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ABSTRACT
Recent results have shown that topology aware mapping re-
duces network contention in communication-intensive ker-
nels on massively parallel machines. We demonstrate that
on mesh interconnects, topology aware mapping also allows
for the utilization of highly-efficient topology aware collec-
tives. We map novel 2.5D dense linear algebra algorithms to
exploit rectangular collectives on cuboid partitions allocated
by a Blue Gene/P supercomputer. Our mappings allow the
algorithms to exploit optimized line multicasts and reduc-
tions. Commonly used 2D algorithms cannot be mapped in
this fashion. On 16,384 nodes (65,536 cores) of Blue Gene/P,
2.5D algorithms that exploit rectangular collectives are sig-
nificantly faster than 2D matrix multiplication (MM) and
LU factorization, up to 8.7x and 2.1x, respectively. These
speed-ups are due to communication reduction (up to 95.6%
for 2.5D MM with respect to 2D MM). We also derive LogP-
based novel performance models for rectangular broadcasts
and reductions. Using those, we model the performance of
matrix multiplication and LU factorization on a hypotheti-
cal exascale architecture.

Categories and Subject Descriptors
G.1.0 [Numerical Analysis]: General—Parallel algorithms

General Terms
Algorithms, Performance

Keywords
communication, mapping, interconnect topology, performance,
exascale
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Figure 1: BG/P uses topology aware multicasts to
utilize a high fraction of node bandwidth.

A multicast is a broadcast of data from one processor
to a selected subset of all other processors. This opera-
tion is used in many algorithms, especially in dense linear
algebra. Figure 1 shows that the performance of a multi-
cast varies dramatically depending on whether it exploits
the topology of the underlying interconnect network. The
bandwidth of a 1 MB multicast drops by a factor of as much
as 30x as the number of processors grows from 2 to 4096
on a Cray XE6 (Hopper), but grows by a factor of 4.3x on
the Intrepid Blue Gene/P (BG/P). On BG/P, for proces-
sor counts that are powers of two, the communication net-
work connects the processors with a 3D torus (i.e. cuboid).
Cuboid partitions enable BG/P’s Deep Computing Messag-
ing Framework (DCMF) [15] to use specialized ‘rectangular’
algorithms. Rectangular algorithms saturate all the band-
width available in all the network links simultaneously. In
contrast, the Cray XT5 (Jaguar) and XE6 use non-cuboid
partitions and a less efficient (binomial) multicast algorithm
that leads to more contention. If we use a binomial multi-
cast protocol on BG/P, a similar degradation in bandwidth
is observed as on XT5 and XE6.

This difference in bandwidth raises several questions:

1. Can we map higher level algorithms to cuboids in order
to take advantage of the better performance of rectan-
gular multicasts and other collective operations?



2. Can we develop a model to accurately predict the per-
formance of various collective operations and of algo-
rithms that use them?

3. What do our predictions tell us about the performance
of these algorithms on future exascale architectures?
How important will it be to use topology aware collec-
tives and algorithms on these machines?

To answer the first question, we will use the recently in-
troduced class of 2.5D dense linear algebra algorithms [18]
for matrix multiplication (MM) and LU decomposition. The
conventional algorithms for these problems [7] store one copy
of the input matrix (or matrices) spread over a virtual 2D

mesh of
√
P ×

√
P processors. These algorithms attain

known lower bounds on the total communication (number of
words moved between processors [4]). Each processor per-
forms O(n3/P ) arithmetic operations and sends or receives

O(n2/
√
P ) words from other processors. 2.5D algorithms

similarly perform O(n3/P ) arithmetic operations per pro-
cessor. 2.5D algorithms store c > 1 copies of the input
matrix on a virtual 3D mesh of

√
P/c ×

√
P/c × c proces-

sors. Redundant memory usage allows 2.5D algorithms to
reduce the total communication by a factor of

√
c compared

to 2D algorithms. 2.5D algorithms attain a correspondingly
smaller lower bound on communication (this lower bound
is a decreasing function of the amount of memory used per
processor).

Further, we see that 2.5D algorithms naturally map to the
cuboid processor meshes on BG/P, unlike the conventional
2D algorithms. This means 2.5D algorithms not only com-
municate

√
c times less data than 2D algorithms, they can

communicate this data much faster. As a result, 2.5D algo-
rithms solve small problems more efficiently (achieve strong
scaling), since these are more communication bound than
large problems. On 65,536 cores, for a matrix of dimension
only n = 212, our 2.5D MM algorithm still maintains 24%
efficiency (8.7x faster than 2D MM).

To answer the second question, we use the LogP model [8]
to model both multicasts and reductions. We derive the first
performance model of rectangular multicasts on cuboid net-
works. By taking into account topology of the algorithm and
architecture, we are able to produce a detailed and reliable
model. We also provide a model for the more generally ap-
plicable but slower binomial tree method. We compare our
performance predictions with DCMF measurements and at-
tain good agreement.

