
hence improve performance.

Our methodology is facilitated by the idea of object-based decomposition used in
Charm++ which separates the processes of decomposition from mapping of computation
to processors and allows a more flexible mapping based on communication patterns
between objects. Exploiting this and the topology of the allocated job partition,
we present mapping strategies for a production code, OpenAtom to improve overall
performance and scaling. OpenAtom presents complex communication scenarios of
interaction involving multiple groups of objects and makes the mapping task a challenge.
Results are presented for OpenAtom on up to 16,384 processors of Blue Gene/L, 8,192
processors of Blue Gene/P and 2,048 processors of Cray XT3.
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INTRODUCTION

A significant number of the largest supercomputers in use today, including IBM’s Blue Gene
family and Cray’s XT family, employ a 3D mesh or torus topology. With tens of thousands of
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2 A. BHATELÉ

nodes, messages may have to travel many tens of hops before arriving at their destinations.
With the advances in communication technology, especially wormhole routing, it was observed
that the latency of communication in absence of contention, was almost unaffected by the
number of hops traveled by a message [1, 2]. However, the fraction of bandwidth occupied by
the message is proportional to the number of hops (links) traversed. Increased contention for
bandwidth results in longer latencies. This was not as significant an issue when the number of
nodes was relatively small and the processors were slower. But for today’s large machines with
faster processors, the issue becomes much more significant. With faster processors, the need
for delivered bandwidth is higher. As messages start to occupy a large fraction of the available
bandwidth, the contention in the network increases and message delivery gets delayed [3].

In this context, it is important to map computation to the processors to not just minimize
the overall communication volume, but also the average number of hops traveled by the bytes
communicated. Even though the utility of doing this may be apparent to programmers, the
significance of the impact is probably more than most programmers expect. Our methodology
builds upon object-based decomposition used in Charm++ [4] and related programming
models, including Adaptive MPI (AMPI). This separates the processes of decomposition
from mapping of computation to processors and allows a more flexible mapping based on
communication patterns between objects.

In this paper, we first present the abstraction of object-based decomposition in Charm++
and an API which provides a uniform interface for obtaining topology information at runtime
on four different machines – Cray XT3, Cray XT4, IBM Blue Gene/L and IBM Blue Gene/P.
This API can be used by user-level codes for task mapping and is independent of the
programming model being used (MPI, Charm++ or something else). We then demonstrate
topology aware mapping techniques for a communication intensive application: OpenAtom,
a production Car-Parrinello ab initio Molecular Dynamics (CPAIMD) code. This application
is used by scientists to study properties of materials and nano-scale molecular structures for
biomimetic engineering, molecular electronics, surface catalysis, and many other areas [5, 6, 7].

We consider 3D torus topologies in this paper but not irregular networks or flat topologies.
For logarithmic topologies (such as fat trees), the need to pay attention to topology may
be smaller because the maximum number of hops between nodes tends to be small. Also,
there is no support for user level derivation of topology for most fat-tree networks so any
implementation would be specific to an individual cluster layout. This paper builds upon our
previous work presented at Euro-Par 2009 in Amsterdam, The Netherlands. In this paper, we
discuss the Topology Manager API and the time complexity of the mapping algorithms in
more detail. We also delve into the issue of mapping multiple instances of OpenAtom on to
the processor topology.

PREVIOUS WORK

There has been considerable research on the task mapping problem. The general mapping
problem is computationally equivalent to the graph isomorphism problem which belongs to
NP, neither known to be solvable in polynomial time nor NP-complete. Heuristic techniques
like pairwise exchange were developed in the 80s by Bokhari [8] and Aggarwal [9]. These
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OPTIMIZING COMMUNICATION FOR CHARM++ APPLICATIONS 3

schemes, however, are not scalable when mapping millions of objects to thousands of
processors. This problem has been handled by others using recursive partitioning [10] and
graph contraction [11]. Physical optimization techniques like simulated annealing [12] and
genetic algorithms [13] are very effective but can take very long to arrive at optimal results.
Results in the 80s and 90s were not demonstrated on real machines and even when they were,
they were targeted towards small sized machines. They also did not consider real applications.
With the emergence of large parallel machines, we need to revisit these techniques and build
upon them, on a foundation of real machines, in the context of real applications.

