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Abstract— The first Teraflop/s computer, the ASCI Red,
became operational in 1997, and it took more than 11 years
for a Petaflop/s performance machine, the IBM Roadrunner,
to appear on the Top500 list. Efforts have begun to study
the hardware and software challenges for building an exascale
machine. It is important to understand and meet these challenges
in order to attain Exaflop/s performance. This paper presents
a feasibility study of three important application classes to
formulate the constraints that these classes will impose on the
machine architecture for achieving a sustained performance of 1
Exaflop/s.

The application classes being considered in this paper are –
classical molecular dynamics, cosmological simulations and un-
structured grid computations (finite element solvers). We analyze
the problem sizes required for representative algorithms in each
class to achieve 1 Exaflop/s and the hardware requirements in
terms of the network and memory. Based on the analysis for
achieving an Exaflop/s, we also discuss the performance of these
algorithms for much smaller problem sizes.

Keywords-application scalability; exascale; performance anal-
ysis; molecular dynamics; cosmology; finite element methods

I. INTRODUCTION

Parallel supercomputers have kept up the pace of peak
performance improvement: The first peak Petaflop/s machine,
Roadrunner, appeared on the Top500 [1] list in June 2008,
and multiple systems beyond that performance level have been
planned for near future. The community has set a goal of
building an Exaflop/s machine by 2018. There are several hard-
ware challenges to be overcome before we break the Exaflop/s
barrier - power/energy costs, memory costs, communication
and others. The continuous frequency increase that we enjoyed
in the past has come to an end. In part due to this, it has been
clear that a co-design approach, where machines are designed
in conjunction with exascale applications will be needed to
achieve the goal of an Exaflop/s by 2018 [2].

Assuming that we can overcome the hardware challenges
and an Exaflop/s machine is built, scientists will have to
modify/develop algorithms and applications that scale to ex-
ascale. To this end, we analyze three prevalent application
classes that currently occupy a significant portion of compute
cycles on various supercomputers (supported by INCITE and
PRAC allocation awards) – classical molecular dynamics,
cosmological simulations and unstructured mesh computations
(finite element solvers).

Goals arising from the science involved suggest that the sci-
entific communities using these applications will need exascale
performance, so it is important to project the performance of
these applications on an exascale machine.

These three application classes encompass some of the most
common parallel data structures, including structured grids,
unstructured grids and particles (N -body). Between the three
chosen classes, a range of computational and communication
patterns are covered which should provide insight into the
scaling challenges we will face on the road to exascale. We
consider weak scaling of these applications to the full size of
the machine. At exascale, scientifically important objectives
may also involve studying problems smaller than what weak-
scaling suggests (i.e. 1000 times larger problems compared
with those on petascale). Therefore, we also study performance
issues for smaller problem instances.

The first class of applications chosen for the study are
molecular dynamics (MD) applications that focus on the
simulation of biomolecular systems. Several highly scaling
MD codes are used today on supercomputers – NAMD [3],
AMBER [4], Gromacs [5], Desmond [6] and Blue Matter [7].
MD simulations involve calculation of forces on a system
of N atoms. We discuss different parallelization strategies
for the force calculation and select the one with the lowest
computation to communication ratio. For the purposes of this
study, we consider only short-range calculations (also referred
to as Lennard-Jones dynamics).

The second class of applications are cosmological simula-
tions. These applications constitute another important category
with a unique communication pattern. Gravitational solvers
for the N -body problem use one of many different methods:
direct sum, tree-methods, particle-mesh methods and hybrid
codes. Some examples of cosmology codes are PkdGRAV [8],
ChaNGa [9], Enzo [10] and FLASH [11]. We consider tree
methods for solving the N -body problem for our analysis and
set aside hydrodynamics for a later study.

Unstructured grid problems, the third class under consider-
ation, arise frequently in science and engineering. Many prob-
lem domains have complex shapes that do not lend themselves
well to a simple finite difference discretization. Setting the
problem as an unstructured grid, which involves breaking the
domain into triangles (in 2D) and tetrahedra (in 3D), allows
for complicated domains to be discretized in a straightforward



manner. To solve these problems, finite element method (FEM)
solvers are most commonly employed. A detailed treatment of
the finite element method can be found in [12], but the basic
principle is to represent the solution to the problem as a sum of
basis functions over elements in a mesh, and this matches up
well with the setup of an unstructured grid problem. There are
many ways to apply finite element solvers, but they generally
center around assembling and solving a sparse linear system,
which can be done once or repeated several times depending
on the problem being solved. This is the approach we consider
in this study.

We first introduce the performance model used in the paper.
Each application class is then analyzed for its computation and
communication requirements for weak scaling. The analysis
helps derive constraints on the hardware, and then the analysis
is repeated for smaller problem instances. We also analyze
peak memory requirements of each application at scale. A
recent paper by Gahvari et al. [13] does a similar analysis
studying the feasibility of 3D FFT and multigrid at exascale.

II. MACHINE PARAMETERS AND ASSUMPTIONS

This section describes the methodology we use to model
the computation and communication behavior of parallel al-
gorithms. The amount of computation for each problem is
described in terms of the number of calculations, which is a
function of the problem size, N , and the number of processing
cores, Pc. For each calculation, we estimate the number of
floating point operations, n and multiply that by the time
for computing a flop, tc. Since the sequential performance
often does not achieve the peak flop/s rating, we multiply the
expression by an efficiency factor 1/η, This gives the equation
for computation time as,

Tcomp =
1

η
× f(N,Pc)× n× tc (II.1)

Communication on parallel machines can be described in
terms of three parameters:
• Start-up time (ts): This is the time required for handling

of a message at the sender and receiver. It is often referred
to as overhead and is incurred once per message.

• Per-hop time (th): This is the time spent at every
switch/router on the network that the message goes
through. It is multiplied by the number of hops or links,
l, traversed by the message.

• Per-word time (tw): If the bandwidth of each link on the
network is Bw GB/s and the size of a word is 4 bytes,
each word spends tw = 4/Bw time to traverse the link.
This is referred to as the per-word transfer time.