To answer the third question, we model the performance
of 2D and 2.5D MM and LU on a model of a future exascale
machine. Our models for communication collectives allow us
to predict the performance of communication within these
dense linear algebra algorithms. Our model predicts mod-
est efficiency improvements for MM (from 80% for 2D MM
with a binomial multicast, to 87% for 2.5D MM with bino-
mial multicast, to 95% for 2.5D MM with rectangular multi-
casts). We predict much better efficiency improvements for
LU without pivoting (from 20% to 42% to 80%).

The rest of the paper is organized as follows. Section 2
describes how multicasts can take advantage of a mesh in-
terconnect to attain the bandwidth shown in Figure 1. Sec-
tion 3 briefly describes how 2.5D matrix multiplication and
2.5D LU work (see [18] for details) and presents the perfor-
mance of our implementation. We analyze the overheads of
idle time and communication time and show that 2.5D algo-

root
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Figure 2: The four disjoint spanning trees used by
a rectangular algorithm on a 4x4 processor grid

rithms with rectangular collectives reduce both. Section 4
presents and validates the multicast and reduction perfor-
mance models. Section 5 describes the exascale models, and
Section 6 discusses future work.

2. COLLECTIVE COMMUNICATION PRE-
LIMINARIES

Generic multicast and reduction algorithms typically prop-
agate a message down a spanning tree (e.g. binary or bino-
mial) of nodes. To improve bandwidth and network utiliza-
tion, large messages are pipelined down multiple spanning
trees. Each tree spans the full list of nodes but in a differ-
ent order [5, 13, 16]. However, if any of the tree edges pass
through the same physical links, network contention creates
a bottleneck in bandwidth utilization.

A topology aware rectangular multicast on a cuboid par-
tition can utilize all the links on the network without any
contention. On a mesh of dimension d, rectangular protocols
form d edge-disjoint spanning trees (each having a different
‘color’). On a torus of dimension d, rectangular protocols
form 2d colors/spanning trees. For each tree, the root sends
unique packets down one of 2d combinations of dimension
and network direction. On a ring of processors, the two
edge-disjoint spanning trees are simply the two directions
of the bidirectional network. On a 2D torus of processors,
four edge-disjoint spanning trees are formed by routing in
different dimensional order (x → y, y → x) and in differ-
ent directions (−x → −y, −y → −x). These four trees are
displayed in Figure 2. For higher dimensional meshes, rect-
angular algorithms form d edge-disjoint dimensional orders
by performing d − 1 circular shifts on some initial ordering
(D1 → D2 → . . . Dd, D2 → D3 → . . . Dd → D1, etc.).

These topology aware multicasts are valid only if the par-
tition is a cuboid. This condition requires not only that the
machine scheduler allocates cuboid partitions but also that
algorithms and applications perform multicasts on cuboid
partitions. We evaluate the utility of topology aware col-
lectives by designing and implementing algorithms that can
exploit these collectives. We also derive new performance
models to shed light on the scaling characteristics of these
collectives and our new algorithms.



3. COLLECTIVES IN DENSE LINEAR AL-
GEBRA

Typical dense linear algebra algorithms such as those im-
plemented in ScaLAPACK [7] are two-dimensional (2D).
Such algorithms subdivide the matrix into blocks producing
a 2D rectangular virtual topology. Most collective commu-
nication happens in the form of line multicasts or reductions
within this 2D virtual topology or 2D grid. To utilize rect-
angular algorithms for line collectives, each row and column
of the 2D grid must be contiguous on the physical network
mapping. Therefore, given a 2D mesh or toroidal partition,
2D algorithms are fit to use any dimensional collectives avail-
able. However, some of the largest supercomputers have 3D
networks currently. On a 3D grid, a contiguous embedding
of a 2D virtual grid requires one of three dimensions of the
physical network to be folded entirely into one of the di-
mensions of the 2D virtual grid. Mapping a rectangular 2D
grid of an arbitrary aspect ratio to a 3D cuboid of different
aspect ratios in this fashion is usually infeasible. So, 2D al-
gorithms typically cannot utilize rectangular algorithms on
3D networks.

Certain dense linear algebra algorithms do have 3D map-
pings. A classical 3D algorithm is a matrix multiply on a
3D cube [1, 2, 6]. This algorithm requires a 3

√
P × 3
√
P × 3
√
P

partition, and the results end up on a different face of the
cube than the input started on. The 3D algorithm uses P 1/3

copies of the matrices, increasing the memory footprint by a
factor of P 1/3. Such tight restrictions on the processor lay-
out and memory availability often makes this 3D algorithm
an impractical solution.

