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Abstract

Three codes were tested at LLNL as part of a Tri-Lab effort to make detailed assessments of sev-
eral proxy applications on various advanced architectures, with the eventual goal of extending these
assessments to codes of programmatic interest running more realistic simulations. Teams from San-
dia and Los Alamos tested proxy apps of their own. The focus in this report is on the LLNL codes
UMT2013, MCB, and AMG2013. We present weak and strong MPI scaling results and studies of
OpenMP efficiency on a large BG/Q system at LLNL, with comparison against similar tests on an
Intel Sandy Bridge TLCC2 system. The hardware counters on BG/Q provide detailed information
on many aspects of on-node performance, while information from the mpiP tool gives insight into
the reasons for the differing scaling behavior on these two different architectures. Results from three
more speculative tests are also included: one that exploits NVRAM as extended memory, one that
studies performance under a power bound, and one that illustrates the effects of changing the torus
network mapping on BG/Q.

Introduction

Modern computer architectures pose major challenges for simulation code development, not only
requiring large-scale parallel scalability but also increasing attention to on-node parallel efficiency
and memory management. Efforts are under way at many sites to better understand how codes of
programmatic interest behave on advanced hardware both in order to make the implementations of
key algorithms more efficient and to guide procurements of new machines. A team at LLNL has
studied three proxy applications that include simplified implementations of important algorithms:
UMT2013 for deterministic radiation transport on an unstructured mesh; MCB for Monte Carlo
radiation transport; and AMG2013 for algebraic multigrid [1].

The LLNL effort was part of Tri-Lab ASC L2 Milestone #4875, “Evaluate Application
Performance on Advanced Architectures”. Presentations were given by teams from Sandia, LLNL,
and LANL at Sandia in August 2014, after which the milestone was considered completed. Each
lab was expected to report on two proxy applications. Though we did tests on three proxy apps, we
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decided that the most conclusive results were for UMT and MCB and so focused on those for the
milestone. This report expands on the LLNL experiments and conclusions and includes additional
MCB tests and a section on AMG that were not part of the original presentation.

Most of the results presented here are for the IBM BG/Q architecture. The runs were done on
Vulcan, part of the LLNL Sequoia procurement. The hardware counters on BG/Q provide detailed
information on memory bandwidth, cache utilization, instruction mix, and other aspects of on-node
performance [2]. For comparison, runs were also done on the Cab machine, a Linux cluster using
8-core Intel Xeon E5-2670 Sandy Bridge processors with InfiniBand QDR interconnect. Cab is
part of the TLCC2 procurement. The mpiP [3] and memP [4] tools were used on both machines to
give detailed information about MPI efficiency and heap memory use. One additional test used
Catalyst, an Ivy Bridge based machine with unusually large memory (128GB per node) and an
additional 800GB of SSD NVRAM per node. Software support for using the SSD memory without
major code modifications has recently become available, but test results using the SSD memory
show disappointing performance.

We will start with the basic MPI scaling, thread performance, and hardware counter results for
UMT, then will move on to show related data for MCB and AMG. The tests for the three codes are
similar but not identical, both because of differences among these three applications and because
the different people running the tests explored different performance characteristics and expressed
their results in somewhat different ways. (For the most part Howell ran the UMT tests, Gunney
focused on MCB, and Bhatele did AMG, though there were some exceptions to this.) Some more
unusual and speculative tests will appear after the main sections.

An additional aim of these tests was to better understand the performance tools themselves and
issues encountered during the assessment process. None of the tools were perfect. We will mention
some difficulties with the tools in the context of the individual tests, and will summarize some
lessons learned in a short section at the end of the report.

UMT2013 Weak Scaling

A weak scaling test measures parallel performance in a series of runs where the size of the problem
increases in proportion to the number of processors used, so the problem size per processor is held
fixed. On Vulcan UMT2013 showed fairly good weak scaling to at least 131072 cores. At the
largest scale the speed per iteration was 67% of that at small scale. (There was some additional
slowdown due to the fact that the code required more iterations to converge at large scale. There
were also issues with the scaling of the measurement tools themselves.) Results on Cab were
similar but were only run out to 4096 cores. The parallel efficiency for the largest runs on Cab was
comparable to that of the largest runs on Vulcan, though the latter used 32 times as many cores
(and 128 times as many threads)!

