
1

pF3D Simulations of Laser-Plasma Interactions
in National Ignition Facility Experiments

Steven Langer, Abhinav Bhatele, and Charles H. Still

Abstract—The laser-plasma interaction code, pF3D, is used to simulate laser-plasma interactions in National Ignition Facility
experiments. This paper describes the optimizations performed on pF3D to enable scaling to a million or more processes. We begin with
a brief description of NIF experiments. We then describe pF3D with a focus on the features that are needed to get good performance
at scale. The scalability of message passing, disk I/O, and code steering are key issues that impact scalability and are discussed in
detail. Scaling studies on IBM Blue Gene/L, Cray XE6, and IBM Blue Gene/Q systems are used as examples. The paper concludes
with a comparison of the backscattered light measured in NIF experiments and computed in the pF3D simulation.

F

1 INTRODUCTION

The National Ignition Facility (NIF [1]) is a large
DOE/NNSA experimental facility that houses the
world’s most powerful laser. One of the key goals of the
NIF is to compress a target filled with deuterium and
tritium to a temperature and density high enough that
nuclear fusion ignition occurs. Figure 1 shows the laser
beams entering a hohlraum through holes at both ends.
The beams ionize the gas and propagate through the
resulting plasma until they reach the hohlraum wall. The
laser beams deposit their energy and the wall becomes
hot enough that it radiates x-rays. The x-rays fall on the
surface of the capsule at the center of the hohlraum and
cause it to implode.

Fig. 1. The figure shows the laser beams entering the
hohlraum through holes at both ends and propagating
through the plasma until they reach the hohlraum wall.
The hohlraum is a ”can” used to trap and re-radiate the
x-rays emitted by the hot interior walls of the hohlraum.

There are 192 beams in 48 quads (2x2 groups of
beams) that heat the plasma to a few tens of millions

• Steven Langer, Abhinav Bhatele, and Charles H. Still are with the
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA
94551 USA. E-mail: langer1@llnl.gov, bhatele@llnl.gov, still1@llnl.gov.

Manuscript received January 24, 2014; revised May 5, 2014

of degrees. The laser intensity in a NIF hohlraum is
high enough that laser-driven plasma instabilities may
grow to significant levels. In particular, it is possible for
some of the laser light to be backscattered and leave the
hohlraum without heating the plasma. Backscatter levels
in two experiments with new types of targets were high
enough to damage a NIF mirror.

pF3D is a multi-physics code used to simulate in-
teractions between laser beams and the plasma in NIF
experiments. pF3D simulations can be used to help select
experiments with acceptably low levels of backscatter
and to help understand the impact of backscattered light
on hohlraum energetics.

pF3D zones are roughly the size of the laser wave-
length (0.35 µm) while the plasmas of interest are several
mm across. A simulation of the full 7 mm path of a
single quad from the entrance hole to the hohlraum
wall requires 50 billion or more zones. A simulation
of 3 overlapping quads for 2.5 mm requires 600 billion
zones. pF3D simulations at this scale may require over
100 million core-hours to complete.

The scale of these simulations suggests that achieving
good performance is very important. We have made sev-
eral changes to improve CPU performance by increasing
cache utilization, enabling the compiler to use SIMD
instructions, and adding OpenMP directives to the MPI
parallelism which was already present in pF3D. That is
not the topic of this paper.

We focus on the features required for message passing
and parallel I/O to work well with a million processes.
pF3D passes large volumes of messaging data in 2D
FFTs and light advection. Careful control of how MPI
processes are placed on the interconnect topology can
yield much higher messaging rates. pF3D also uses
checkpoint-restart files to recover from system errors.
Saving the state of a pF3D simulation may require up
to 190 TB of disk space. High I/O rates are required
to keep checkpoint times low. We conclude with a brief
discussion of some pF3D results.