The development of large parallel machines like Blue Gene/L, XT3, XT4 and Blue Gene/P
has led to the re-emergence of mapping issues. Both application and system developers have
evolved mapping techniques for Blue Gene/L [14, 15, 16, 17, 18, 19]. Yu [18] and Smith [17]
discuss embedding techniques for graphs onto the 3D torus of Blue Gene/L which can be
used by the MPI Topology functions. Weisser et al. [20] present an analysis of topology aware
job placement techniques for XT3. However, our work is one of the first for task mapping
on XT3. It presents a case study for OpenAtom, a production quantum chemistry code,
and demonstrates high returns using topology aware schemes. Our earlier publication on
OpenAtom [21] demonstrates the effectiveness of such schemes on Blue Gene/L. In this paper,
we present results for XT3, Blue Gene/L and Blue Gene/P for multiple systems including a
non-benchmark simulation.

On machines like Blue Gene/L and Blue Gene/P, obtaining topology information is simple
and an interface is available to the programmers. The API described in this paper provides
a wrapper for these and additional commonly needed functionality. However, on Cray XT
machines, there is no interface for topology information, probably in accordance with the
widespread, albeit mistaken idea, that topology mapping is not important on fast Cray
machines. For XT machines, our API uses lower level system calls to obtain information
about allocated partitions at runtime. To the best of our knowledge, there is no published
work describing such functionality for the Cray machines. We believe that this information
will be useful to programmers running on Cray machines. Also, the API provides a uniform
interface which works on all these machines which hides architecture specific details from the
application programmer. This API can be used as a library for Charm++, MPI or any other
parallel program.

CHARM++ ARRAYS: A USEFUL ABSTRACTION FOR MAPPING

Parallelizing an application consists of two tasks: 1. decomposition of the problem into a large
number of sub-problems to facilitate efficient parallelization to thousands of processors, 2.
mapping of these sub-problems to physical processors to ensure load balance and minimum
communication. Object-based decomposition separates the two tasks and gives independent
control over both of them. In this paper, we use the Charm++ runtime which allows the
application developer to decompose the problem into objects and the Charm++ runtime
does a default mapping of objects to processors.

The basic unit of computation in Charm++ is called a chare (simply referred to as
an “object” in this paper) which can be invoked through remote method invocations. The
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4 A. BHATELÉ

application developer decomposes the problem into chares or objects and the Charm++
runtime does a default mapping of objects to processors. Each processor can have multiple
objects which facilitates overlap of computation and communication. This default mapping
does not have any information about the machine topology. The user can override the default
mapping with more intelligent schemes that take the topology of the machine into account.

Topology Manager API: Runtime Information

Mapping of communication graphs onto the processor graph requires information about the
machine topology at runtime. The application should be able to query the runtime to get
information like the dimensions of the allocated processor partition, mapping of ranks to
physical nodes etc. However, the mapping interface should be simple and should hide machine-
specific details from the application. The Topology Manager API in Charm++ provides a
uniform interface to the application developer and hence the application just knows that the
job partition is a 3D torus or mesh topology. Application specific task mapping decisions
require no architecture or machine specific knowledge (Blue Gene/L or XT3 for example).

The Topology Manager API in Charm++ provides different functions which can be grouped
into the following categories:

1. Size and properties of the allocated partition: At runtime, the application needs
to know the dimensions of the allocated partition (getDimNX, getDimNY, getDimNZ),
number of cores per node (getDimNT) and whether we have a torus or mesh in each
dimension (isTorusX, isTorusY, isTorusZ).

