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Abstract

The increase in flop/s capacity and memory bandwidth on-node at a higher rate than the inter-node
link bandwidth is making many large-scale parallel applications communication-bound, meaning
their performance is now limited by available network resources. The higher cost of moving data
on the network necessitates developing techniques to optimize data movement on the network.
Task mapping refers to the placement of communicating tasks on interconnected nodes with the
goal of optimizing data movement between them. This project focuses on developing tools and
techniques for mapping application tasks on complex supercomputer network topologies to improve
the performance of high performance computing (HPC) simulations.

In order to develop algorithms for task mapping, we first need to gain a better understanding of
congestion on supercomputer networks. We present tools we have developed to quantify network
congestion empirically on popular networks. We use these tools to measure network congestion
during application execution and then use the gathered network congestion data to build machine
learning models that can provide insights into the root causes of network congestion. Next, we dis-
cuss RAHTM and Chizu, tools we have developed to map applications tasks to network topologies.
We present results demonstrating significant performance improvements by using task mapping on
production HPC applications.

In the course of this project, we identified additional objectives that could assist in completing the
main goals of the project. The first is studying inter-job congestion on supercomputer systems in
which the network is shared by multiple users and their jobs. The second is developing a network
simulator to perform what-if analyses impossible to do on a production system and to study network
congestion and task mapping on future supercomputer systems. We present Damselfly and TraceR,
tools we have developed for simulating application execution on supercomputer networks.

1 Background and Research Objectives

As processors have become faster over the years, the cost of a prototypical “computing” operation,
such as a floating point addition, has rapidly grown smaller. On the other hand, the cost of commu-
nicating data has become proportionately higher. For example, even on a high-end supercomputer,
it takes less than a quarter nanosecond (amortized, in a pipelined unit) for a floating point addition,
50 ns to access DRAM memory, and thousands of nanoseconds to receive data from another node.
If one considers energy, the comparison is also stark: currently, a floating point operation costs
30-45 picojoules (pJ), an off-chip 64-bit memory access costs 128 pJ, and remote data access over
the network costs between 128 and 576 pJ [Kogge et al. (2008)]. In order to optimize communi-
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cation and overall application performance and reduce energy costs, it is imperative to maximize
data locality and minimize data movement, both on-node and off-node.

The main goal of this LDRD project is to minimize communication costs through interconnect
topology aware task mapping of HPC applications. Task mapping involves understanding the com-
munication behavior of the code and embedding its communication within the network topology,
optimizing for performance, power (i.e., data motion), or other objectives. Several application
codes from LLNL have demonstrated significant performance improvements by mapping tasks in-
telligently to the underlying physical network. The Gordon Bell award winning submissions for
both Qbox [Gygi et al. (2006)] and ddcMD [Streitz et al. (2005)] used task mapping to improve
performance by more than 60% and 35% respectively, on the Blue Gene/L platform. For two WCI
codes, Kull and ALE3D, developers have demonstrated performance improvements of 62% and
27%, respectively, simply by changing the assignment of domains to MPI ranks, which changes the
message routing on the physical network.

The mappings mentioned above were created for specific applications/packages targeting a specific
architecture. Creating these mappings is time consuming and difficult, because the general problem
is NP-hard [Shahid H. Bokhari (1981)]. Complex topologies such as the five-dimensional (5D) torus
on the Blue Gene/Q Sequoia system at LLNL make this even harder – Qbox, ddcMD and other
application developers have expressed the difficulty of mapping to five dimensions and a need for
tools/frameworks that can do this. The work described here has focused on creating these mappings
for application developers and end users automatically.