2

2 COMPUTATIONAL APPROACH

The laser beam propagation code pF3D [2], [3] is a mas-
sively parallel, three-dimensional (3D) Cartesian code
designed to study laser-plasma interactions (LPI) in ex-
periments such as those being carried out at the National
Ignition Facility1. The code couples an electromagnetic
wave solver in the paraxial approximation (a Helmholtz
equation enveloped around the laser wavenumber) for
the forward propagating laser electric field to a multi-
fluid Eulerian hydrodynamics package (the mesh is
fixed: no adaptive refinement is necessary). The code
also includes models for Stimulated Brillouin backScatter
(SBS), where the forward light scatters off self-generated
ion-acoustic waves, Stimulated Raman backScatter (SRS),
where the forward light scatters off self-generated elec-
tron plasma (Langmuir) waves, electron heat conduc-
tion via linearized nonlocal transport or Spitzer-Harm
transport, and realistic beam models [2]. The numer-
ical schemes use explicit time step finite-difference or
spectral methods with second-order accuracy in space,
and have been shown to accurately model experimental
results in the regimes relevant to Inertial Confinement
Fusion (ICF) experiments [4].

All of the incident and scattered light waves and the
Langmuir wave are handled using the paraxial solution
technique outlined here. The forward propagating light
wave is used as the example where specifics are needed
for clarity. The other waves are handled similarly by
straightforward modifications to the equations detailed
below.

If we take z to be the laser propagation direction (xy-
planes are thus transverse to the propagation direction),
the forward propagating light vector potential is

A = A0e
−iω0t+ik0z +A∗0e

iω0t−ik0z (1)

where ω0(k0) is the laser frequency (wavenumber). The
SBS and SRS vector potentials are AB and AR, and A0

couples to the scattered light and density fluctuations by
the paraxial wave equation,

(−2iω0
∂

∂t
− 2ik0c

2 ∂

∂z
− c2∇2

⊥ + v)A0 =

4πe2

me
(δnfA0 +

1

2
δnaAB +

1

2
δnLAR) (2)

Here, the electron density ne = nf + na + nL is split by
a separation of temporal and spatial scales into a slowly
varying hydrodynamic part nf , and axially rapidly vary-
ing parts responsible for backward Brillouin na and
backward Raman nL. We solve the paraxial equation by
an operator-splitting time-advance technique (method of
fractional steps) to ensure second-order accuracy. The
energy in the light waves is coupled using an action-
conserving scheme.

1. http://lasers.llnl.gov

3 MESSAGE PASSING

The pF3D grid is split up into np×nq×nr domains and
one domain is assigned to each MPI process. Each pro-
cess has a coordinate (p, q, r) within the 3D decomposi-
tion of the grid. A domain is comprised of nxl×nyl×nzl
zones. Message passing is used to pass boundary infor-
mation between the processes. pF3D can spend over 30%
of its execution time exchanging messages, so optimizing
message passing rates is important.

Each wave propagation (involving the ∇2
⊥ term in

Equation 2) is solved using Fourier transforms in xy-
planes. The Fourier transforms require message passing
across the full extent of an xy-plane. These messages are
sent using MPI_Alltoall. There are nq MPI communi-
cators for messages in the x-direction and np MPI com-
municators for messages in the y-direction within each
plane. Propagation of the light requires passing planes
of information in the z-direction using MPI_Isend and
MPI_Recv. The higher-order advection scheme in pF3D
requires 3 xy-planes from the adjacent domains.

pF3D also solves the hydrodynamic equations. Mes-
sage passing in this phase involves exchanges of single
planes across the six faces bounding each domain using
MPI_Isend and MPI_Recv. The light equations are sub-
cycled because light moves much faster than sound
waves. In a typical run, the hydrodynamic equations are
solved once every 50 light sub-cycles. pF3D spends most
of its time working on light propagation and coupling
because hydro steps are so infrequent.

An “xy-slab” is owned by the set of all processes
sharing a common value for “r”, the z-location within
the decomposition. A slab is nx = np×nxl zones wide by
ny = nq×nyl zones high by nzl zones deep. A separate
2D FFT is performed on each of the nzl planes within an
xy-slab. All message passing during a 2D FFT is confined
to a single xy-slab. Message passing performed as part of
light propagation and hydrodynamics couples different
xy-slabs.