Using these three parameters, we can express the time for
sending a message on the network as,

ts + l × th +m× tw

where m is the size of the message in words. We assume that
the exascale machine will use wormhole routing to send flits
on the network (as is the case for most supercomputers today).
This suggests that, in absence of contention and for messages

of sufficiently large size, the second term in the equation above
will be significantly smaller than the third term. Also, it should
be possible to limit the number of links traversed to a few
hops using an intelligent topology aware mapping [14]. So,
for the analysis in this paper we ignore the second term in the
equation. If an application sends M = g(N,Pc) messages and
each message is of size h(N,Pc), the time for communication
will be given by:

Tcomm =M × (ts + h(N,Pc)× tw) (II.2)

We want to make as few assumptions as possible about
the architectural details of an Exaflop/s machine. However,
we must fix a few parameters for our analysis. Most large
supercomputers today have multiple cores per node and the
number of cores on each node is expected to rise. Let
us assume that our hypothetical machine will have 1 GHz
processing cores and each node will contain 1024 such cores.
The peak performance of the machine will be 10.74 Exaflop/s,
requiring Pc = 230 10 Gflop/s processing elements (number
of nodes, Pn = 220). The compute time per floating point
operation, tc = 0.1 ns (assuming 10 flops per cycle).

Using the parameters and assumptions described above, we
estimate the range of values for network latency and bandwidth
and memory requirements for performing exascale simulations
for the three application classes.

III. MOLECULAR DYNAMICS

Molecular dynamics (MD) codes constitute an important
class of parallel applications. We will focus on MD codes that
are used for simulating the life of biomolecules to understand
their structure and facilitate drug design. Over the years, a
plethora of parallel codes have been written to simulate MD
– NAMD [3], AMBER [4], Gromacs [15], Desmond [6] and
Blue Matter [7] to name a few.

MD is a difficult problem to parallelize because of the small
number of atoms and extremely small time scales (typically
1 to 2 femtoseconds) involved. Over the years, various par-
allelization techniques have been developed for scaling MD.
Plimpton gives a detailed overview of different approaches to
parallelizing MD in [16]. The traditional methods of paral-
lelizing classical MD computations are atom decomposition
and force decomposition. In atom decomposition, the atoms
involved in the simulation are distributed among the proces-
sors, in no particular order and each processor is responsible
for calculating forces for its atoms. In force decomposition, the
force matrix for the atoms is distributed among the processors.
If the number of atoms in the simulation is N and the number
of processing cores is Pc, the communication to computation
ratios for the two methods are:

C/C ratioatom =
N

N/Pc
= Pc

C/C ratioforce =
N/
√
Pc

N/Pc
=
√
Pc

Both of these approaches are non-isoefficient and hence not
used in modern, highly scaling MD codes. So, we focus on



the spatial decomposition method in this paper. In this method,
the three-dimensional (3D) simulation box is spatially divided
among the processors. Let us assume that the simulation box
has dimensions Bx × By × Bz; then, each processor holds
a cell of dimensions Bx/

3
√
Pc × By/

3
√
Pc × Bz/

3
√
Pc and

is responsible for calculating forces for the atoms within its
cell. For most MD simulations, we can safely assume that the
density of atoms in any cell is roughly the same, which leads
to approximately the same number of atoms per processor.
For the spatial decomposition method, the communication to
computation ratio is given by:

C/C ratiospatial =
N/Pc

N/Pc
= 1

Modern methods of parallelizing MD, which are a hybrid
between spatial and force decomposition [17] (also known
by other names such as the midpoint method and the neu-
tral territory method [18]) improve the communication to
computation ratio as the cell size decreases, compared to
the spatial decomposition method. However, their asymptotic
complexities are similar to the spatial decomposition method
and hence, we will not consider them separately.

To aid our complexity analysis, let us understand the parallel
set-up of a “short-range” molecular dynamics simulation. The
simulation time is broken down into a large number of small
time steps (typically 1 fs each). At each time step, each
processor calculates forces on the atoms that reside on it due
to all other atoms within a certain distance, rc + margin ,
where rc is the cutoff radius and margin accounts for atom
movements between migration steps. To calculate the forces,
each processor communicates with its neighbors in the 3D
space to obtain the current positions of atoms within this
radius. New positions and velocities are then calculated and
updated, based on the force calculations within a time step.
Based on the new positions, some atoms may move into a
cell assigned to a different processor and they have to be
migrated. Typically, migrations are not done every time step
and to account for this, the size of each cell is chosen to be
rc+margin . Algorithm 1 shows the pseudocode for one time
step of an MD simulation.

Algorithm 1 Computation in one time step of MD
Receive atoms from neighboring processors
for i = 1 to Np do

for j = 1 to Ni do
if atoms are within cutoff radius, rc then

Compute forces on pairs of atoms
end if

end for
end for
Update atom positions and velocities

A. Weak Scaling

We begin with analyzing the weak scaling behavior of the
spatial decomposition method. For this analysis, we need a

lower bound on the number of atoms assigned to each core
for maintaining good efficiency. Both Blue Matter [7] and
NAMD [3] have demonstrated that for ratios of atoms to
cores greater than 100, the non-bonded force calculation is
the dominant contribution to the step time. And in this regime,
the performance follows a “universal curve” irrespective of the
molecular system, only depending on the number of atoms
per core. This is achievable for short-range MD computations
because the number of floating point operations per core is
a linear function of the number of atoms. Assuming that our
hypothetical system will have 100 atoms per core for achieving
10% of the peak which will be ≈ 1 Exaflop/s, total size of the
molecular system would be 230 × 100 ≈ 107 billion atoms.
Total number of floating point operations for a simulation
system with N atoms is 33547×N (empirically obtained value
for NAMD for a 12 Å cutoff). Considering that we want the
flop/s to be greater than or equal to 1 Exaflop/s, dividing the
total number of flops by the time for one time step gives:

flops

T
> 1018 (III.1)

33547×N
1018

> T

Putting the value of N = 230 × 100,

T < 3.6× 10−3 (III.2)

This says that, to achieve 1 Exaflop/s performance for a
107 billion atom system running on 230 cores, the time per
step should be smaller than 3.6 ms. The time per step for each
application class is the performance target to attain 1 Exaflop/s
performance. Since all applications considered in the paper are
iterative, the equations derived for T , Tcomm and Tcomp are
for one time step.