2. Properties of an individual node: The interface also provides calls to
convert from ranks to physical coordinates and vice-versa (rankToCoordinates,
coordinatesToRank).

3. Additional Functionality: Mapping algorithms often need to calculate number
of hops between two ranks or pick the closest rank to a given rank from a list.
Hence, the API provides functions like getHopsBetweenRanks, pickClosestRank and
sortRanksByHops to facilitate mapping algorithms.

We now discuss the process of extracting this information from the system at runtime and
why is it useful to use the Topology Manager API on different machines:

IBM Blue Gene machines: On Blue Gene/L and Blue Gene/P [22], topology information
is available through system calls to the “BGLPersonality” and “BGPPersonality” data
structures, respectively. It is useful to use the Topology Manager API instead of the system
calls for two reasons. First, these system calls can be expensive (especially on Blue Gene/L)
and so it is advisable to avoid doing them a large number of times. The API does a few system
calls to obtain enough information so that it can construct the topology information itself. It
is useful to use the API instead of expensive system calls throughout the execution.

Cray XT machines: Cray machines have been designed with a significant overall bandwidth,
and possibly for this reason, documentation for topology information was not readily available
at the installations we used. We hope that the information provided here will be useful to
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OPTIMIZING COMMUNICATION FOR CHARM++ APPLICATIONS 5

other application programmers. Obtaining topology information on XT machines is a two step
process: 1. Getting the node ID (nid) corresponding to a given MPI rank (pid) which tells
us which physical node a given MPI rank is on. 2. The second step is obtaining the physical
coordinates for a given node ID. Once we have information about the physical coordinates for
all ranks in the job, the API derives information such as the extent of the allocated partition
by itself (this assumes that the machine has been reserved and we have a contiguous partition).

The API provides a uniform interface which works on all the above mentioned machines
which hides architecture specific details from the application programmer. This API can be
used as a library for Charm++, MPI or any other parallel program. The next section describes
the use of object-based decomposition and the Topology Manager API in a production code.

OPENATOM: A CASE STUDY

An accurate understanding of phenomena occurring at the quantum scale can be achieved
by considering a model representing the electronic structure of the atoms involved. The
CPAIMD method [23] is one such algorithm which has been widely used to study systems
containing 10− 103 atoms. To achieve a fine-grained parallelization of CPAIMD, computation
in OpenAtom [21] is divided into a large number of objects, enabling scaling to tens of
thousands of processors. We will look at the parallel implementation of OpenAtom, explain
the communication involved and then discuss the topology aware mapping of its objects.

In an ab initio approach, the system is driven by electrostatic interactions between the
nuclei and electrons. Calculating the electrostatic energy involves computing several terms.
Hence, CPAIMD computations involve a large number of phases with high inter-processor
communication: (1) quantum mechanical kinetic energy of non-interacting electrons, (2)
Coulomb interaction between electrons or the Hartree energy, (3) correction of the Hartree
energy to account for the quantum nature of the electrons or the exchange-correlation energy,
and (4) interaction of electrons with atoms in the system or the external energy. These phases
are discretized into a large number of objects which generate a lot of communication, but
ensures efficient interleaving of work. The entire computation is divided into ten phases which
are parallelized by decomposing the physical system into fifteen chare arrays. For a detailed
description of this algorithm please refer to [21].

Communication Dependencies

The ten phases referred to in the previous section are parallelized by decomposing the physical
system into fifteen chare arrays of different dimensions (ranging between one and four). A
simplified description of five of these arrays (those most relevant to the mapping) follows:

GSpace and RealSpace: These represent the g-space and real-space representations of each
of the electronic states [23]. Each electronic state is represented by a 3D array of complex
numbers. OpenAtom decomposes this data into a 2D chare array of objects. Each object holds
a plane of one of the states (see Figure 1) . The chare arrays are represented by G(s, p) [ns×Ng]
and R(s, p) [ns×N ] respectively. GSpace and RealSpace interact through transpose operations

Copyright c© 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2009; 00:1–7
Prepared using cpeauth.cls



6 A. BHATELÉ
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Figure 1. Decomposition of the physical system into chare arrays (only important ones shown for
simplicity) in OpenAtom

(as part of a Fast Fourier Transform) in Phase I and hence all planes of one state of GSpace
interact with all planes of the same state of RealSpace.