Fig. 2. The 2D FFT message passing scheme.

Figure 2 shows a high-level overview of the mes-
sage passing involved in performing a 2D FFT.
MPI_Alltoall calls are used to perform four trans-
poses during an FFT. The first step is to transpose from
the “checkerboard” decomposition to a row decomposi-
tion. Each process then does an ordinary single processor
1D FFT of length nx on its rows. The next step is to
transpose back to the checkerboard (not shown) and
transpose again to a column decomposition. A 1D FFT of
length ny is then performed and there is a final transpose
back to the original checkerboard state. The x-phase of

http://lasers.llnl.gov

3

the FFT uses a total of nq×nr x-communicators and the
y-phase uses a total of np× nr y-communicators.

3.1 Task Mapping on Blue Gene systems

The mapping between MPI processes and the associated
physical domains and their location on the interconnect
can have a large impact on the message passing perfor-
mance on systems with mesh or torus-based intercon-
nects. pF3D must run on very large numbers of proces-
sors, so the first requirement for a good mapping is that
it should be highly scalable. The majority of the message
passing occurs during 2D FFTs, so it is important to
choose a mapping that gives very good performance
for FFT messages. The mapping must also give good
performance for messages passed across faces to adjacent
domains, but this is a somewhat lower priority.

Jobs running on IBM Blue Gene/L (BG/L) and Blue
Gene/P (BG/P) systems are assigned partitions of the
interconnect that are a private 3D torus. Jobs running on
IBM Blue Gene/Q (BG/Q) systems are assigned parti-
tions that are a private 5D torus. There is no contention
between messages from different applications because
the applications run on different tori.

The regular and balanced message passing of pF3D
and the private tori on a Blue Gene system make it
possible to generate mappings from MPI rank to torus
location which deliver highly scalable message passing
rates. The default behavior on Blue Gene systems is to
assign MPI processes to nodes in MPI “rank order”.
Several permutations of this rank order are supported.
On a BG/P using XYZT mode, the x-coordinate on the
interconnect varies fastest and the “thread” coordinate,
t, varies slowest as the MPI rank increases. In ZYXT
mode, the z-coordinate on the interconnect varies fastest
and the thread coordinate varies slowest as the MPI
rank increases. Both of these mappings scatter physical
planes across multiple interconnect planes unless the
dimensions of the decomposition match the dimensions
of the interconnect. These default mappings tend to
produce message passing rates that drop significantly as
the number of nodes increases in a weak scaling study.

Figure 3 shows per-process message passing rates as
a function of the number of processes for weak scaling
studies on the LLNL BG/L, Cielo (Cray XE6 at LANL),
and Sequoia (IBM BG/Q at LLNL). Different test prob-
lems were used on the different clusters so the rates
are not directly comparable. The rates do give a rough
indication of the relative performance of the various
interconnects.

The BG/L runs had a 32 × 32 × N decomposition.
The XYZT mapping delivers good rates for small simu-
lations, but is very slow for 192k processes. The ZYXT
mapping has nearly constant messaging rates from 32k
to 192k processes and is over 2× faster for 192k pro-
cesses. The ZYXT mapping scales well because a 32×32
xy-slab maps onto a 32 × 32 plane of the interconnect.
An x- or y-communicator uses a single row or column

1.0 10.0 100.0 1000.

10.0

100.0

20.

5.

50.

N processes / 1024

R
at

e
(M

B
/s

)

Fig. 3. Aggregate message passing rates from weak
scaling studies on BG/L with the the default XYZT map-
ping (black), BG/L with ZYXT mapping (blue), Cielo
(green), and Sequoia with TEDCBA mapping (magenta)
are shown as a function of the number of processes. The
XYZT mapping (black) works well on BG/L systems for
small process counts but is very slow for 192k processes.
The rate for ZYXT is constant from 32k to 192k processes.
The rate for Cielo drops steadily as the number of pro-
cesses increases. The rate for Sequoia drops rapidly for
256k or more processes. The magenta point for 512k
processes used a custom mappings from MPI rank to
torus location and other modifications to achieve a much
higher bandwidth on Sequoia.

of the interconnect and does not contend with any other
communicator for links. Hop counts remain constant as
xy-slabs are added.