Recently, the first 2.5D algorithms were developed for
LU and for matrix multiplication [18]. These algorithms
perform less communication than their 2D counterparts by
replicating the inputs c times and using more memory. They

are valid on any
(√

P/c
)
×
(√

P/c
)
× c grid, for any c ≤

3
√
P . These virtual topologies map relatively easily to the

3D partitions allocated by Blue Gene/P. 2.5D algorithms
can map to a more general set of cuboid partitions by us-
ing multiple processes per node. The intra-node processes
can be folded into any given physical network dimension.
We map 2.5D algorithms to utilize contiguous line multi-
casts and reductions. In fact, all communication in 2.5D
MM and LU algorithms can be done using topology aware
rectangular collectives.

3.1 2.5D algorithms
2.5D algorithms utilize a 3D partition by replicating the

input matrices so that each of c layers holds a copy. Then
parts of the computation are done on each layer. Com-
munication and synchronization among layers is needed to
combine the results computed on each layer.

3.1.1 2.5D communication lower bounds
2.5D algorithms attempt to use a factor of c more memory

than necessary to lower the communication cost. The lower
bound on the number of words communicated per processor
in a class of linear algebra algorithms that includes MM and
LU (proven in [4]) is

W = Ω

(
n2

√
c · P

)
(1)

The corresponding lower bound on the number of messages,

Algorithm 1: [C] = 2.5D-SUMMA(A,B,n,P ,c)

Input: square n× n matrices A, B distributed so that
Πij0 own n√

P/c
× n√

P/c
blocks Aij and Bij

Output: square n× n matrix C = A ·B distributed so
that Πij0 own a n√

P/c
× n√

P/c
block Cij

forall i, j ∈ [0,
√
P/c− 1], k ∈ [0, c− 1] do

/* replicate input matrices */

Πij0 do a line multicast of Aij and Bij to Πijk

for t = k ·
√
P/c3 to (k + 1) ·

√
P/c3 do

Πitk do a line multicast of Ait to Πijk

Πtjk do a line multicast of Btj to Πijk

Cijk := Cijk +Ait ·Btj

end
Πijk sum Cijk with a line reduction to Πij0

end

i.e. latency cost is

S = Ω
(√

P/c3
)

(2)

Communication optimal 2D algorithms satisfy these lower
bounds for c = 1. 2.5D algorithms generalize 2D algorithms
for c ∈ {1, 2, . . . , b 3

√
P c}. Our 2.5D MM algorithm satisfies

all communication lower bounds for any c, while 2.5D LU
satisfies only the bandwidth lower bound (Eq. 1). A tight
lower bound for the communication latency in 2.5D LU is
proven in [18].

3.1.2 2.5D matrix multiplication
We present a new version of 2.5D matrix multiplication,

that is based on SUMMA [21] rather than Cannon’s al-
gorithm (presented in [18]). If the matrices are square,
each layer performs n/c rank-1 updates. The results are
combined with a sum-reduction among layers. The rank-
1 updates are combined into rank-b updates, where b =√
c · n/

√
P for a square matrix. We can generalize this al-

gorithm to non-square matrices A (m-by-k) and B (k-by-
n). The size of each update (b) should correspond to the
smallest blocking factor among A and B in the dimension
corresponding to k.

Algorithm 1 describes the 2.5D SUMMA algorithm for

square matrices on a
(√

P/c
)
×
(√

P/c
)
× c grid indexed

by Πijk. This algorithm has the same asymptotic costs as
the Cannon-based 2.5D MM algorithm presented in [18].
However, this version communicates with multicasts rather
than sends, allowing the implementation to exploit topology-
aware collectives.

This 2.5D MM algorithm achieves the bandwidth lower
bound (Eq. 1) [18] and has a latency cost of

S = O
(√

P/c3 + log(c)
)

This latency cost reaches the lower bound in Eq. 2 modulo
the log(c) term.

3.1.3 2.5D LU factorization
2.5D LU works by accumulating the Schur complement

on each of c layers [18]. However, more inter-layer commu-
nication and synchronization is required than in the case of
2.5D MM. We will not describe 2.5D LU in full detail. The
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Figure 3: 2.5D LU algorithm work-flow

full algorithm and analysis can be found in [18]. At a high
level, the algorithm functions as follows (also see Figure 3)

(A) The top layer factorizes the top left diagonal block,
A11 = L11U11 and performs a line multicast of L11

and U11 to the other layers. The other layers update
L21 and U12. The intra-layer updates and factoriza-
tions have 2D mappings and are able to utilize line
multicasts for all communication.

(B) Each layer performs different thin panel Schur comple-
ment updates on A22.

(C) The Schur complement of the next panel of A22 is sub-
tracted using a line all-reduce. After the all-reduce,
all layers own the correct Schur complement panels.

(D) Steps A-C are repeated until the entire matrix is fac-
torized.

This 2.5D LU algorithm achieves the communication band-
width lower bound in Eq. 1. The communication is mini-
mized along the critical path, rather than simply the total
volume as done by a 3D LU algorithm introduced in [12].
The 2.5D LU algorithm has a latency cost of

S = O
(√

P · c
)

This latency cost grows with larger c, contrary to the behav-
ior of 2.5D MM. Due to the nature of the diagonal depen-
dencies in LU, any approach to lowering this latency cost
would increase bandwidth cost [18].