Let us now estimate the amount of communication per node
for this molecular system of 107 billion atoms. For a standard
MD simulation, the size of each cell in the simulation box
is 16 Å in each dimension (for a cutoff rc = 12 Å and a
margin = 4 Å) and the number of atoms in each cell is
400 (see Figure 1, extreme left). Since for the 100 billion
atom system, we will have only 100 atoms on each core, this
necessitates splitting each cell into half in two of the three
dimensions (see Figure 1, center). In this mode, each cell
communicates with approximately 5×5×3 = 75 other cells to
obtain the atoms necessary for calculating forces on its atoms.
However, having multiple (1024) cores on each node implies
that most of these messages are not sent on the network. If we
assign a three-dimensional space containing 8×8×16 = 1024
cells to a node, inter-node messages will be required only
for cells on the surface. The number of messages will be
12 × 10 × 20 − 8 × 8 × 16 = 1376 (two “ghost” layers of
cells each in two dimensions and one layer of cells in the
third dimension).

Based on the above derivations for communication and
computation in an MD code for weak scaling, we can now use
equations (II.1) and (II.2) to obtain the time for one time step
of MD. In the case where there is no overlap of communication
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Fig. 1. A biomolecular simulation box (only two dimensions shown) split into cells of size 16× 16× 16 Å (extreme left). Each processor holds one such
cell containing approximately 400 atoms. When there are fewer atoms per processor (say 50), the three dimensions are further split to give cells of size
8× 8× 8 Å (center). When there are around 6 atoms per processor, each dimension is reduced to one-fourth the original size (extreme right).

and computation, at every time step, each node sends positions
and velocities of the atoms to its communicating neighbors and
once it has received its incoming messages, calculates forces
on its atoms. The expression for the time per step of an MD
computation is:

T =
1

η
× N

Pc
× 33547× tc + 1376×

(
ts +

N

Pc
4tw

)
(III.3)

Substituting the expression for T from equation (III.3) in
equation (III.2),

1

η
× N

Pc
× 33547× tc + 1376×

(
ts +

N

Pc
4tw

)
< 3.6× 10−3

For the weak scaling analysis, putting in the values of ratio
of atoms to processors, N/Pc = 100 and tc = 10−10 seconds,

1

η
× 33547× 10−8 + 1376× (ts + 400tw) < 3.6× 10−3

1376× (ts + 400tw) < 3.6× 10−3 − 1

η
× 3.35× 10−4

ts + 400tw < 2.62× 10−6 − 1

η
× 2.44× 10−7

Figure 2 plots the values of ts and tw based on the
equation above for different values of η. For the case of
perfect efficiency, MD simulations do not put a considerable
requirement on the per-processor communication bandwidth.
However, it does require that the network latencies be small.
If we look at the case of η = 0.125, the application would
require a latency of below a microsecond and a per-processor
communication bandwidth of 2 GB/s. It is also important to
mention that our analysis assumes serialization of messages
put on the network by a node arising from all of its 1024
cores. We expect that for future machines, multiple cores on a
node will be able to inject messages on the network in parallel.

B. Memory requirements

MD codes have a relatively small memory footprint since
the number of atoms on each core is small (between 5 to
400). However at the start of each time step, when atoms
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Fig. 2. Latency and bandwidth requirements for MD (weak scaling)

are received by the processing cores, the amount of memory
needed increases. This is proportional to the total number
of messages received by each core (75 for the case above).
The size of each message is equal to N/Pc multiplied by
the memory requirements for the atom data structure. The
information about each atom sent in the message is the
charge on the atom and its position. Hence the increase in
memory consumption at the beginning of each time is equal
to 75 × (N/Pc) × 32 bytes = 0.23 MB. However, even this
transient memory usage in MD simulations is not significant.

C. Smaller problem sizes

An important observation is that building a 107 billion
atom molecular system and doing useful science with it, will
be a challenge for biophysicists. Simulating such a large
system to observe anything meaningful will require long
simulations (milliseconds to seconds). The largest classical
MD simulations done so far involve up to 3 million atoms,
a five orders of magnitude difference. Hence, many scientists
will still simulate systems smaller than 107 billion atoms and



it is important to analyze how MD codes will perform in this
regime, which we can loosely call “strong scaling”.

We will consider three cases for smaller problem sizes
where the ratio of number of atoms to cores is 50, 20 and
5 respectively. Each of these cases will require the splitting of
the basic cell of dimensions 16× 16× 16 Å, containing 400
atoms, into a number of smaller cells:
• 50 atoms per core (50 billion atoms) – Dimensions of

each cell will be 8× 8× 8 Å.
• 20 atoms per core (20 billion atoms) – Dimensions of

each cell will be 5.33× 5.33× 8 Å.
• 5 atoms per core (5 billion atoms) – Dimensions of each

cell will be 4× 4× 4 Å (see Figure 1, extreme right).
Based on the total number of atoms in each of these smaller
simulations, we can calculate the time per step for these cases
(see Table I).