The Sequoia (BG/Q) rates were generated from a prob-
lem with a 32×16×N decomposition and a 20480×4608
zone xy-plane. The run used 2 MPI processes per core.
One of the BG/Q default mappings, TEDCBA, was
used.The letters A through E denote the 5 torus direc-
tions and T is the hardware thread number. The MPI
ranks were mapped to the torus in “rank order”. The
hop counts with an x-, y-, or z-communicator increase
as the number of processes increases. Contention for
links is also likely to increase. The result is that the
message passing rate falls off for 256k or more processes.
This result is consistent with results on BG/L and BG/P
systems - pF3D message passing rates do not scale
well with default rank to torus mappings unless they
happen to line up with the problem decomposition. The
magenta point shows a 97.7 MB/s message rate for
512K processes using custom mappings from MPI rank
to torus and other recent optimizations to the message
passing.

The scalability of the ZYXT mapping is attractive, but

4

it delivers message rates lower than XYZT delivers for
small runs. We set out to develop custom mappings
which would have the scalability of ZYXT but deliver
higher rates. These schemes divide the partition into
equal sized blocks and map an xy-slab to each block.
Blocks for adjacent xy-slabs are placed next to each
other on the torus. Hop counts within blocks do not
change as the number of blocks increases, the distance
to adjacent slabs does not change, and messages passed
during a 2D FFT do not interfere between blocks. The
ZYXT mapping with 32×32 process xy-slabs is a special
case of these scalable mappings. Mappings using N-
dimensional blocks instead of planes perform better than
ZYXT because an FFT can use all three pairs of links on
a BG/L or BG/P and all five pairs on a BG/Q.

The number of possibilities that need to be investi-
gated when searching for a near optimal mapping is
high, so we developed a tool called Rubik which can be
used to quickly generate many scalable mappings [5].
Rubik can take an N-dimensional partition and split it
up into equal sized N-dimensional blocks. Rubik can
“scramble” the processes within a block to improve link
utilization. Rubik mappings have delivered excellent
scalability and good performance on BG/P systems.
Recent investigations have shown that Rubik mappings
can produce a 4X speedup on BG/Q systems.

3.2 Message passing on a Shared Torus

The characteristics of Blue Gene systems have allowed us
to deliver scalable message passing with high message
rates. Cray XE6 systems have an interconnect that is a 3D
torus, so they seem similar to Blue Gene systems at first
glance. In practice, they are significantly different. Some
of the nodes on the torus are used for I/O and some
are in use by other jobs. The shape of the set of nodes
assigned to a simulation is irregular and will change
from one job submission to the next. Message contention
between applications can occur because they all run on
the same torus. Regular mappings from physical domain
to location on the torus are not possible due to the
irregular shape of the node set assigned to a job.

On the XE6, the network is built out of Gemini routers
with two compute nodes connected to each router. The
default scheme on LANL’s Cielo is to allocate in units of
2 Gemini routers (or 2×2×1 nodes). pF3D used a 16×16×
N decomposition, so x-communicators were confined to
a 16-core node and most y-communicators will map to
a 2×2×4 chunk of the torus. Some communicators will
be larger because of nodes that are in use for I/O or by
other jobs. An xy-plane had 10240× 3072 zones.