3.1.4 2.5D LU with CA-pivoting
2.5D LU can also be done with pivoting as shown in [18].

In order to maintain a theoretically optimal latency cost,
communication-avoiding (CA), tournament pivoting [10] is
used, rather than partial pivoting. Tournament pivoting in
2.5D LU requires the following extra work:

1. A tournament is done for each column of widthO(n/
√
pc).

The tournament is done within a block of heightO(n/
√
p/c)

on each layer, then over the best rows of the layers.

2. For each block-column of width O(n/
√
pc), we pivot

and update a block-column of width O(n/
√
p/c), to

which the smaller block-column belongs.

3. After each factorization of a block column of width
O(n/

√
p/c), the remainder of the matrix is pivoted

and updated throughout layers.

For a detailed description and complexity analysis of 2.5D
LU with pivoting see [18].

3.1.5 Implementation
We implemented 2.5D MM and LU using OpenMP for

shared-memory parallelization and MPI. We also developed
a pure DCMF version to make sure the collective protocols
MPI was using were optimal for our uses and to remove
any potential MPI overhead. However, this optimization
did not yield noticeable speed-ups. So, we will detail only
MPI performance, which is more reproducible and portable.

We did not attempt exploiting overlap between commu-
nication and computation. Our goal was to reduce commu-
nication time rather than to hide it. A good production
implementation should try to do both. For 2.5D LU, we
did try to expose as much parallelism as possible by using
a block-cyclic layout and pipelining step A. All layers start
performing updates as soon as the corner processor on the
first layer factorizes its block.

3.2 Performance of 2.5D algorithms
Mapping 2.5D algorithms to utilize BG/P rectangular in

each dimension is aided by folding the 4 cores into one of the
physical dimensions. For example, a 2048-node partition is
a 8× 8× 32 cuboid. In order to do our strong scaling study
on this partition, we ran 2.5D algorithms with 4 processes
per node (vn mode). We folded this nodal dimension into
the physical X dimension. This folding generated a virtual
square (32 × 32) XZ layer. The Y dimension was the ‘k’
dimension (the number of layers, c). We collected strong-
scaling results by running on sub-partitions along the Y di-
mension (c = 1 for 256 nodes, to c = 8 for 2048 nodes). On
16,384 nodes (65,536 cores), 2.5D algorithms used c = 16
layers to map precisely to the 16 × 32 × 32 physical net-
work of nodes. For 2D runs, we used either 1 process per
node (smp mode) or 2 processes per node (dual mode) if the
number of nodes in the partition is an odd power of two.

3.2.1 Strong scaling
Figures 4(a) and 4(b) show strong scaling from 256 to 2048

nodes of BG/P for 2.5D matrix multiply and 2.5D LU, re-
spectively. Our new SUMMA-based 2.5D matrix multiplica-
tion algorithm achieves virtually perfect strong scaling. The
efficiency of the 2D algorithms deteriorates due to the rising
relative communication cost. 2D Cannon and SUMMA can-
not reap the benefit of rectangular collectives. 2D SUMMA
performs worse because binomial collectives perform worse
than the point-to-point sends used by Cannon’s algorithm.

We also observe improved strong scaling behavior in 2.5D
LU 4(b). Our implementation of 2.5D LU generalizes and
outperforms the 2D algorithm with CA-pivoting and with
no pivoting.
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Figure 4: Strong scalability of 2.5D algorithms on
BG/P

3.2.2 Efficiency analysis at scale
On 16,384 nodes (65,536 cores), the benefit of avoiding

communication grows 5(a). 2.5D SUMMA retains a 24%
efficiency running on matrix as small as n = 8192. This
efficiency yields a 8.7X speed-up over the best 2D algorithm
(Cannon’s algorithm). Note that a speed-up of over 2x is
only possible by reducing communication rather than over-
lapping communication and computation. For the largest
problem size tested n = 131, 072, 2.5D SUMMA runs at
76% efficiency, achieving 0.16 Petaflop/s.

Figure 5(b) compares 2D SUMMA with 2.5D SUMMA
normalizing with respect to the performance of 2D SUMMA.
We scale the proportion of total time all processors spend in
computation, idling, and communicating to this slow-down.
We calculate total communication time as the time spent in
MPI calls and use barriers to extract synchronization time.
2.5D SUMMA communicates less by performing a minimal
amount of steps and utilizing line collectives. During a ma-
trix multiplication of dimension (n = 131, 072), these tech-
niques reduce the communication overhead by 95.6%.