RhoG and RhoR: They are the g-space and real-space representations of electron density and
are decomposed into 1D and 2D chare arrays respectively. They are represented as Gρ(p) and
Rρ(p, p′). RealSpace interacts with RhoR through reductions in Phase II. RhoG is obtained
from RhoR in Phase III through two transposes.

PairCalculators: These 3D chare arrays are used in phase IV. They communicate with GSpace
through multicasts and reductions. They are represented as Pc(s, s′, p) [ns × ns × Ng]. All
elements of the GSpace array with a given state index interact with all elements of the
PairCalculator array with the same state in one of their first two dimensions.

Mapping

OpenAtom provides us with a scenario where the load on each object is static (under the
CPAIMD method) and the communication is regular and clearly understood. Hence, it should
be possible to intelligently map the arrays in this application to minimize inter-processor
communication and maintain load balance. OpenAtom has a default mapping scheme, but
it should be noted that the default mapping is far from random. It is the mapping scheme
used on standard fat-tree networks, wherein objects which communicate frequently are co-
located on processors within the constraints of even distribution. This reduces the total
communication volume. It only lacks a model for considering the relative distance between
processors in its mapping considerations. We can do better than the default mapping by using
the communication and topology information at runtime. We now describe how a complex
interplay (of communication dependencies) between five of the chare arrays is handled by our
mapping scheme.

GSpace and RealSpace are 2D chare arrays with states in one dimension and planes in the
other. These arrays interact with each other through transpose operations where all planes of
one state in GSpace, G(s, ∗) talk to all planes of the same state, R(s, ∗) in RealSpace (state-
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Figure 2. Mapping of different chare arrays to the 3D torus of the machine

wise communication). The number of planes in GSpace is different from that in RealSpace.
GSpace also interacts with the PairCalculator arrays. Each plane of GSpace, G(∗, p) interacts
with the corresponding plane, P (∗, ∗, p) of the PairCalculators (plane-wise communication)
through multicasts and reductions. So, GSpace interacts state-wise with RealSpace and plane-
wise with PairCalculators. If all planes of GSpace are placed together, then the transpose
operation is favored, but if all states of GSpace are placed together, the multicasts/reductions
are favored. To strike a balance between the two extremes, a hybrid map is built, where a
subset of planes and states of these three arrays are placed on one processor.

Mapping GSpace and RealSpace Arrays: Initially, the GSpace array is placed on the torus
and other objects are mapped relative to GSpace’s mapping. The 3D torus is divided into
rectangular boxes (which will be referred to as “prisms”) such that the number of prisms is
equal to the number of the planes in GSpace. The longest dimension of the prism is chosen to
be same as one dimension of the torus. Each prism is used for all states of one plane of GSpace.
Within each prism for a specific plane, the states in G(*, p) are laid out in increasing order along
the long axis of the prism. Once GSpace is mapped, the RealSpace objects are placed. Prisms
perpendicular to the GSpace prisms are created which are formed by including processors
holding all planes for a particular state of GSpace, G(s, ∗). These prisms are perpendicular to
the GSpace prisms and the corresponding states of RealSpace, R(s, ∗) are mapped on to these
prisms. Figure 2 shows the GSpace objects (on the right) and the RealSpace objects (in the
foreground) being mapped along the long dimension of the torus (box in the center).