The research objectives of this work are: (a) develop tools to analyze the communication behavior
of parallel applications and the resulting network congestion, (b) investigate techniques and develop
models to understand network congestion on supercomputers, and (c) design, implement and evalu-
ate algorithms for mapping tasks in a parallel application to the underlying network topology. The
research objectives were met, as described in Sections 2.1, 2.2 and 2.3. We also identified additional
objectives in the course of the project: (d) study inter-job congestion on supercomputer systems in
which the network is shared by multiple users and their jobs, and (e) develop a network simulator to
perform what-if analyses impossible to do on a production system and to study network congestion
and task mapping on future supercomputer systems. The outcomes of these additional goals are
described in Sections 2.4 and 2.5 respectively.

2 Scientific Approach and Accomplishments

In this section, we describe the experimental and theoretical methods developed to achieve the
objectives of the project and the results that show the successful completion of these objectives.

2.1 Measuring Network Congestion

In order to measure congestion empirically on IBM and Cray supercomputer networks, we developed
libraries that can record network hardware performance counters on these platforms. These counters
can record information about the network traffic on the system. The libraries developed for the
IBM Blue Gene/Q system and the Cray XC30 (Cascade) system are described below:

BGQNCL: The Blue Gene/Q Network Performance Counters Monitoring Library (BGQNCL)
monitors and records network counters during application execution. BGQNCL accesses the Uni-
versal Performance Counter (UPC) hardware counters through the Blue Gene/Q Hardware Perfor-
mance Monitoring (HPM) API. The UPC hardware programs and counts performance events from
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Figure 1: The left figure compares the predicted versus observed execution time of pF3D on 16,384 cores of
Blue Gene/Q for different task mappings. The predictions are made using a machine learning model based
on various input features derived from network hardware performance counters, and lead to a highly accurate
ordering of mappings. The right figure compares the ranks or importances of different features (hardware
counters or metrics) in the model for eight different datasets. The three most important features are: receive
buffers on intermediate nodes, network links and injection FIFOs in decreasing order of importance. Note
that the marker colors for each row are scaled independently (maroon/red is high and yellow is low).

multiple hardware units on a Blue Gene/Q node. BGQNCL is based on the PMPI interface and
uses HPM to control the network unit of the UPC hardware.

AriesNCL: The Aries Network Performance Counters Monitoring Library (AriesNCL) monitors
and records network router tile performance counters on the Aries router of the Cray XC30 (Cas-
cade) platform. AriesNCL accesses the network router tile hardware counters through the Perfor-
mance API (PAPI) [Mucci et al. (1999)].

Both BGQNCL and AriesNCL provide an easy-to-use interface to monitor and record network
performance counters for an application run. Counters can be recorded for the entire execution or
for specific regions or phases marked with MPI Pcontrol calls. These libraries were used extensively
in this research and are being released under the GNU Lesser General Public License (LGPL).

2.2 Identifying Culprits Behind Congestion

The ability to predict the performance of communication-heavy parallel applications without actual
execution can be very useful. This requires understanding which network hardware components
affect communication and in turn, performance on different interconnection architectures. A better
understanding of the network behavior and congestion can help in performance tuning through the
development of congestion-avoiding and congestion-minimizing algorithms.

Jain et al. (2013) developed a machine learning approach to understand network congestion on
supercomputer networks. We used regression analysis on communication data and execution time
to find correlations between the two and to learn models for predicting the execution time of
new samples. Using our methodology, we obtained prediction scores close to 1.0 for individual
applications. We were also able to reasonably predict the execution time on higher node counts using
training data for smaller node counts. We also obtained reasonable ranking predictions of execution
times for different task mappings of new applications using datasets based on communication kernels
only. Figure 1 (left plot) shows the predicted and observed execution times of a laser-plasma
interaction code, pF3D [Langer et al. (2011)], used in National Ignition Facility (NIF) experiments.