For n = 8192, 2.5D SUMMA also spends less time per-
forming on-node computation. We attribute the reduction
in computation time to the increased block-size of the se-
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Figure 5: Performance of 2.5D matrix multiplication
on 16,384 nodes of BG/P

quential multiplications. For n = 8192, the 2D algorithm
uses a block size of n/

√
P = 64, while the 2.5D algorithm

works with blocks of size n/
√
P/c = 256. The sequential

efficiency of DGEMM is significantly higher for the larger
block-size.

Figure 6 demonstrates the communication reduction we
achieve for LU factorization, with and without pivoting.
For the largest problem size tested, n = 131, 072, 2.5D LU
reduces the communication time by 81.9% without pivot-
ing and 85.9% with CA-pivoting (with respect to 2D LU).
2.5D LU also reduces the amount of time the supercomputer
spends idle, since the communication time along the critical
path of the execution is reduced. These reduction in com-
munication and idle time yield a 2.1x efficiency speed-up for
both 2.5D LU versions.

4. MODELING COMMUNICATION COLLEC-
TIVES

Rectangular algorithms can reduce communication time
in dense linear algebra operations significantly on current
supercomputers. We model the performance of rectangular
collectives in order to evaluate their scaling behavior.
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4.1 Basic assumptions and terminology
We base our assumptions to reflect current architectures

and an idealized messaging implementation.

1. We assume the LogP performance model for messag-
ing.

2. We assume m, the message size, is big and gear our
analysis towards understanding bandwidth cost of col-
lectives. Bandwidth cost is more relevant for dense
linear algebra. Latency costs are heavily dependent
on network architecture and implementation.

3. We restrict our analysis to multicasts and reductions
on k-ary d-cube networks.

4. We assume the networks are bidirectional tori for brevity.
However, our models can be trivially modified to meshes.

5. We assume that a DMA device and wormhole routing
are used for messaging.

We build a model from the following parameters:
L is the physical network latency cost as defined by the

LogP model.
o is the overhead of sending and receiving a message as

defined by the LogP model.
d is the number of dimensions of the k-ary d-cube net-

work.
g is the reciprocal of the bandwidth achieved by a single

message. We assume a single message achieves at best
the unidirectional bandwidth of a single link.

P is the number of processors.
m is the message size in bytes.
γ is the flop rate of a node.
β is the memory bandwidth of a node.

4.2 Rectangular multicast model
Rectangular multicasts function by pipelining packets of

a message down multiple edge-disjoint spanning trees. Each
spanning tree traverses the network in a different dimen-
sional order. As shown in figure 2, all sends are near-neighbor
and no contention occurs.

A rendezvous send is the protocol of choice for large mes-
sage sizes on modern networks. Rendezvous messaging es-
tablishes a handshake by sending a small eager send to ex-
change buffer information. Once the handshake is estab-
lished, the receiver pulls the data with a one-sided get op-
eration. The latency cost of an eager send under the LogP
model is 2o + L. A one-sided get requires an extra hop to
start the transaction but does not incur overhead on the
sender side. Therefore, the latency cost of a get is o + 2L.
The cost of sending a rendezvous message of size mr incurs
both the eager send and get latency costs,

tr = mr · g + 3o+ 3L (3)

A naive version of a rectangular multicast would syn-
chronously send a mr = m

2d
sized message down both di-

rections of each dimension. Such a protocol would achieve
single link bandwidth at best. A more aggressive rectan-
gular protocol can overlap the sends in each of the 2d di-
rections/dimensions. This rectangular protocol overlaps the
network latency (L) and bandwidth (g) costs of each di-
rection. However, the sequential overhead suffered by the
sender grows in proportion to the number of trees. There-
fore, the start-up cost of a rectangular multicast (the time
it takes the root to send off the entire message) is

ts = (m/2d) · g + (2d− 1) · o+ (3o+ 3L)

= (m/2d) · g + 2(d+ 1) · o+ 3L (4)

The multicast does not complete until all nodes receive
the entire message. So the multicast finishes when the last
packet travels all the way to the farthest node of its spanning
tree. The last packet leaves the root at time ts (Eq. 4).
To get to the farthest node of any dimensional tree takes
d · P 1/d hops. A rendezvous transaction handshake (Eager
Send) must be established with the next node at each hop,
so the cost per hop is 2o + L. Over all hops, the overhead
of the path of the packet is

tp = d · P 1/d · (2o+ L) (5)

Combining ts (Eq. 4) and tp (Eq. 5) gives us an estimate of
the time it takes to complete a multicast

trect = ts + tp

=
m

2d
· g + 2(d+ 1) · o+ 3L+ d · P 1/d · (2o+ L) (6)

To review, our model of the cost of a multicast (Eq. 6) is
composed of

1. The bandwidth term, (m/2d) · g – the time it takes to
send the full message out from the root.

2. The start-up overhead, 2(d+ 1) ·o+ 3L – the overhead
of setting up the multicasts in all dimensions.

3. The per hop overhead, d · P 1/d · (2o+L) – the time it
takes for a packet to get from the root to the farthest
destination node.