Mapping of Density Arrays: RhoR objects communicate with RealSpace plane-wise and hence
Rρ(p, ∗) have to be placed close to R(∗, p). To achieve this, we start with the centroid of the
prism used by R(∗, p) and place RhoR objects in proximity to it. RhoG objects, Gρ(p) are
mapped near RhoR objects, Rρ(p, ∗) but not on the same processors as RhoR to maximize
overlap. The density computation is inherently smaller and hence occupies the center of the
torus.
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8 A. BHATELÉ

Table I. Time (in seconds) to obtain mapping solutions for RealSpace and
RealParticlePlane objects on Blue Gene/P (System: WATER 256M 70Ry)

Cores 1024 2048 4096 8192

RealSpace 0.33 0.52 1.00 3.07
RealParticlePlane 1.48 3.19 4.90 17.89

Mapping PairCalculator Arrays: Since PairCalculator and GSpace objects interact plane-wise,
the aim is to place G(∗, p) and P (∗, ∗, p) nearby. Chares with indices P (s1, s2, p) are placed
around the centroid of G(s1, p), ..., G(s1+block size, p) and G(s2, p), ...., G(s2+block size, p).
This minimizes the hop-count for the multicast and reduction operations. The result of
this mapping co-locates each plane of PairCalculators (on the left in Figure 2) with its
corresponding plane of GSpace objects within the GSpace prisms.

The mapping schemes discussed above substantially reduce the hop-count for different
phases. They also restrict different communication patterns to specific prisms within the torus,
thereby reducing contention and ensuring balanced communication throughout the torus.
State-wise and plane-wise communication is confined to different (orthogonal) prisms. This
helps avoid scaling bottlenecks as we will see in the next section. These maps perform no
better (and generally slightly worse) than the default maps on architectures which have more
uniform network performance, such as Ethernet or Infiniband.

Time Complexity

Although maps are created only once during application start-up, they must still be efficient
in terms of their space and time requirements. The memory cost of these maps grows linearly
(4 integers per object) with the number of objects, which is a few megabytes in the largest
system studied. The runtime cost of creating the most complex of these maps is O(n3/2log(n))
where n is the number of objects. Despite this complexity, this time is sufficiently small that
generating the maps for even the largest systems requires only a few minutes.

Table I shows the time it takes to construct two of the complex maps (RealSpace and
RealParticlePlane) when running WATER 256 70Ry. Even on 8192 processors, it takes less
than one-third of a minute to create a RealParticlePlane map. Algorithm 1 shows the pseudo
code for creating the RealSpace map from the GSpace map. The creation of RealParticlePlane
is similar but there are more sorting calls inside the first for loop which increases it running
time. RealParticlePlane objects are not on the critical path of execution and hence the mapping
of this array can be turned off it takes a long time for very large runs. This illustrates a common
tradeoff: It is always important to evaluate if the time spent in computing a mapping is worth
the performance benefit achieved from it.

RealSpace objects are extremely important because of the large communication with GSpace
and density objects and their mapping cannot be ignored. The algorithm above shows that the
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OPTIMIZING COMMUNICATION FOR CHARM++ APPLICATIONS 9

Algorithm 1: Mapping of RealSpace objects based on the the map for GSpace objects
begin

Data: nstates (Number of states in the RealSpace chare array)
nplanes (Number of planes in the RealSpace chare array)
gsmap (Mapping of the GSpace chare array)

Result: rsmap (Mapping of the RealSpace chare array)

for state← 1 to nstates do
Create a processor list plist consisting of processors in gsmap[state, ∗]
RSobjs per pe = maximum number of RSMap objects to be placed per processor
for plane← 1 to nplanes do

Exclude processors which have RSobjs per pe from plist
Sort plist by increasing hops from the first processor in the list
Assign object rsmapstate,plane on the first element in plist

end

running time of the algorithm is nstates× nplanes× nstates× log(nstates). Approximating
nstates and nplanes by n1/2, the time complexity is O(n3/2log(n)). There might be room
for improvement if we can move the sorting out of the inner for loop. As an optimization,
once created, maps can be stored and reloaded in subsequent runs to minimize restart time.
Offline creation of maps using more sophisticated techniques and adapting these ideas to other
topologies is an area of future work.