In UMT2013 large-scale MPI parallelism is over 3D spatial domains. This discrete ordinates (Sn)
code for multigroup deterministic transport [5, 6] also allows user control over the number of
energy groups and the number of angles used in the discretization, and OpenMP threading is used
over the angles. (The angles represent the directions in which photons are moving. In any spatial
zone there can be radiation moving in many different directions with different intensities, and the
set of angles can be considered a discretization of these directions over the 2D surface of the unit
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sphere. Combined with the 1D spectrum of photon energies and the 3D spatial discretization the
complete system is then 6 dimensional, plus one more for time. Since intensities must be stored for
every combination of zone, angle, and energy, it is no surprise that memory management is a major
consideration for this code.)

On Vulcan we did two series of weak scaling tests, one using 10×10×10 and one using
12×12×12 spatial grids per MPI task. Both problems used 16 energy groups and 256 angles. The
runs were done with 8 MPI tasks per BG/Q node and 8 threads per task. Vulcan has 16 cores per
node with 4 hardware threads per core, so this configuration made full use of the hardware threads.
On Cab we ran the series with 12×12×12 grids, using 16 MPI tasks per node and 1 thread per
task. Cab has 16 cores per node and no hardware threads. The reason for running half as many
MPI tasks per node on Vulcan was that this machine has only 16GB of memory on each node,
compared to 32GB for Cab; running 16 tasks per node on Vulcan would require smaller grids per
task. The runs on Vulcan used roughly 7.5GB per node for 10×10×10 grids and 12.5GB for
12×12×12, as measured by memP. The Cab runs used 26.4GB per node. (Comparisons exploring
the performance effects of OpenMP threading in detail appear in later sections below.)

Runs were instrumented using the mpiP tool [3] for MPI profiling and the memP tool [4] to
measure heap memory use. Figure 1 shows the performance results in three different ways. First
we look at the figure of merit, a metric that focuses on the rate at which basic components are
executed and factors out the numbers of iterations required for convergence. (The iteration count is
also an important component of overall runtime, but our main concern here is with the performance
of this implementation on particular architectures, as opposed to the mathematical properties of the
algorithm.) Perfect weak scaling would yield flat lines. The Vulcan (BG/Q) results are not perfect
but are still fairly good. The Cab (TLCC2) results show a steeper drop in performance at scale,
even on the much smaller number of available processors, though individual processors are faster
than those on BG/Q. The difference between the 10×10×10 and 12×12×12 tests is negligible.

The second plot (bottom left) shows the percentage of time spent in MPI communication as
measured by mpiP. Various mpiP options were tried. The -c option combines results from all MPI
tasks into a single report, -l switches to a different algorithm for combining information from
different tasks, and -o turns off profiling from the beginning of execution, instead relying on
explicit calls we put in to activate the instrumentation only during the main timestep loop. The -o
test did not work on Cab because the activation calls failed to turn on the MPI profiling. (On the
TLCC2 machines UMT2013 builds using dynamic libraries, and apparently picks up the wrong
version of the activation routines when linking with mpiP.)

The MPI profiles on Vulcan show a small and roughly constant percentage of time going to MPI
communication, independent of grid size and the mpiP options. Cab, on the other hand, shows an
increasing amount of time going to MPI as the number of tasks grows. Apparent differences
between the two curves generated for Cab are not repeatable and therefore not really caused by the
different mpiP options tested for this plot. All timing results on Cab vary more from one run to the
next than those measured on Vulcan. We will demonstrate this in more detail in the strong scaling
section below.

The third figure (bottom right) looks closely at the costs of running the instrumentation itself. All
runs are for the 10×10×10 series of tests on Vulcan, with separate curves for the code without
instrumentation, with the various mpiP options, with the memP memory profiling tool, and with
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Figure 1: Weak scaling study. Top: Figure of merit. Bottom Left: Percentage of run
time tied up in MPI communication. Bottom Right: Wall clock times showing
overheads caused by the performance instrumentation.

the HPM (mpitrace) library for gathering information from the BG/Q hardware performance
counters. (We will show results from the HPM library in a later section.) These are wall clock
measurements, and a major component of the upward trend for the six main curves is the increase
in the number of iterations required for convergence at larger problem sizes. All six curves for the
main code lie exactly on top of one another, which shows that the tools are not significantly
perturbing these timing measurements. Where the tools do show a significant cost, though, is in the
post-processing phase after the main part of UMT has finished. Post-processing costs for mpiP
skyrocket without the -l option. (Memory costs for this phase also rise dramatically. Tests for the
series with 12×12×12 grids were closer to filling memory and often crashed without -l.) The
post-processing costs for mpiP with -l are smaller but are also starting to rise for the largest runs;
the same is true for memP. The overheads added by HPM library were exceptionally low compared
to those from the other tools, both during the collection phase and during postprocessing.