4.3 Rectangular reduction model
Reductions behave similarly to multicasts. A multicast

tree can be inverted to produce a valid reduction tree. How-
ever, at every node of this tree, it is now necessary to apply
some operator (do computational work) on the incoming
data. We assume that the reduction operator is the same



single flop operation applied to each element of the same in-
dex (e.g. sum-reduction). We assume that the elements are
double-precision values. The packet size (size of pipelined
chunks) must be larger than the value size (size of values
on which to apply the reduction operator) to pipeline the
reduction.

We adopt the reduction model from the multicast model.
However, we need to account for the extra computation and
access to memory involved in the application of the reduc-
tion operator. The amount of computational work done in
each spanning tree node differs depending on whether the
node is a leaf or an internal node of the spanning tree. How-
ever, summing over all trees, each node receives at most m
bytes of data and sends at most m bytes. Therefore, the
total amount of computational work on a node is simply
the reduction operator applied once on two arrays of size m
bytes.

Applying the operator on 2 arrays of m bytes, requires
reading 2m bytes, writing m bytes, and performing m/8
flops (8 bytes per double-precision value). The bandwidth
and computational costs are effectively overlapped on mod-
ern processors. Given a DMA device, the computation can
also be overlapped with the network bandwidth. So, we
adjust the start-up time ts (Eq. 4) to

tsr = max

(
m

8γ
,

3m

β
,
(m

2d
· g
))

+ 2(d+ 1) · o+ 3L (7)

The per hop cost tp (Eq. 5) should be the same for a
reduction as a multicast. We build a reduction model by
combining tp and the new start-up cost tsr (Eq. 7),

tred = tsr + tp

= max

(
m

8γ
,

3m

β
,
(m

2d
· g
))

+ 2(d+ 1) · o+ 3L

+ d · P 1/d · (2o+ L) (8)

4.4 Binomial tree multicast model
Binomial tree multicasts are commonly used as generic

algorithms for multicasts and reductions [9, 17, 19]. Bino-
mial collectives models have been written for the LogGP
model [3] and for the Hockney model [11] in [19]. Here, we
construct a slightly modified binomial tree multicast model
under the LogP model. Our model reflects the DCMF bino-
mial multicast implementation on BG/P.

A binomial tree multicast has log2(P ) stages. In each
stage, the multicast root sends the message to a node in
a distinct sub-partition. Each sub-partition recursively ap-
plies the algorithm on a smaller subtree. A message can be
pipelined into these stages to exploit multiple links simulta-
neously. We assume that there is no network contention in
the tree. Modeling contention is non-trivial and out of the
scope of this paper.

The binomial tree is unbalanced. The first established
sub-tree is the deepest. Therefore, the overhead of the first
packet traversing the deepest sub-tree dominates the over-
head of the root establishing handshakes with each of the
sub-trees. So the cost of a binomial tree multicast is

tbnm = log2(P ) · ((m/2d) · g + 2o+ L) (9)

4.5 Validation of multicast model
Our rectangular collectives models are based purely on

architectural parameters. We can validate the quality of
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Figure 7: Multicast on a 8-node toroidal ring of pro-
cessors
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Figure 8: Multicast on a 8-by-8 node toroidal grid
of processors

our assumptions and analysis by comparing our performance
prediction with an actual implementation of rectangular al-
gorithms on a Blue Gene/P machine. We implemented our
benchmarks using DCMF [15]. Subtracting the performance
of DCMF Get (cost: o+L = 1.2µs) from DCMF Put (cost:
o + 2L = 2.0µs) as reported in [15], we get L = .8µs,
o = .4µs. The inverted achievable link bandwidth is known
to be g = 1/375 s/MB.

We validate performance for rectangular algorithms of tori
of different dimension. This analysis is important since it
justifies the portability of the model among k-ary d-cubes
of different dimension d. In particular, algorithms that per-
form subset multicasts (e.g. line multicasts/reductions in
dense linear algebra), operate on lower dimensional parti-
tions. We benchmark collectives on processor partitions of
dimension d ∈ {1, 2, 3}. Lower dimensional toroidal parti-
tions are generated by extracting sub-partitions of a BG/P
3D torus partition.

Figure 7 details the performance of rectangular and bino-
mial DCMF Broadcast on a ring of 8 BG/P nodes. Our per-
formance model (trect) matches the performance of the rect-
angular DCMF algorithms (DCMF rectangle dput) closely.
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Our binomial performance model (tbnm) overestimates the
actual achieved bandwidth (DCMF binomial).

The bandwidth of the binomial multicast peaks at ex-
actly half of link bandwidth. On eight nodes, a binomial
algorithm must form three trees and has two available links
(directions). Our model does not consider contention and
assumes the three trees share all available node bandwidth.
Since two links are available, the model predicts a peak of
two thirds of the link bandwidth. However, two of the trees
get mapped to the same physical link of the root, creating
contention over the link. As a result, the binomial protocol
achieves only half of the link bandwidth.