COMPARATIVE ANALYSIS OF OPENATOM

To analyze the effects of topology aware mapping in a production science code we studied
the strong scaling (fixed problem size) performance of OpenAtom with and without topology
aware mapping. Two benchmarks commonly used in the CPMD community: the minimization
of WATER 32M 70Ry and WATER 256M 70Ry were used. The benchmarks simulate the
electronic structure of 32 molecules and 256 molecules of water, respectively, with a standard
g-space spherical cutoff radius of |g|2cut = 70 Rydberg (Ry) on the states. To illustrate that the
performance improvements extend beyond benchmarks to production science systems, we also
present results for GST BIG, which is a system being studied by our collaborator, Dr Glenn
J. Martyna. GST BIG consists of 64 molecules of Germanium, 128 molecules of Antimony and
256 molecules of Tellurium at cutoff radius of |g|2cut = 20 Ry on the states.

Blue Gene/L (IBM T. J. Watson) runs are done in co-processor (CO) mode to use a single
core per node. Blue Gene/P (Intrepid at ANL) runs were done in VN mode which uses all four
cores per node. Cray XT3 (BigBen at PSC) runs are done in two modes: single core per node
(SN) and two cores per node (VN). As shown in Table II, performance improvements from
topology aware mapping for Blue Gene/L (BG/L) can be quite significant. As the number of
cores and likewise, the diameter of the torus grows, the performance impact increases until it
is a factor of two faster for WATER 32M 70Ry at 2048 and for WATER 256M 70Ry at 16384
cores. There is a maximum improvement of 40% for GST BIG. The effect is not as strong in
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10 A. BHATELÉ

Table II. Execution time per step (in seconds) of OpenAtom on Blue Gene/L (CO mode)

WATER 32M 70Ry WATER 256M 70Ry GST BIG
Cores Default Topology Default Topology Default Topology

512 0.274 0.259 - - - -
1024 0.189 0.150 19.10 16.40 10.12 8.83
2048 0.219 0.112 13.88 8.14 7.14 6.18
4096 0.167 0.082 9.13 4.83 5.38 3.35
8192 0.129 0.063 4.83 2.75 3.13 1.89
16384 - - 3.40 1.71 1.82 1.20

Table III. Execution time per step (in seconds) of OpenAtom on Blue Gene/P (VN mode)

WATER 32M 70Ry WATER 256M 70Ry GST BIG
Cores Default Topology Default Topology Default Topology

256 0.395 0.324 - - - -
512 0.248 0.205 - - - -
1024 0.188 0.127 10.78 6.70 6.24 5.16
2048 0.129 0.095 6.85 3.77 3.29 2.64
4096 0.114 0.067 4.21 2.17 3.63 2.53
8192 - - 3.52 1.77 - -

GST BIG due to the fact that the time step in this system is dominated by a subset of the
orthonormalization process which has not been optimized extensively, but a 40% improvement
still represents a substantial improvement in time to solution.

Performance improvements on Blue Gene/P (BG/P) are similar to those observed on BG/L
(Table III). The improvement for WATER 32M 70Ry is not as remarkable as on BG/L but for
WATER 256M 70Ry, we see a factor of 2 improvement starting at 2048 cores. The absolute
numbers on BG/P are much better than on BG/L partially because of the increase in processor
speeds but more due to the better interconnect (higher bandwidth and an effective DMA
engine). The performance for WATER 256M 70Ry at 1024 cores is 2.5 times better on BG/P
than on BG/L. This is when comparing the VN mode on BG/P to the CO mode on BG/L. If
we use only one core per node on BG/P, the performance difference is even greater, but the
higher core per node count, combined with the DMA engine and faster network make single
core per node use less interesting on BG/P.