# Atoms Atoms/core Time (ms)

107 billion 100 3.602
53.6 billion 50 1.801
21.5 billion 20 0.720
5.4 billion 5 0.180

TABLE I
TIME PER STEP BOUNDS FOR MD SYSTEMS OF VARYING SIZES

Each case leads to different amounts of computation and
communication and we can write equations for the smaller
problems, similar to the weak scaling case:

T50 =
1

η
× N50

Pc
× 33547× tc + 1856×

(
ts +

N50

Pc
4tw

)
T20 =

1

η
× N20

Pc
× 33547× tc + 2672×

(
ts +

N20

Pc
4tw

)
T5 =

1

η
× N5

Pc
× 33547× tc + 5120×

(
ts +

N5

Pc
4tw

)
Putting the values of N50/Pc = 50, N20/Pc = 20, N5/Pc = 5
and tc = 0.1 ns,

ts + 200tw < 9.7× 10−7 − 1

η
× 9.04× 10−8

ts + 80tw < 2.69× 10−7 − 1

η
× 2.51× 10−8

ts + 20tw < 3.52× 10−8 − 1

η
× 3.28× 10−9

Using these equations, we plot the feasibility regions for 5 to
107 billion atoms in Figure 3. It is evident that smaller problem
sizes put stronger constraints on the network. For example,
doing a 5.4 billion atom simulation at exascale would require
a latency in the range of 10 nanoseconds and a bandwidth in
the range of 10 GB/s.

IV. COSMOLOGICAL SIMULATIONS

Cosmological simulations are used to understand the origin
and evolution of stars, galaxies and the universe. The uni-
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Fig. 3. Latency and bandwidth requirements for MD (smaller problem sizes)

verse consists of two basic types of matter–baryonic matter
composed of atoms and molecules and non-baryonic “dark”
matter whose composition is unknown. Baryonic matter forms
the part of the universe that astronomers can see directly and
requires gas dynamics simulations. Dark matter, the dominant
constituent of the universe for a significant portion of the time
scales of interest, can be considered a collisionless fluid and
can be simulated using N -body dynamics.

For the purpose of discussion in this paper, we will concen-
trate on N -body simulations which are performed by codes
known as gravity solvers. There are different approaches
to solving the N -body problem: 1. Direct methods where
all particle interactions are considered explicitly leading to
O(N2) computation, 2. Tree methods which involve a hi-
erarchical multipole expansion reducing the complexity to
O(N lgN), and 3. Particle-mesh or “grid” methods where
forces are calculated on a structured mesh. Examples of
applications which use tree methods are PkdGRAV [8] and
ChaNGa [9]. Examples of grid/AMR codes are Enzo [10]
and FLASH [11]. We conduct our analysis in the context
of the tree-based Barnes-Hut method [19], which gives an
O(N lgN) algorithm for simulating self-gravitating systems.

We begin by presenting an overview of N -body compu-
tations with the Barnes-Hut algorithm. First, particles are
divided among cores through domain decomposition of the
simulated universe, represented by a cube. We perform our
analysis in the context of Oct decomposition, which entails the
division of the simulation space into geometrically uniform
subregions (or cells) in a recursive manner. This division
places a tree-structure on the simulation space: the root of the
tree represents the entire simulation space, which we assume
to be a cube of length c. This cube is divided into eight
cells of length c/2, each representing a child of the root cell.
Each of these eight cells has eight children of its own, and so
on. Particles are grouped into appropriately sized buckets of
particles, which form the leaves of this tree. Each of the Pc

cores holds a section of the space represented by a contiguous
set of buckets. Therefore, the tree is distributed across cores.



Forces on particles are calculated by performing a traversal
of the Barnes-Hut tree for each bucket. This procedure is
carried out on a per-bucket (as opposed to a per-particle) basis
to amortize the traversal cost over several proximal particles,
while keeping the amount of extra work done because of
clustering to a minimum. The traversal for a bucket b at
depth d begins at the root of the tree. For each cell n that
is encountered, an acceptance criterion is applied to decide
whether or not n is sufficiently distant from b. The acceptance
criterion is parameterized by the opening angle, θT , which is
constant. Let Dn be the length of cell n, and rb,n = |rb−rn|,
the distance between b and n. If Dn/rb,n < θT , the force on
b due to all the particles within cell n may be approximated
by the multipole expansion of n, Mn. If not, each child
c of n must be considered in turn by expanding the cell
n. Note that expanding a cell may require communication,
since the tree is distributed across processors. The per-bucket
traversal procedure is outlined in Algorithm 2 below. The force
computed for each particle is used to update its position and
velocity. Subsequently, domain decomposition is performed
and a new iteration of force evaluation begins.

Algorithm 2 BarnesHut(n, b) : Cell n, Bucket b
if n is a bucket then

bucketForces(b,n)
else if Dn/|rb − rn| < θT then

cellForces(b,Mn)
else

for all c ∈ children(n) do
BarnesHut(c, b)

end for
end if

We estimate the resolution of exascale simulations by ex-
trapolating from state-of-the art simulations at the Petaflop/s
level. It has been observed that about 213 particles per core are
required to maintain a good scaling profile for ChaNGa [9] for
current machines. Recall that the total number of interactions
per time step for an N -body system using the Barnes-Hut
technique isO(N lgN). This suggests that in order to generate
an equivalent amount of work per processor core as we scale,
the number of particles required per core decreases slightly:

N ′ lgN ′

P ′c
=
N lgN

Pc

where N ′ and N are the numbers of particles required at petas-
cale (P ′c cores) and exascale (Pc cores). Given P ′c = 220, and
particles per core at petascale = 213, we get N ′ = 233. Using
Pc = 230, results in a total of N = 6.2 × 240 ≈ 6.82 trillion
particles, i.e. roughly 6350 particles per core at exascale.