On a 2D toroidal sub-partition, the available bandwidth
as well as the overheads increase. Figure 8 shows that our
model (trect) matches the performance of the rectangular,
one-sided DCMF protocol (DCMF rectangle dput) fairly
well. The observed data seems to take a dip in performance
growth for messages larger than 128 KB. This may be due
to the buffer exceeding the size of the L1 cache, which is 64
KB. The binomial model (tbnm) overestimates performance
again due to contention.

On a 3D partition (Figure 9), a similar overhead is even
more pronounced than on a 2D partition. However, we see
that the performance data from Faraj et al. [9] achieves
higher bandwidth than the best data we were able to col-
lect (DCMF rectangle dput). Perhaps the difference is due
to our usage of DCMF or the use of a lower level interface
with less overhead by Faraj et al. [9]. We also found that the
performance of multicasts varied substantially depending on
the buffer-size of the receive FIFO buffer. We sampled data
over a few different buffer-sizes and selected the best per-
forming data-points. Perhaps the data in [9] was collected
with more intensive control for such parameters.

Comparisons between the idealized rectangular performance
and actual observed data show that implementation over-
head grows as a function of dimension. Higher dimensional
rectangular algorithms stress the DMA implementation by
utilizing multiple links. The hardware and software have
to manage communication through multiple links simulta-
neously.

The binomial multicast performance suffers severely from
network contention. It is particularly difficult to build a gen-
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eral contention model since it is dependent on the semantics
of spanning tree construction. Rectangular algorithms have
no contention. This feature improves their scalability with
comparison to binomial and other tree-based generic algo-
rithms.

4.6 Analysis of reduction model
A BG/P node has a memory bandwidth of β = 13.6 GB/s

and a flop rate of γ = 13.6 Gflop/s. If fully overlapped, the
computational overhead involved in a reduction on BG/P
should hide entirely behind the cost of interprocessor com-
munication. Running in smp mode (one process per node),
BG/P should then achieve the same reduction performance
as multicast performance.

The observed rectangular reduction performance on BG/P
is radically inferior to the multicast performance. Figure 10
shows that the performance of all the DCMF protocols never
exceeds the link bandwidth and deteriorates on larger par-
titions. On the other hand, Figure 1 shows that the perfor-
mance of the rectangular DCMF Broadcast protocol grows
with partition size.

In order to verify the feasibility of an efficient rectangular
reduction on BG/P, we implemented our own 1D rectangu-
lar protocols. Our protocols used near neighbor MPI Isend
and Irecv operations. Such an implementation incurs a very
heavy latency overhead since a new handshake and buffer
allocation needs to happen for every pass of a packet. We
found that we had to use a packet size of 256 KB in order to
be able to sufficiently offset this overhead (DCMF operates
with 256 byte packets).

We pipelined the reduction (posted the next Irecv before
computing the operator) to overlap computation and com-
munication in the reduction protocol. We used the smp
version of ESSL DAXPY to apply the reduction operator in
parallel within the node. We enabled interrupts to achieve
overlap, which incurred a noticeable overhead. Figure 11
shows the performance of this first version.

To avoid the overhead of interrupts, we also implemented
a second version. This implementation offloads two (one for
each direction of the ring) non-master OpenMP threads to
apply the operator. Meanwhile, the master thread calls MPI
Waitall immediately. We posted MPI Isends from worker
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threads, while the master was in the MPI Waitall. This
implementation invoked the single-threaded version of ESSL
DAXPY from multiple threads.

Figure 11 compares the performance of these two custom
implementations with MPI Broadcast/Reduce (here MPI
performs as well as any of the underlying DCMF protocols).
We see that our implementations of 1D reduction and multi-
cast (Custom Ring Multicast/Reduce) can achieve a higher
bandwidth than the MPI Reduce for large enough message
sizes. Our reduction performance (Custom Ring Reduce 2)
lags behind the multicast performance only mildly (Custom
Ring Multicast). Since we are using a large packet size, the
computation done along the path is considerable. The per-
formance of these custom made protocols demonstrates that
rectangular reductions can perform nearly or equally as well
as multicasts. However, a powerful enough processor and
good overlap between communication and computation are
necessary conditions.

5. COLLECTIVES AT EXASCALE
The performance of binomial and tree-based collectives

deteriorates with increased partition size due to increased
tree depth and contention. In particular, contention and
branch factor of trees bounds the peak achievable band-
width. The only cost of rectangular collectives that grows
with partition size is the increased depth of spanning trees.
To examine the scaling of collectives, we model performance
of raw collectives and dense linear algebra algorithms on a
potential exascale architecture.

5.1 Exascale architecture
Table 1 details the parameters we use for an exascale ma-

chine. These parameters are derived from a report written
at a recent exascale workshop [20].