The improvements from topology awareness on Cray XT3, presented in Table IV are
comparable to those on BG/L and BG/P. The improvement of 27% and 21% on XT3 for
WATER 256 70Ry and GST BIG at 1, 024 cores is greater than the improvement of 14% and
13% respectively on BG/L at 1, 024 cores in spite of a much faster interconnect. However, on
2, 048 cores, performance improvements on the three machines are very close to one another.
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OPTIMIZING COMMUNICATION FOR CHARM++ APPLICATIONS 11

Table IV. Execution time per step (in seconds) of OpenAtom on XT3 (SN and VN mode)

WATER 32M 70Ry WATER 256M 70Ry GST BIG
Cores Default Topology Default Topology Default Topology

Single core per node

512 0.124 0.123 5.90 5.37 4.82 3.86
1024 0.095 0.078 4.08 3.24 2.49 2.02

Two cores per node

256 0.226 0.196 - - - -
512 0.179 0.161 7.50 6.58 6.28 5.06
1024 0.144 0.114 5.70 4.14 3.51 2.76
2048 0.135 0.095 3.94 2.43 2.90 2.31
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Figure 3. Comparison of benefit by topology aware mapping (System: WATER 256M 70Ry)

The improvement trends plotted in Figure 3 lead us to project that topology aware
mapping should yield improvements proportional to torus size on larger Cray XT installations.
The difference in processor speeds is approximately a factor of 4 (XT3 2.6 Ghz, BG/L
700 Mhz), which is reflected in the performance for the larger grained OpenAtom results
on XT3 when comparing single core per node performance. The difference in network
performance is approximately a factor of 7 (XT3 1.1 GB/s, BG/L 150 MB/s), when
considering delivered bandwidth as measured by HPC Challenge [24] ping pong. This
significant difference in absolute speed and computation/bandwidth ratios does not shield
the XT3 from performance penalties from topology ignorant placement schemes. BG/P and
BG/L show similar performance improvements which is expected since the BG/P architecture
is similar to that of BG/L with slightly faster processors and increase network bandwidth.

OpenAtom is highly communication bound (as briefly discussed in the Introduction).
Although Charm++ facilitates the exploitation of the available overlap and latency tolerance
across phases, the amount of latency tolerance inevitably drops as the computation grain size
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Figure 4. Effect of topology aware mapping (a) on idle time (time spent waiting for messages), and (b)
on aggregate bandwidth consumption per step - smaller link bandwidth utilization suggests reduction

in hops traversed by messages and hence reduction in contention

is decreased by the finer decomposition required for larger parallel runs. It is important to
consider the reasons for these performance improvements in more detail. Figure 4(a) compares
idle time as captured by the Projections profiling system in Charm++ for OpenAtom
on BG/L for the default mapping, versus the topology aware mapping. A processor is idle
whenever it is waiting for messages to arrive. It is clear from Figure 4(a) that the factor of two
speed increase from topology awareness is reflected directly in relative idle time and that the
maximum speed increase which can be obtained from topology aware mapping is a reduction
in the existing idle time.

It is illuminating to study the exact cause for this reduction in idle time. To that
end, we ported IBM’s High Performance Monitor library [25] for Blue Gene/P’s Universal
Performance Counters to Charm++, and enabled performance counters for a single time step in
WATER 256M 70Ry in both topology aware and non-topology aware runs. We added the per
node torus counters (BGP TORUS * 32BCHUNKS), to produce the aggregate link bandwidth
consumed in one step across all nodes to obtain the results in Figure 4(b). This gives us an
idea of the fraction of the total bandwidth across all links on the network used in one step. If
messages travel fewer hops due a topology aware placement, it will lead to a smaller bandwidth
consumption, thereby indicating less contention on the network. It is clear from the figure, that
topology aware mapping results in a significant reduction, by up to a factor of two, in the total
bandwidth consumed by the application. This more efficient use of the network is directly
responsible for the reduction in latency due to contention and decreased idle time.