A. Computation

Realistic simulations treat the input set of particles as part of
larger structures through the application of periodic boundary
conditions. When coupled with the uniformity of particle
distribution, the assumption of periodic boundary conditions

simplifies our analysis. In essence, each bucket of particles in
the root cell, regardless of its position, interacts with exactly
the same number of cells and particles as every other. This
allows us to focus our analysis of the number of expansions
to a single, arbitrary bucket. In order to calculate the number
of cell expansions required to compute the gravitational forces
on the particles of a bucket b, we consider each level of the
tree in turn. Let the center of mass of b be situated at O. In
general, a cell n at level d of the tree has an edge length of
c/2d. This cell will be expanded by b if the distance between
O and the center of mass of n, written rb,n(d), is such that

rb,n(d) ≤
c

2d.θT

Therefore, bucket b expands all the cells at level d whose
centers lie within the sphere of radius rT (d) = c/2d.θT
described around O. Usually, 0.5 ≤ θT < 1, so that c/2d ≤
rT (d) < c/2d−1. This means that we can calculate lower and
upper bounds on the number of cells at level d that b expands
by considering two spheres around O, of radius r0(d) = c/2d

and 2r0(d) = c/2d−1, respectively. In particular, the centers
of mass of 7 cells of length c/2d fall within the first sphere.
Furthermore, 125 cells of the same edge length intersect with
the second sphere. However, the centers of mass of only 33 of
these 125 fall within the second sphere. By definition these are
the only cells that are expanded. Therefore, bucket b expands
between 7 and 33 cells at depth d, for every d. Therefore,
the total number of calls to the acceptance criterion can be
bounded above by:

33× N

B
× lg

N

B
× 1

lg 8
= 11× N

B
× lg

N

B

A similar argument can be used to calculate the number
of interactions performed. Consider a bucket b for which the
Barnes-Hut tree is being traversed. Let Ibc(d) be the number of
bucket-to-cell interactions at depth d and Ce(d), the number
of cells expanded at depth d. Then, Ibc(d) = 8 × Ce(d −
1) − Ce(d). Since Ce(d) = 33 for all d, we have Ibc(d) =
7 × 33. With B particles per bucket and lg(N/B)/3 levels
in the tree, the total number of interactions per bucket equals
77 × B lg(N/B). For N/B buckets, this implies a total of
Ipc = 77 × N lg(N/B) particle-cell interactions. To this, we
add the number of particle-particle interactions: each bucket
expands 32 other buckets, resulting in ≈ 33×B×B particle-
particle interactions per bucket, and Ipp = 33×BN particle-
particle interactions in all. The total number of flops for each
type of interaction is listed below:

312× 77×N × lg
N

B
+ 38× 33×B ×N

The figures of 312 flops for each hexadecapole particle-cell
interaction and 38 flops per particle-particle interaction are
obtained from ChaNGa. In order to obtain a computational
rate of at least 1 Exaflop/s, for N = 6.2 × 240 and B = 10,
using equation (III.1) we get,

24024×N lg(N/B) + 1254×BN
T

> 1018



or T < 6.52 (IV.1)

This suggests that we need a time per step of 6.52 seconds to
achieve 1 Exaflop/s performance.

B. Communication

Now, we estimate the volume of communication generated
by the Barnes-Hut algorithm. Recall that particles are grouped
into buckets of size B each. The even distribution of N
particles among Pn processor nodes results in N/(PnB)
buckets per processor node. Furthermore, given the even
distribution of particles, each node receives an approximately
cubic subdomain of edge length a = c/ 3

√
Pn. This is depicted

as the striped area in Figure 4. Let nb be the number of buckets
along an edge of the cube. Then, n3b = N/(PnB), so that
nb =

3
√
N/(PnB). The processor cores that perform traversals

for buckets within this volume request data in the form of cells
and particles, both from remote nodes and local cores within
the same node. However, buckets closer to the center of this
cube request strictly a subset of the remote cells and particles
requested by buckets closer to the faces. This observation
is leveraged in production quality simulators by “caching”
cells and particles fetched from remote sources, resulting in
the reuse of remote data, and reducing the communication
cost of the algorithm. Therefore, we attribute the aggregate
remote communication generated by a processor node to the
union of all cells and particles requested by the buckets along
the faces of the cube. As shown in Figure 4, with a bound
of θT = 0.5, buckets along the faces of the cube expand
a total of 12n2b + 12 × 3nb + 8 remote buckets of edge
length c 3

√
B/N . Therefore, each node requests the particles

of Cbkts = 12n2b + 36nb + 8 buckets. The buckets along the
faces also expand a total of 12(nb/2)

2 + 36(nb/2) + 8 cells
with edge length 2c 3

√
B/N , 12(nb/4)2 + 36(nb/4) + 8 cells

with edge length 22c 3
√
B/N , etc. Therefore, the number of

cells requested from remote nodes up to size a = c/ 3
√
Pn is:

Ccell
1 =

lgnb∑
i=0

(
12
(nb
2i

)2
+ 36

(nb
2i

)
+ 8

)
= 16n2b + 72nb + 8 lg nb − 32 cells

For i ≤ lg nb, the above reasoning is valid since there are
multiple cells (or for i = lg nb, a single cell of edge length
a) lining a processor node’s subvolume. We must consider
cells with edge length greater than a separately. Notice that
there is an asymmetry of communication volume between
processor nodes: two nodes may request slightly different
numbers of higher-level cells depending on their positions
within the simulated space. The greatest difference in the
number of cells expanded occurs between the eight central
processor nodes and the ones situated at the eight corners of
the simulated universe. Even so, with θT = 0.5, the number of
cells expanded by the processor nodes in the corners equals 31,
whereas 30 cells are expanded by the eight central processor
nodes. We assume that each processor stores the root cell
representing the entire simulation space. Therefore, we bound

2b

4b

8b

b

Fig. 4. Communication pattern of a single node at the bottom three depths
in the Barnes-Hut tree. The striped region in the center represents the cubic
subvolume of particles assigned to the node, and the immediate squares
surrounding it represent the buckets along its faces. Progressively larger
squares represent remote cells at different depths that are requested by the
node for θT = 0.5. Circles of radii 2b, 4b and 8b described around the
centers of corner buckets determine which cells are requested.

the amount of communication generated per processor by the
expansion of higher-level cells as follows:

Ccell
2 = 31

(
lgPn

3
− 1

)
cells

The expansion of each cell yields eight children. We assume
that for each expanded cell, a single message is generated
which contains all its children. This model may be extended
so that whenever a cell is expanded by a processor node, it
receives a subtree of depth m below that cell. The tradeoff to
consider there is that between the number of messages (fewer
for larger m) and the amount of network bandwidth wasted
(more for larger m) because of requests for cells that are
never needed by the traversal. We keep our analysis simple
by setting m = 1. This results in about (Ccell

1 + Ccell
2 )/8

messages containing eight cells each, and Cbkts messages to
communicate B particles each.