Figure 3 shows the message passing rate averaged
over all communication phases as a function of the
number of processes for a weak scaling study on Cielo.
The Cielo runs used the default mapping between MPI
rank and location. The message passing performance
drops slowly from 105 MB/s to 55 MB/s as the number
of processes increases from 1k to 128k. The message

 0

 20

 40

 60

 80

 100

 120

 140

Mar 16 Mar 23 Mar 30 Apr 06 Apr 13 Apr 20 Apr 27

A
ve

ra
ge

 m
es

sa
gi

ng
 r

at
e

(M
B/

s)

Mira
Hopper
Intrepid

Fig. 4. Average messaging rates for pF3D batch jobs
running on IBM Blue Gene/Q (Mira - green), a Cray XE6
(Hopper - red), and an IBM Blue Gene/P (Intrepid - blue).
The slowest message rate on Hopper is half the fastest
rate.

passing rate varies from 80 MB/s to 100 MB/s from one
job submission to the next for a 32k simulation that we
completed on Cielo. This variation is nearly half the size
of the variation due to the number of processes in the
scaling study. This suggests that much of the variation
in both cases may be due to the placement of processes
on the Cielo torus.

The message passing rates in the figure include X
messages which are quite fast because they are on node.
The message passing rate for Y messages summed over
all 16 processes is probably about 1 GB/s per node. That
is significantly less than the roughly 5 GB/s rate that MPI
benchmarks achieve.

Hopper is a Cray XE6 at NERSC. It runs more and
smaller jobs than Cielo. The default policy on Hopper
is to allocate in units of nodes, so two jobs may share
a single Gemini router. The default y-communicator
for our test runs is 1 × 2 × 8. Figure 4 shows the
average message passing rate from many batch jobs
for a modest size pF3D test problem on three different
architectures. The variability is very low on both the
BG/P and BG/Q. The variability is large for the runs on
the Cray XE6. In runs that get low messaging rates, pF3D
spends more time passing messages than computing.
Our investigation has shown that the most important
contributor to this variability is contention with other
jobs which are passing messages that traverse links in
use by pF3D [6]. Variability is lower on Cielo where
the allocation unit is larger and there are a few large
jobs instead of many smaller ones. Currently, we do
not have any way to reduce this variability. Changing
process allocation schemes so that applications have
private blocks of the torus would help reduce message
rate variability, but might also reduce node utilization
due to packing difficulties.

5

TABLE 1
Choosing the correct parallel I/O scheme can make a large difference to performance. The GPFS file systems on
Intrepid and Mira require the files in a dump set to be split across many directories to give good performance. The

other systems used Lustre file systems. The file system on Dawn delivers much better performance with custom I/O
groups that are spread uniformly across the I/O nodes. There were 2 MPI processes per core on Mira and Sequoia

and 1 on other systems.

no. of file group priv hst hst rate rst rst rate
system processes system type dirs GB GB/s TB GB/s

Dawn 144K Lustre unif. no 25.4 0.124 15.93 14.66
Dawn 32K Lustre BG no 4.77 0.165 2.08 6.39

Intrepid 16K GPFS BG no 3.43 0.014 1.04 0.59
Intrepid 16K GPFS BG yes 3.43 0.374 1.04 5.56
Intrepid 160K GPFS unif. yes 6.23 0.061 48.00 16.23

Cielo 64K Lustre unif. no 64.00 57.0

Mira 256K GPFS unif. no 29.0 0.259 18.70 26.13

Sequoia 64K Lustre unif. no 73.0 0.241 16.36 6.82
Sequoia 128K Lustre unif. no 49.0 0.263 32.73 10.04
Sequoia 256K Lustre unif. no 56.0 0.302 65.46 19.72
Sequoia 512K Lustre unif. no 79.0 0.323 130.91 40.28
Sequoia 1024K Lustre unif. no 96.0 0.678 191.97 38.83

4 PARALLEL I/O
Good I/O rates on parallel file systems require writing
large data streams to disk in linear order. pF3D uses
yorick’s I/O package [7], [8] which includes buffering
for input/output. We set the buffer size to match the
block size (typically 4 MB) of the parallel file system. The
yorick I/O package naturally writes bytes sequentially
to disk. HDF5 in its default mode writes alternately
between a symbol table and a data section. This results
in flushing partial blocks to disk unless special buffering
code is added. The I/O rates for pF3D are higher than
those achieved by codes using HDF5 in default mode.

pF3D uses a file-per-process strategy for restart dump
files. This approach works well because each restart file
is large enough (at least 100 MB) that it can be written
efficiently. Some file systems do not perform well with
large numbers of files being written simultaneously, so
pF3D has an option to write restart files in multiple
phases so that only a fraction of the processes write at
one time. pF3D’s I/O package has been tested on several
large systems at DOE/NNSA labs. Intrepid (160K cores,
ANL) and Dawn (144K cores, LLNL) are IBM Blue
Gene/P systems, Cielo (139K cores, LANL) is a Cray
XE6, and Mira (768K cores, ANL) and Sequoia (1536K
cores, LLNL) are IBM Blue Gene/Q systems.