Using a quantile analysis technique to identify relevant feature subsets, Bhatele et al. (2015) were
also able to extract the relative importance of different features and that of the corresponding

3



Task Mapping on Complex Computer Network Topologies for Improved Performance 13-ERD-055

0

40

80

120

160

128 256 512 1024 2048 4096

T
im

e 
(s

)

Number of nodes

pF3D: Time spent in MPI routines

Recv
Barrier

Send
Alltoall

0

40

80

120

160

128 256 512 1024 2048 4096

T
im

e 
(s

)

Number of nodes

pF3D: Time spent in MPI routines (Best mapping)

Recv
Barrier

Send
Alltoall

44% 45% 52% 61% 70%
64%

0

40

80

120

160

128 256 512 1024 2048 4096

T
im

e 
(s

)

Number of nodes

pF3D: Time spent in MPI routines (Using Isends)

Wait
Recv

Barrier
Alltoall

47% 53% 63% 77% 88% 90%

Figure 2: A scaling comparison of the time spent in different MPI routines in pF3D running on Blue
Gene/Q using the default mapping (left), using the best mapping discovered (center) and using the best
mapping with the Isend optimization (right). We observe performance improvements ranging from 44% to
90% depending on the node count.

hardware components in predicting execution time (Figure 1, right). This helped us to identify the
primary root causes or culprits behind network congestion, which is a difficult challenge. We were
able to identify the hardware components that are primarily responsible for impacting and hence,
predicting the execution time. These are – receive buffers on intermediate nodes, network links and
injection FIFOs in decreasing order of importance. We also observed that network hot-spots and
dilation or the number of hops a message travels are lesser indicators of network congestion. This
knowledge gives us a real insight into network congestion on torus interconnects and can be very
useful to network designers and application developers.

2.3 Developing and Evaluating Task Mappings

Creating task mappings is time consuming and difficult. Hence, we have developed tools and
frameworks described below that create these mappings for application developers automatically.

RAHTM: Abdel-Gawad et al. (2014) designed and implemented a routing algorithm aware, hi-
erarchical task mapping (RAHTM) technique that scales well to 16K tasks. RAHTM uses linear
programming and overcomes the computational complexity of routing-aware mapping by using a
mix of near-optimal techniques and heuristics. RAHTM’s bottom-up approach solves leaf-level
problems using near-optimal linear programming techniques and a heuristic (greedy) combining
technique to merge leaf-level mapping solutions into a larger whole. RAHTM is an offline mapping
tool and its mapping can be used repeatedly in subsequent runs of the application. As such, the
cost to derive the mapping is not on the critical execution path and does not add to run-time
overheads. RAHTM achieves a 20% reduction in communication time which translates to a 9%
reduction in overall execution time for a mix of three communication-heavy benchmarks.

Chizu: Chizu is a framework for mapping application processes or tasks to physical processors
or nodes in order to optimize communication performance. It takes the communication graph of
an HPC application and the interconnection topology of a supercomputer as input. The output is
a new MPI rank to processor mapping, which can be used when launching the HPC application
within a job partition. Chizu exploits graph partitioning software available in the public domain
such as METIS [George Karypis and Vipin Kumar (1998)], Scotch [Chevalier et al. (2006)], PaToH
and Zoltan [Devine et al. (2005)]. It uses a recursive k-way bi-partitioning algorithm that performs
recursive partitioning and mapping. The aim is to optimize different communication metrics such
as the total number of hops that messages travel, or bisection bandwidth or network interface card
(NIC) congestion. Chizu is under review and being released under the GNU LGPL.

Chizu and a previously developed mapping tool, Rubik [Bhatele et al. (2012)] have been used to
map several LLNL applications and proxy applications including ALE3D, pF3D, Qbox, Kripke and
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Figure 3: The two screenshots on the left depict the placement of pF3D (blue) and conflicting jobs on
Hopper for two separate short runs. The April 11 job (left) yielded a messaging rate nearly 25% below that
of the April 16 job (center). The two jobs had the same node placement of pF3D but the slower April 11 job
was surrounded by nodes of several other jobs, including a large communication-heavy job, MILC (shown in
green). The right plot shows the distributions of messaging rates observed for pF3D runs coinciding with a
MILC job (red, patterned) and runs with no coinciding MILC job (green, solid).