We now use Ccell
1 , Ccell

2 and Cbkts to calculate constraints on
ts and tw. In the following, we assume that the total number of
flops are distributed evenly across processors (i.e. we assume
perfect load balance). By setting Pn = 220, we get nb ≈ 87.
Therefore, the total number of cell expansion messages equals
(Ccell

1 + Ccell
2 )/8 ≈ 15946, and the total number of particle

messages is Cbkts = 93968. We take the multipole moments
of each cell to require 224 bytes (56 words) and each particle’s
coordinate information to be 40 bytes. This leads to 100 words
for 10 particles in one bucket (these values are taken from
ChaNGa). Assuming a network free of contention, this results
in a communication time of

Tcomm = 15946(ts + 56tw) + 93968(ts + 100tw)



Finally, we use the above expression for communication in
equation (IV.1),

6.52× 1018

Pc
× tc
η
+ (1.1× 105ts + 1.03× 107tw) < 6.52

ts + 93.62tw < 59.2

(
1− 0.093

η

)
× 10−6

This equation is plotted in Figure 5. If we keep message
latency constant, the bandwidth requirements increase as η
decreases. It has been observed that an optimized version
of ChaNGa delivers about 15% of the theoretical maximum
performance on a single core. Therefore, a value of η = 0.125
is appropriate.
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Fig. 5. Latency and bandwidth requirements for the Barnes-Hut simulation
of 6.8 trillion uniformly distributed particles.

C. Memory requirements

In addition to its local cell and particle data, a processor
node in our model must store particle and cell data requested
from remote sources. This allows the caching and reuse of
requested data, thereby reducing the amount of communication
that must be performed. At the same time, this cache increases
the transient memory requirements of each processor node.
The local data comprises N/Pn particles and an octree of
depth lg(N/PnB)/3. Furthermore, each processor node stores
the path from the root cell to the cell that represents its
subvolume. The length of this path is lgPn/3 nodes. Assuming
the amount of data stored per local particle to be Sp = 152
bytes and that stored per cell to be Sc = 224 bytes, the amount
of memory required for the local data is:

Mlocal =

(
8

lg(N/PnB)
3 +

lgPn

3

)
Sc +

N

Pn
Sp

=

(
N

PnB
+

lgPn

3

)
Sc +

N

Pn
Sp

Substituting the values for the various variables, we get
Mlocal = 1.08 GB per node. We estimate the amount of
memory required to cache remote data by using the number of

cells and buckets requested from remote sources. Recall that
these values are given by (Ccell

1 +Ccell
2 ) and Cbkts, respectively.

Therefore, the total memory required per processor node to
cache remote data is:

Mremote = (Ccell
1 + Ccell

2 )Sc + CbktsBS′p

where S′p = 40 bytes is the amount of memory required
per cached remote particle. Fixing the values of the various
variables, we get Mremote = 171 MB per node.

D. Smaller problem sizes

Not all cosmological simulations conducted at exascale will
use such large systems of particles. In particular, studies
of isolated star clusters and planet disk formation require
far fewer particles for faithful simulation. Such simulations
on small-scale structures are fairly important in themselves.
For this reason, we discuss the feasibility of conducting
experiments of sizes significantly smaller than the large, 6.8
trillion particle simulation discussed previously. In particular,
we analyze the constraints on machine characteristics as we
scale down the problem size and attempt to maintain the same
level of performance as seen with the large simulation.

We consider three particle systems of similar distribution
characteristics to the 6.8 trillion particle data set introduced
previously. The total number of particles for each of these
data sets is given in Table II. The number of particles per
core for each is also shown. In each case, the analysis for
communication volume is roughly the same as outlined in
Section IV-A and Section IV-B. each of the cases, we set η to
a realistic value of 0.125, or ≈ 13%. The equations relating
ts and tw for the three systems are listed below, in order:

ts + 93.56tw < 8.94× 10−6

ts + 93.45tw < 5.16× 10−6

ts + 93.29tw < 2.92× 10−6

# Particles Particles/core Time (s)

6.8 trillion 6350 6.52
1.7 trillion 1588 1.55
0.43 trillion 397 0.37
0.11 trillion 99 0.09

TABLE II
TIME PER STEP FOR BARNES-HUT SIMULATIONS OF DIFFERENT SIZES.

These constraints are depicted graphically in Figure 6. No-
tice that with fewer particles per core, keeping the overhead of
transmission constant, we require more bandwidth to maintain
a performance level of one Exaflop/s.

V. FINITE ELEMENT SOLVERS

Finite element solvers are the ones that are most commonly
employed to solve unstructured grid problems, as their expres-
sion of the solution as a sum of basis functions over elements
dovetails naturally with setup of an unstructured grid problem



 1

 10

 100

 1000

 10000

10-2 10-1 100 101 102

B
an

dw
id

th
 (4

/t w
) i

n 
G

B
/s

Latency (ts) in microseconds

Feasibility Region for Barnes-Hut

6.8 trillion
1.7 trillion

0.43 trillion
0.11 trillion

Fig. 6. Constraints on machine characteristics for Barnes-Hut simulations
of different data sets. A value of η = 0.125 was used for each data set.

as a domain partitioned into a mesh of elements. A typical
application of a finite element solver involves two phases to
consider. There is an assembly phase, in which a linear system
is put together, and a solve phase in which that system is
solved. For a linear problem, there is just one assembly phase,
and one or more solve phases – one for a time-independent
problem, and one per time step for a time-dependent problem.
For a nonlinear problem, for which the solution process is an
iterative scheme comprised of the formation and solution of
multiple linear systems, the process of assembly and solve for
linear problems is repeated until convergence.