History (hst) files contain a few spatially decomposed
slice planes for key variables and are saved at regular
intervals. The dump set size is under 1% of the size
of a restart dump set. If we tried to write a file per
process, it would take longer to create the files than to
write the data. To get better performance, we form I/O
groups. Each process writes its share of the data to an
in-memory file then sends the data as a single message
to its I/O group leader. The group leader writes the data

from its group members to their shared file. This results
in significantly better performance than using a file-per-
process approach.

Blue Gene systems have I/O nodes which are dedi-
cated to a specific set of compute nodes. When writing
hst dumps it is important to make sure that the group
leaders are spread uniformly across the I/O nodes. pF3D
has an option to compute I/O groups at run time based
on each process’s location relative to the I/O nodes.

The GPFS file system uses each I/O server as a
metadata controller. The server must obtain a lock on
a directory before creating a file. Access to the lock
becomes a serious bottleneck if many files are written
to the same directory. pF3D has an option to spread the
files in a given dump set across many sub-directories.
Lustre file systems have a centralized metadata server
and performance tends to be good with many files in a
single directory.

Table 1 shows the time spent by pF3D writing his-
tory (“hst”) and restart (“rst”) dumps for several runs.
Blue Gene/P specific dumps (group type “BG”) improve
performance on both Lustre (0.124 → 0.165) and GPFS
(0.061 → 0.374). Directory per process dumps (“priv
dirs”) greatly improve performance on Intrepid (0.014→
0.374). The restart write rates of 16 GB/s on Intrepid’s
GPFS file system, 15 GB/s on Dawn’s Lustre file system
and 57 GB/s on Cielo’s Lustre file system are close to the
IOR benchmark rate for all 3 file systems. pF3D’s rate on
Intrepid was the highest of any science code running on
that system.

The I/O package is still being tuned on BG/Q systems.
The main intrinsic bottleneck for BG/Q file systems
(either Lustre or GPFS) is the throughput of the I/O
nodes. The aggregate restart write rate increases nearly

6

linearly with the number of processes from 64k to 512k
processes. The aggregate rate is the same for 512k and
1024k processes. This could be due to saturation of the
file system, but we suspect it is due to a few remaining
yorick functions which run in time linear in the number
of processes.

5 CODE STEERING

pF3D has been implemented as a set of compiled C rou-
tines connected to the yorick interpreter [7], [8]. Yorick
handles I/O, graphics, input decks, and code steering
during a run. Yorick has a package called mpy that
permits interpreted functions to pass messages between
tasks using MPI. mpy is used to coordinate I/O and to
implement the time step loop. Using yorick’s interpreted
language for problem setup and I/O greatly enhances
our productivity and gives us a lot of flexibility. Some
effort is required to keep the time spent in yorick low
when using a million cores.

Each pF3D process reads 20 yorick dot-i files during
startup. These are similar to the dot-py files read by
a Python-based application. When using the original
version of mpy, the file system sees a large number of
independent requests to read the same set of 20 files.
File systems do not handle this sort of I/O activity
well, so startup times for pF3D became long when using
more than 100,000 processes. The second version of mpy
(mpy2) adds an include function which is a collective
operation. The MPI rank zero process reads the input
file and broadcasts it to all other processes. The load on
the file system is no higher than for a single process run
and startup is quick.