We assume the exascale machine is a 3D torus. Our anal-
ysis and conclusions would not change significantly for a
torus of slightly higher dimension. However, rectangular
collectives are not applicable to a switched network. In par-
ticular, the Dragonfly network architecture [14] seems to be
a suitable exascale switched network topology.

5.2 Performance of collectives at exascale
We model the performance of collectives on 1D, 2D, and

3D sub-partitions of the exascale machine. Figure 12 details
the performance of rectangular and binomial multicasts for
these partitions. The peak bandwidth of binomial multicast

Total flop rate (γ) 1018 flop/s

Total memory 32 PB

Node count (P ) 262,144

Node interconnect bandwidth (g) .06 s/GB

Latency overhead (o) 250 ns

Network latency (L) 250 ns

Topology 3D Torus

Size of dimensions 64× 64× 64

Table 1: Predicted architecture characteristics of an
Exaflop/s machine
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Figure 12: Performance of rectangular and binomial
multicasts on a potential exascale architecture

stays the same for each partition since the number of trees
increases proportionally to the number of available links. In
practice, this peak bandwidth would actually deteriorate on
larger partitions due to increased network contention.

Figure 12 also demonstrates that to achieve peak band-
width, large messages are required (1 GB for a 3D partition).
We assume that intra-node concurrency is utilized hierar-
chically. A single process per node performs all inter-node
communication.

5.3 Performance of MM at exascale
We model performance of matrix multiply with rectangu-

lar and binomial collectives at exascale. Our 2D and 2.5D
MM algorithms own a single block of each matrix and always
communicate in messages that contain the whole block. For
the problem we study, this message size should be entirely
bandwidth bound for both 1D rectangular and binomial pro-
tocols. So we model the multicast and reduction in the 2.5D
algorithm using the maximum bandwidth achieved by these
protocols in Figure 12. We assume the shifts (sends) in the
algorithm achieve the single link peak bandwidth.

Figure 13(a) demonstrates the strong scaling of 2.5D MM
with rectangular and binomial collective protocols and 2D
MM with a binomial protocol. We scale from a single plane
of the 3D torus (z = 1) to the entire machine (z = 64). We
use the largest matrix size that fits in memory on a single
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Figure 13: 2.5D MM/LU achieve better efficiency at exascale than their 2D counterparts. The results show
strong scaling from full memory on the first plane (z = 1) of the machine to the full machine (z = 64).

plane (n = 222). We calculate the computational time (tf )
based on the peak flop rate. We express parallel efficiency
in terms of tf and the communication time tc,

efficiency =
tf

tf + tc

Evidently, matrix multiplication is dominated by compu-
tation at this scale. The 2.5D algorithm and rectangular
collectives only make a difference when we are using most of
the machine. This result is consistent with the performance
of MM on BG/P, where significant speed-ups were achieved
only for smaller problem sizes.

5.4 Performance of LU at exascale
LU factorization requires more careful modeling, since the

block-cyclic layout makes the message sizes variable through-
out the algorithm. Further, the 2.5D LU algorithm performs
collectives on messages of different sizes and to different par-
titions depending on the stage of the algorithm. The LU
communication costs are itemized in Appendix B of [18].
We scale these communication costs based on the message
size and partition size they operate on using Eq. 6 (rectan-
gular collectives) and Eq. 9 (binomial collectives).

Our LU exascale study uses the same problem size and
measures the efficiency in the same way as the MM study
(previous section). Figure 13(b) details the scaling from a
plane to the full machine for a matrix size of n = 222. We
model only LU without pivoting. We see that using the
2.5D LU algorithm increases performance significantly even
without rectangular collectives. 2.5D LU with rectangular
collectives achieves very good parallel scalability with com-
parison to the 2D algorithm. When using all available nodes
(z = 64), 2.5D LU with rectangular collectives reduces com-
munication time by 95% and achieves a speed-up of 4.5x
over 2D LU.

6. FUTURE WORK
2.5D algorithms and rectangular collectives reduce inter-

processor communication and achieve speed-ups for large-
scale communication bound problems. However, achieving

a good topology-aware mapping for these algorithms puts
constraints on the job scheduler. The job scheduler must al-
locate contiguous and topology-aware partitions. A simpler
and more aggressive partition scheduler can achieve higher
utilization of the machine. This paper is a case study of
how topology-aware partitions can be effectively utilized. In
order to complete a comparative study, we plan to study con-
tention more closely on BG/P and Cray systems. A better
understanding of contention would also extend our binomial
collective model.

There are also promising directions for new 2.5D algo-
rithms and applications of rectangular collectives. We will
be developing a more general set of algorithms and a frame-
work that performs topology-aware mapping and replica-
tion. 2.5D algorithms should be particularly useful for quan-
tum chemistry applications, which perform tensor contrac-
tions that often reduce to distributed matrix multiplications.
We plan to attempt to study these applications and to in-
corporate 2.5D algorithms where possible.
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