The problem setup in our analysis is based on the recent
work [20], which strongly scales a finite element solver to
near-petascale machines. Problem partitioning is by elements,
so that each processor has complete information about the
elements in its individual domain. Shared degrees of freedom,
which occur wherever there are mesh points on a processor
boundary, are stored redundantly. Figure 7 gives a simple
example. Assuming a good partitioning of the problem among
processors, the amount of shared degrees of freedom will
just be the surface area of the individual processor domains,
O
(√

N
P

)
for a 2D problem and O

((
N
P

)2/3)
for a 3D prob-

lem, assuming N global degrees of freedom. System assembly,
which involves summing the contributions of each element into
a global sparse matrix, can be accomplished with just nearest-
neighbor communication of local values for shared degrees
of freedom. As the matrix and vector entries themselves are
integrals, the number of floating-point operations depends on
the specific integration rule used.

There is a concern of scalability in terms of the amount
of data transferred. Completely assembling the matrix entries
requires the square of the surface area. However, this is not
necessary. Completely assembling only the vector entries,
which involves data transfer that is just linear in the surface
area, is sufficient if a Krylov subspace method, which is based
on matrix-vector multiplication, is used for the linear solve.

P1

P2

Fig. 7. Example of redundant storage of an unstructured mesh. The triangles
belong to two different processors, P1 and P2, and each node represents a
degree of freedom. Red entries are stored on P1, blue entries on P2, and
purple entries on both processors.

If only the non-shared degrees of freedom are assembled, a
nearest-neighbor exchange and summation of shared degrees
of freedom after the product of this matrix with a completely
assembled vector will give the same result as a product
between a completely assembled matrix and completely as-
sembled vector. With nearest-neighbor communication and
a scalable amount of data being transferred, we turn our
attention to the solve phase.

In the solve phase, a linear solver is used to solve the
previously assembled linear system. Krylov subspace meth-
ods, which are based on matrix-vector multiplication, are a
popular choice, and in fact the only choice when performing
assembly as previously outlined. There are many different
Krylov subspace methods [21], and the choice of method
depends on the specific problem being solved. As our study
is introductory, we examine here the simplest Krylov method,
conjugate gradient (CG), which is the method of choice for
problems that are symmetric and positive definite. Pseudocode
is given in Algorithm 3.

Algorithm 3 CG(A,b,x0,rtol)
r0 ← b−Ax0
p0 ← r0
k ← 0
while ||rk||2 ≥ rtol do

αk ← rTk rk
pT
k Apk

xk+1 ← xk + αkpk
rk+1 ← rk − αkApk

βk ←
rTk+1rk+1

rTk rk
pk+1 ← rk+1 + βkpk
k ← k + 1

end while
return xk

The setup to CG requires one matrix-vector product (Ax0),
one vector subtraction (b−Ax0), and one dot product (rT0 r0).
The iteration loop requires one matrix-vector product (Apk),
two vector additions (xk+αkpk and rk+1+βkpk), one vector
subtraction (rk − αkApk), and two dot products (pTkApk and
rTk+1rk+1). We define the terms we will use to construct a
performance model below:
• N – global number of degrees of freedom
• ni – number of degrees of freedom stored on processor
i



• ñi – number of degrees of freedom stored on processor
i that are shared with other processors

• si – average number of neighbors for degrees of freedom
stored on processor i

• pi – number of processor neighbors of processor i
On processor i, each matrix-vector multiply requires 2sini

flops, and pi sends each consisting of ñi floating-point values.
The vector additions and subtractions require ni flops in the
setup and 2ni flops in the loop, with no communication.
The dot products, which are accomplished using allreduce
operations, require N

P + lgP flops and 2 × lgP sends of
one floating-point value for the allreduce and another ñi flops
coupled with pi sends of ñi floating-point values for the
completion of the result.

A. Weak Scaling

We now analyze a simple weak-scaling scenario. We con-
sider a problem solved on a 3D cubic mesh consisting of
cubes each cut into five tetrahedra, as shown in Figure 8. We
give each core 4K cubes, or 20K tetrahedra, to correspond to
common elements per core counts for problems being solved
today, with each processor’s portion a 16×16×16 cube. This
results in ni = 173 = 4, 913 degrees of freedom stored on
each processor, and N = 163853 ≈ 4.4 trillion global degrees
of freedom. Each processor would send messages to at most
pi = 6 neighbors during point-to-point communication, with a
total of ñi = 173−153 = 1538 floating-point entries sent. The
average number of neighboring degrees of freedom is si = 18
excluding points on the boundary of the global domain.

Fig. 8. Base unit of mesh, cube cut into five tetrahedra. Four tetrahedra
surround the one in the center, with one of those four hidden behind the
center tetrahedron.

Since there are 1024 cores per node on our hypothetical
exascale machine, we for each node group the portions of all
the cores on that node into an 8× 8× 16 cube. This requires
us to modify the numbers given above when writing down
the performance model equation. The computation terms are
unchanged; however, the number of sends becomes the surface
area of the node, which is 8×8×16−6×6×14 = 520. The
number of elements sent is multiplied by this amount for point-
to-point messages. The logarithmic terms in the allreduce
time become logarithms of the number of nodes instead of

the number of cores. Assuming a binary tree pattern for the
allreduce, we get that the setup time for CG is

T setup
CG =

1

η
×
(
(2si + 1)ni +

N

Pc
+ lgPn

)
tc

+ 2(520 + lgPn)ts

+ 2(520ñi + lgPn)tw

and the solve time is, per iteration

T iter
CG =

1

η
×
(
(2si + 6)ni +

N

Pc
+ 2 lgPn

)
tc

+ 2(520 + 2 lgPn)ts

+ 2(520ñi + 2 lgPn)tw

Allowing ts and tw to vary and fixing all other parameters,
we plot the region

Pc(2si + 1)ni +N + 2 lgPn

T iter
CG

≥ 1018

which simplifies to

1120ts + 1599600tw ≤ 2.26× 10−4 − 1

η
× 2.10× 10−5

to see what machine parameters are required to achieve
exascale performance for an iteration of CG. The plot, which
is in Figure 9, shows a latency requirement on the order of
tenths of microseconds and a node bandwidth requirement of
tens of gigabytes per second.
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Fig. 9. Feasibility region for conjugate gradient iteration.