The first version of mpy (mpy1) starts parallel func-
tions by having rank zero contact each process directly.
mpy2 starts parallel functions using a broadcast tree.
There are many calls to functions in the time step loop.
Switching to mpy2 reduced the time spent in mpy per
time step from 1146 to 308 seconds for a 64k process
BG/Q test. This run spent 2183 seconds in physics
routines and 640 seconds passing messages, so the time
spent in yorick was excessive before these changes were
made. The mpy2 time grows to 1442 seconds for 1M
processes, which is higher than we would like. There
are still a few places where all processes communicate
directly with rank zero. Work is underway on additions
to mpy2 which will allow those functions to switch to
broadcast tree based methods. At that point, the time
spent in mpy should remain well under 10% of the total
time for runs with 2 million or more processes.

6 NIF SIMULATIONS

Figure 5 shows a volume visualization of the light due
to Stimulated Raman Scatter (SRS) light in a pF3D sim-
ulation of three interacting quads in a NIF experiment.
The SRS comes in bursts a few picoseconds (ps) long
- a time shorter than the detectors can resolve. At this
point in the burst, SRS from individual quads can be

Fig. 5. The SRS comes in bursts. At this time, SRS is
generated independently in each quad. Later in the burst,
SRS is generated in the region where the quads overlap.

 0 200 400
 0

 200

 400

Fig. 6. The NBI detector measured the SRS in a NIF
experiment performed on Dec. 4, 2009. This data is from
a 30 degree quad at a time of 19.5 ns. The rectangles
show the location of the 4 lenses. The other lines show the
border of the NBI scatter plate. The SRS covers an area
much larger than the lenses. (The image was normalized
to use the full color table.)

seen. Later in a burst, SRS comes from a smooth band
including all three quads. Understanding “cooperative
backscatter” between multiple quads is a key goal of
these simulations.

The Full Aperture Back Scatter (FABS) diagnostic mea-
sures the light scattered back through the lenses and was
the first backscatter diagnostic on NIF. pF3D simulated
SRS from a single quad in a NIF Early Light experiment
in 2003 and showed that only 25-35% would pass back
through the FABS. This provided an incentive to quickly
deploy the Near Backscatter Imager (NBI) [9], a detector
that measures the SRS surrounding the lenses.

Figure 6 shows the measured SRS intensity pattern at
the NBI. The SRS is spread across an area significantly

7

larger than the lenses. A smooth fit to the data fills in the
parts not covered by the scatter plate. The NBI cannot
resolve SRS bursts as short as those seen in the pF3D
simulations.

Fig. 7. The SRS simulated by pF3D has bursts with a
period of a few ps. This figure shows the SRS pattern at
the NBI near the peak of a burst (17.4 ps). The rectangles
show the location of the lenses. The NBI cannot resolve
bursts as short as those seen in the pF3D simulations.
(The image is normalized to use the full color table.)

Figure 7 shows the simulated SRS intensity pattern at
the target chamber wall near the peak of an SRS burst.
A time-averaged image is similar to this image. In both
the NBI data (Figure 6) and the simulations, the brightest
spot is below and to the left of the lower left lens. The
lens boundary can be used to determine the relative scale
of Figures 6 and 7.

The simulated backscatter fraction is 23.7% at 17.39 ps,
14.4% at 18.11 ps, 8.0% at 18.83 ps, and 4.4% at 19.54 ps.
Figure 8 shows the simulated SRS intensity pattern at the
target chamber wall near the end of an SRS burst. The
brightest spots are now at the location of the upper right
lens, close to the second brightest spot in the experiment.
The location of the brightest spot in the images moves
throughout the burst. Volume visualizations show that
the location in the plasma where the SRS is generated
also moves over the course of a burst. Future work will
look at this complex temporal and spatial variability in
more detail.

ACKNOWLEDGMENTS

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344
(LLNL-JRNL-648736). The authors would like to thank
John Moody of LLNL for the NBI data.

Fig. 8. This figure shows the SRS pattern from pF3D at
the target chamber wall near the end of a burst (18.8 ps).
The location of the brightest spots has shifted significantly
towards the upper right relative to the peak of the burst.
(The image is normalized to use the full color table.)