MULTIPLE APPLICATION INSTANCES

The discussion and results so far pertain to using OpenAtom for a single simulation of the
evolution of the electronic states of a particular system. More information and/or improved
accuracy can be obtained through the application of replica methods which combine the results
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Figure 5. Mapping of four OpenAtom instances on a 8× 4× 8 torus (System: WATER 32M 70Ry)

of multiple evolutions of a system. For example, applications of the path integral formulation
combine multiple replicas to improve the accuracy of atomic positions. Similarly, when studying
metals it is necessary to sample multiple K-points of the first Brillouin zone (the default scheme
is k = 0) for convergence. Each of these methods and many similar applications not considered
here, share the trait that most of the computation for each trajectory remains independent and
their results are combined only within one phase of the computation. We can therefore treat
these as largely independent instances of the simulation for most optimization considerations.
In OpenAtom, we express each of these as separate instances of the Charm++ arrays.

Multiple instances of OpenAtom are mapped to different parts of the partition to prevent
different instances from contending for the same resources. We divide the allocated partition
along the longest dimension, into sub-partitions equal in number to the number of instances.
We obtain the mappings for the first instance on the first sub-partition and then translate the
maps along the longest dimension to obtain the maps for the other instances. Figure 5 shows
the mapping of four OpenAtom instances on to a torus of dimensions 8× 4× 8. The torus is
split into four parts along the dimension (of size 8) orthogonal to the plane of the paper. Hence
we see the color pattern repeated four times along this dimension for the identical mapping of
the four instances.

There are other possible options which can be experimented with when mapping multiple
instances. We can either split along the longest dimension or the shortest dimension. Let us
take a concrete example where we have to map two instances of OpenAtom to be mapped
on to a torus of dimensions 16x8x32. If we split along the longest dimension, the diameter
of the sub-partition is 28. If we split along the smallest dimension, the diameter of the sub-
partition is still 28. Hence we do not hope to see major performance difference between the
two schemes. Splitting along more than one dimension may degrade performance due to the
creation of smaller meshes instead of tori.
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CONCLUSION AND FUTURE WORK

In this paper we demonstrate that topology aware mapping can substantially improve
performance for communication intensive applications on 3D mesh/torus networks. The
performance improvement is achieved by minimizing bandwidth sharing between messages
leading to reduced contention on the network. Significant improvements are obtained for
the OpenAtom code and the effectiveness of topology aware mapping is shown for both
IBM Blue Gene and Cray XT architectures. The Topology Manager API can be used to
automatically obtain the topology for these machines at runtime. Mapping is also facilitated by
object-based virtualization used in Charm++ which separates the processes of decomposition
from mapping of computation to processors and allows a more flexible mapping based on
communication patterns between objects.

Application developers can deploy the techniques presented in this paper to map their
applications in a topology aware fashion. First and foremost, it is critical to ascertain that the
application is latency sensitive and stands to benefit from topology aware mapping. This can be
done by profiling the application using performance analysis tools and checking if computation
waits unusually long for messages to be delivered. If this is the case, the Topology Manager
API and mapping algorithms similar to those presented in the paper can be used to map an
application. Overdecomposition, as in Charm++, can yield more efficient mappings because
it provides additional degrees of freedom to place the communicating entities. The specific
mapping algorithms to be used depend on the communication graph of the application.

In the future, we plan to improve the running time for computing maps for OpenAtom.
A study of the effect of relative torus dimensions and routing protocols on communication
performance will benefit the development of mapping algorithms. OpenAtom has complex
but relatively regular or structured communication. We think that it is possible to develop
general methodologies that deal with such structured communication. Unstructured static
communication patterns, as represented by unstructured-mesh computations might need
somewhat different mapping techniques. Work in the future will involve developing an
automatic mapping framework which can work in tandem with the Topology Manager
interface. This would also require a study of a more diverse set of applications with different
communication patterns. Further study will be given to characterizing network resource usage
patterns with respect to those which are most affected by topology aware task mapping.
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