AMG. Bhatele et al. (2014) used Rubik to map pF3D and MILC and demonstrated significant
performance improvements using task mapping (Figure 2). In the process, we also discovered a
long standing performance bug in pF3D which has improved the overall scaling and performance
of the code by two to four times.

2.4 Studying Inter-job Congestion and Interference

Our goal in this work was to investigate the sources of performance variability in parallel appli-
cations running on HPC platforms in which the network is shared between multiple jobs running
simultaneously on the system. We used pF3D, a highly scalable, communication-heavy, parallel
application that is well-suited for such a study because of its inherent computational and communi-
cation load balance. We performed our experiments on three different parallel architectures: IBM
Blue Gene/P (Dawn and Intrepid), IBM Blue Gene/Q (Mira), and Cray XE6 (Cielo and Hopper).

When comparing variability on the different architectures, we found that there is hardly any per-
formance variability on the Blue Gene systems, and that there is a significant variability on the
Cray systems. We discovered differences between the XE6 machines due to their node allocation
policies and usage models. Since Hopper is designed to serve small to medium sized jobs, the nodes
allocated to a job tend to be more fragmented than on Cielo, which mostly serves large jobs. This
fragmentation on Hopper resulted in higher variability for pF3D, where the communication time
varied from 36% faster to 69% slower when compared to the average. We focused our efforts in this
paper on investigating the source of the variability on Hopper.

Bhatele et al. (2013) investigated the impact of OS noise, shape of the allocated partition, and
interference from other jobs on Hopper and concluded that the primary reason for higher variability
is contention for shared network resources from other jobs. From queue logs collected during the
pF3D runs, we plotted the position of the concurrent jobs relative to pF3D and examined the
performance. We found multiple cases where there was strong evidence that the differences in
performance are due to communication activities of competing jobs, with message passing rates of
pF3D up to 27.8% slower when surrounded by a communication-heavy application (Figure 3). This
work was featured on hpcwire.com.

2.5 Network Simulators and Performance Prediction

Performance prediction tools are important for studying the behavior of HPC applications on large
supercomputer systems that are not deployed yet or have access restrictions. They are needed to
understand the messaging behavior of parallel applications in order to prepare them for efficient
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Figure 4: Comparison of the sequential execution time of TraceR with that of BigSim and SST for 3D tori
of different sizes (left). Weak and strong scaling performance of TraceR simulating 3D tori of different sizes
on different core counts (right).

execution on future systems. We have developed two methods for simulating the communication of
HPC applications on supercomputer networks: functional modeling and trace-driven simulation.

Damselfly: Damselfly is a model-based network simulator for modeling traffic and congestion
on the dragonfly network designed by Cray [Faanes et al. (2012)]. Given a router connectivity
graph and an application communication pattern, the network model in Damselfly performs an
iterative solve to redistribute traffic from congested to less loaded links. Jain et al. (2014) have used
Damselfly to explore the effects of job placement, parallel workloads and network configurations on
network health and congestion. Since Damselfly models steady state network traffic for aggregated
communication graphs as opposed to communication traces with time stamps, it does not model
and/or predict execution time. Damselfly and TraceR are being released under the GNU LGPL.

TraceR: Predicting execution time requires a detailed cycle-accurate or flit or packet-level sim-
ulation of the network. TraceR is designed as an application on top of the CODES simulation
framework [Cope et al. (2011)]. It uses traces generated by BigSim’s emulation framework [Zheng
et al. (2005)] to simulate an application’s communication behavior by leveraging the network API
exposed by CODES. Under the hood, CODES uses the Rensselaer Optimistic Simulation System
(ROSS) as the PDES engine to drive the simulation [Bauer Jr. et al. (2009)]. TraceR can output
network traffic as well as predicted execution time.

To the best of our knowledge, TraceR is the first network simulator that enables simulations of mul-
tiple jobs with support for per job, user-defined job placement and task mapping. Acun et al. (2015)
have shown that TraceR performs significantly better than other state-of-the-art simulators such as
SST [Underwood et al. (2007)] and BigSim. Figure 4 shows the sequential and parallel performance
of TraceR when simulating a 3D torus network. TraceR also supports other supercomputer network
topologies such as dragonfly and fat-tree.