This research used resources of the Argonne Lead-
ership Computing Facility at Argonne National Labo-
ratory, which is supported by the Office of Science of
the U.S. Department of Energy under contract DE-AC02-
06CH11357.

BIOGRAPHIES

Steven H. Langer is a physicist at Lawrence Livermore
National Laboratory. His research interests include the
physics of inertial confinement fusion, high performance
computing, and adapting physics simulation codes to
new architectures. Langer has a PhD in applied physics
from Stanford University. He is a member of the AAS,
APS division of plasma physics, and ACM. He can be
reached at langer1@llnl.gov.

Abhinav Bhatele is a computer scientist in the Center
for Applied Scientific Computing at Lawrence Livermore
National Laboratory. His research interests include per-
formance optimizations through analysis, visualization
and tuning and developing algorithms for high-end
parallel systems. Bhatele has a PhD in computer science
from the University of Illinois at Urbana-Champaign. He
is a member of the ACM and IEEE. He can be reached
at bhatele@llnl.gov.

Charles H. Still is an ASC Code Group Leader at
Lawrence Livermore National Laboratory. His research
interests include the impact of advanced architectures on
hydrodynamics and energy transport methods, perfor-
mance metrics for advanced computer architectures, and
laser-plasma interactions. Still has a PhD in mathematics
from the University of South Carolina. He is a member of

8

the APS divisions of plasma physics and computational
physics. He can be reached at still1@llnl.gov.

REFERENCES
[1] E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-

Ayat. The national ignition facility: Ushering in a new age for high
energy density science. Phys. Plasmas, 16(041006):1–13, April 2009.

[2] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter,
and E. A. Williams. Filamentation and forward brillouin scatter
of entire smoothed and aberrated laser beams. Physics of Plasmas,
7(5):2023–2032, 2000.

[3] R. L. Berger, B. F. Lasinski, A. B. Langdon, T. B. Kaiser, B. B. Afeyan,
B. I. Cohen, C. H. Still, and E. A. Williams. Influence of spatial and
temporal laser beam smoothing on stimulated brillouin scattering
in filamentary laser light. Phys. Rev. Lett., 75(6):1078–1081, Aug
1995.

[4] D. H. Froula, L. Divol, R. A. London, P. Michel, R. L. Berger, N. B.
Meezan, P. Neumayer, J. S. Ross, R. Wallace, and S. H. Glenzer.
Pushing the limits of plasma length in inertial-fusion laser-plasma
interaction experiments. Phys. Rev. Lett., 100:015002, Jan 2008.

[5] Abhinav Bhatele, Todd Gamblin, Steven H. Langer, Peer-Timo
Bremer, Erik W. Draeger, Bernd Hamann, et al. Mapping applica-
tions with collectives over sub-communicators on torus networks.
In Proceedings of the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’12.
IEEE Computer Society, November 2012.

[6] Abhinav Bhatele, Kathryn Mohror, Steven H. Langer, and Kather-
ine E. Isaacs. There goes the neighborhood: performance degrada-
tion due to nearby jobs. In ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’13. IEEE Computer Society, November 2013. LLNL-CONF-635776.

[7] D. H. Munro. Using the yorick interpreted language. Computers in
Physics, 9(6):609, 1995.

[8] D. H. Munro. The yorick home page. http://yorick.github.com.
[9] J.D. Moody, P. Datte, K. Krauter, E. Bond, P. A. Michel, S. H.

Glenzer, L. Divol, C. Niemann, L. Suter, N. Meezan, B. J. Mac-
Gowan, R. Hibbard, R. London, J. Kilkenny, R. Wallace, J. L. Kline,
K. Knittel, G. Frieders, B. Golick, G. Ross, K. Widmann, J. Jackson,
S. Vernon, and T. Clancy. Backscatter measurements for nif ignition
targets. Rev. Sci. Instrum., 81:10D921, Oct 2010.

http://yorick.github.com

	Introduction
	Computational Approach
	Message Passing
	Task Mapping on Blue Gene systems
	Message passing on a Shared Torus

	Parallel I/O
	Code Steering
	NIF Simulations
	References