B. Memory Requirements

Finite element codes require storage of the mesh and the
(sparse) linear system. This is not a scalability concern, as the
storage of each scales with the number of degrees of freedom.
The storage beyond this is not a concern either. The redundant
storage in the scheme presented above is proportional to the
surface area of the elements, and beyond the linear system, CG
keeps only four additional vectors in memory. Even if another
Krylov solver were used, the memory used by the solver is not



a scalability concern: CG-based methods keep only a handful
of vectors in memory in addition to the linear system, and even
the most general-purpose Krylov method, GMRES, in practice
keeps a number of vectors in memory that is constant in the
problem size due to its being restarted after a fixed number of
iterations [21].

C. Smaller Problem Sizes

Applying the same analysis as for weak scaling, we can
see what the feasibility region would be for smaller problem
sizes. Figure 10 shows regions for five problem sizes, ranging
from the weak scaling scenario discussed earlier to the smallest
possible problem, with one cube per core. The successive
feasibility regions are:

1120ts + 1599600tw ≤ 2.26× 10−4 − 1

η
× 2.10× 10−5

1120ts + 401520tw ≤ 3.34× 10−5 − 1

η
× 3.12× 10−6

1120ts + 102000tw ≤ 5.70× 10−6 − 1

η
× 5.35× 10−7

1120ts + 27120tw ≤ 1.23× 10−6 − 1

η
× 1.18× 10−7

1120ts + 8400tw ≤ 3.62× 10−7 − 1

η
× 3.77× 10−8

Specific model parameters for each problem are shown in
Table III. The latency and bandwidth requirements become
increasingly restrictive with each reduction in size, to the point
of needing sub-nanosecond latencies and node bandwidth on
the order of hundreds of gigabytes per second.

Problem Cubes/core N ni ñi

1 4096 4.40× 1012 4913 1538
2 512 5.50× 1011 729 386
3 64 6.88× 1010 125 98
4 8 8.60× 109 27 26
5 1 1.08× 109 8 8

TABLE III
PERFORMANCE MODEL PARAMETERS FOR DIFFERENT PROBLEM SIZES,
RANGING FROM THE ORIGINAL ONE STUDIED IN THE WEAK SCALING

STUDY TO ONE WITH ONE CUBE PER CORE. si IS NOT SHOWN BECAUSE IT
REMAINS UNCHANGED.

D. Additional Issues

The analysis presented here has only scratched the surface
when it comes to solving unstructured grid problems. There
are a number of other factors that would be considered in
a complete analysis. The partitioning of the grid naturally
matters, as a poor partition would substantially degrade per-
formance. The solver itself is a factor. Conjugate gradient is
one of several Krylov subspace methods, and it is applicable
only when the problem being solved is symmetric and positive
definite. Other problems require different solvers that will also
need to be studied.
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Fig. 10. Feasibility regions for conjugate gradient iteration for several
problem sizes. For each successively smaller problem size, the number of
cubes per core decreases by 2 in each dimension.

There is also the issue of preconditioning that we did not
consider here. Preconditioning involves applying some kind
of fast incomplete solve to the system during each iteration
with the goal of speeding up convergence [21]. This means
extra expense per iteration, and on a parallel computer care
must be taken to choose a preconditioner that parallelizes well.
Poor or no preconditioning results in a high iteration count that
increases with the global problem size. In the case of conjugate
gradient on a 3D problem, the number of iterations increases
as N1/3 [22], for a (non-ideal) overall asymptotic computation
time of O(N4/3). [22] used multigrid as a preconditioner in
CG to both dramatically reduce the iteration count and the rate
of increase. The scalability of multigrid is itself a subject of
much study [23]. Clearly, the issue of preconditioning is one of
vital importance for ensuring scalability of unstructured grid
problems.

VI. SUMMARY

This paper presented architectural constraints imposed by
weak scaling and smaller problem sizes for several application
classes to achieve 1 Exaflop/s performance on future machines.
In general for all applications discussed, at a lower sequential
efficiency than 1 (η < 1), the constraints on the network
latency and bandwidth tighten. High latency and bandwidth
requirements, especially for η < 1 and smaller problem
sizes emphasize the importance of continuing research in
developing communication-minimizing algorithms, as well as
high-bandwidth network links and system infrastructure that
minimizes the diameters of the interconnect networks.

For comparison between the application classes, Figure 11
presents the feasibility regions of the three classes for weak
scaling (for η = 1). We can see that FEM puts the tightest
constraints on both network latency and bandwidth. MD codes
have the smallest bandwidth requirements because information
of a small number of atoms is exchanged at every step. The
modest communication requirements for MD and N -body



problems are due to the fact that each communicated value is
used in a large number of floating point calculations (leading
to a higher degree of reuse compared to FEM).
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Fig. 11. Feasibility regions for molecular dynamics (MD), cosmology (N-
body) and finite element solvers (FEM) for weak scaling to achieve 1 Exaflop/s

Smaller problem sizes for all the application classes lead
to stronger constraints on the network latency and bandwidth.
However, it is important to remember that the latency con-
straints can be relaxed to some extent since our analysis
assumes serialization of messages originating from all cores
on a node through the NIC or switch on the node. We
expect that future machines will allow several cores on a
node to inject messages on the network simultaneously. The
memory requirements for all these application classes is not a
scalability concern (although the requirements for Barnes-Hut
are higher than the other two). This suggests that machines
with low memory per core may be realistic in the future.

The analysis in this paper has made as few assumptions
as possible. However, two assumptions which have simplified
our analysis are absence of load imbalance and network
contention. In a future study, we will analyze the impact of
both factors on application performance. This is a preliminary
study of the three application classes and we plan to do a
more in-depth analysis of each application class which was
impossible in this paper due to limited space.
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