We have been using Damselfly and TraceR to perform various what-if studies and performance
prediction. Figure 5 shows a representative result from our studies in which the effect of executing
multiple jobs simultaneously on network traffic is compared with that of running a job alone.

3 Impact on Mission

Using tools developed for task mapping, we have been able to improve the performance of pF3D,
MILC and Qbox significantly. Plots in Figure 2 show the time spent by pF3D in different MPI
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Figure 5: Visualizations of the network traffic on a dragonfly system for two different job work-
loads/scenarios (traffic output obtained using Damselfly). Comparing with a scenario in which Job 0 (4D
Stencil) runs alone (left), when it is run in a workload along side other jobs (right), the number of links with
traffic above a certain threshold decreases and overall maximum traffic on inter-group links increases (231
MB as opposed to 191 MB when run alone). In the parallel workload run, Job 0’s traffic is confined to fewer
inter-group links in order to share bandwidth with other jobs.

routines for the default mapping, the best mappings we found, and the best mappings combined with
the Isend optimization. The labels in the center and right plot denote the percentage reduction
in communication time compared to the default ABCDET mapping. Tiled mappings improve
the communication performance of pF3D on Blue Gene/Q by 2.8× on 4096 nodes and the Isend
modification improves it further by 3.9×. Task mappings developed for Qbox were used for scaling
it on Sequoia and generating results for a Gordon Bell submission.

In general, the prediction techniques we have developed are widely applicable to a variety of scenar-
ios, such as, (a) creating offline prediction models that can be used for low overhead tuning decisions
to find the best configuration parameters, (b) predicting the execution time in new setups, e.g., on a
different number of nodes, or different input datasets, or even for an unknown code, (c) identifying
the root causes of network congestion on different architectures, and (d) generating task mappings
for good performance.

Procurement, installation and operation of supercomputers at leadership computing facilities is ex-
pensive in terms of time and money. It is important to understand and evaluate various factors that
can impact overall system utilization and performance. In this project, we focused on analyzing
network congestion as communication is a common performance bottleneck. Such analyses coupled
with the monetary costs of configuration changes can inform future supercomputer purchases and
potential upgrades by the Department of Energy (DOE) and LLNL/Livermore Computing. Our
performance prediction and visualization tools can be used by machine architects, system admin-
istrators and end users to understand application, network and/or overall system performance.

As part of this LDRD, we have released six software related to congestion analysis, task mapping
and network simulation. We have made a successful postdoc offer to a graduate student (Nikhil
Jain) who worked on this LDRD as part of the subcontract to the University of Illinois. We are also
in negotiations with the University of Illinois/National Center for Supercomputing Applications to
set up a CRADA via NSF’s Petascale Application Improvement Discovery (PAID) program. The
subcontract to LLNL has already been approved by NSF and is pending approval by the University
of Illinois, LLNL and DOE.
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4 Conclusion

In summary, research conducted in this project has led to: (a) a better understanding of network
congestion on torus networks, (b) development of a methodology for highly accurate performance
prediction using machine learning models, (c) design of tools for task mapping and performance
improvements of production scientific applications, and (d) development of network simulators for
performing what-if analyses.

Scalable network simulators such as TraceR are a powerful tool to study HPC applications and
architectures. In the future, we plan to use TraceR to compare different network topologies and
understand deployment costs versus performance tradeoffs. We will also use network simulations
to identify performance bottlenecks in production applications on supercomputing systems to be
deployed in the near future.

We plan to extend our investigations on inter-job congestion by using a light-weight monitoring
framework to collect system-wide performance data and archive it for data mining experiments.
We are setting up collaborations with researchers at the University of Illinois/National Center for
Supercomputing Applications and the University of Arizona in this area.
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