4



LLNL-TR-677974 October 8, 2015

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 64  128  256  512  1024  2048  4096

Total MPI tasks, with (MPI Tasks per Node) x (Threads per Task)

UMT2013 Strong Scaling: (Unknowns * Iterations) / (Time * Tasks)

Cab 16x1
Vulcan   8x8
Vulcan 16x4
Vulcan 16x1

 0

 10

 20

 30

 40

 50

 60

 64  128  256  512  1024  2048  4096

%
 o

f R
un

 T
im

e

Total MPI tasks, with (MPI Tasks per Node) x (Threads per Task)

UMT2013 Strong Scaling: MPI Percentage of Run Time

Cab 16x1
Vulcan   8x8
Vulcan 16x4
Vulcan 16x1

 0

 2

 4

 6

 8

 10

 12

 1  2  3  4  5

%
 o

f R
un

 T
im

e

Five Identical Test Runs: 256 Nodes, 4096 MPI Tasks (16x1)

UMT2013 Vulcan Strong Scaling: MPI Breakdown (mpiP -c -o)

Wait 7
Barrier 5

Allreduce 20
Waitall 13
Barrier 3
Wait 16

Allreduce 27

Allreduce 22
Barrier 1

Allreduce 6
Allreduce 21

Start 28
Barrier 17

Start 25

Allreduce 8
Barrier 10
Barrier 19

Allreduce 2
Allreduce 18

 0

 20

 40

 60

 80

 100

 1  2  3  4  5

%
 o

f R
un

 T
im

e

Five Identical Test Runs: 256 Nodes, 4096 MPI Tasks (16x1)

UMT2013 Cab Strong Scaling: MPI Breakdown (mpiP -c -o)

Wait 3
Barrier 26

Allreduce 18
Waitall 27
Barrier 19

Wait 21
Allreduce 4

Allreduce 13
Barrier 17

Allreduce 7
Allreduce 1

Start 28
Barrier 9
Start 23

Allreduce 12
Barrier 25

Barrier 6
Allreduce 11
Allreduce 14

Figure 2: Strong scaling runs on Vulcan (BG/Q) and Cab (TLCC2), with the Vulcan
results also demonstrating reasonably efficient use of OpenMP threads. Top Left:
Figure of merit. Top Right: Percentage of run time tied up in MPI communication.
Bottom: Comparison showing five identical runs of the largest 16 x 1 problem on
each machine, with MPI time during the timestep loop broken down by callsite. The
callsites are arranged in the same order for both runs even though mpiP identifies
them with different labels. Note the different scale and greater variability for the
tests on Cab. Each series of five tests was run with a single script and therefore
used the same processors under similar runtime conditions.

UMT2013 Strong Scaling

A strong scaling test measures parallel performance with the total size of the problem held
constant. In UMT2013 MPI parallelism is over 3D spatial domains, so as the number of processors
increased we reduced the spatial grid size on each processor to keep the total number of unknowns
unchanged. The tests shown in Fig. 2 used grids varying from 12×12×12 down to 3×3×3. Users
also have control over the number of angles (transport directions) and energy groups, but for this
test we held these constant. Note that OpenMP threading is over the angles in each octant and so is
independent of the spatial grid size.

Both Vulcan and Cab have 16 cores per node, but on Vulcan there are also 4 hardware threads per
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core. OpenMP threading allows access to these hardware threads and can also be used for running
multiple cores per MPI task. All of the Cab runs shown here used 16 MPI tasks per node and
1 thread per task (16×1), but the Vulcan runs were done in three groups: a (16×1) series was
similar to the Cab runs but did not use all the hardware threads, a (16×4) series was faster because
it did use all the hardware threads, and an (8×8) series was faster still because it used twice as
many cores as the other two. The large spread between the different Vulcan curves is not a surprise
since these tests used different machine resources: different numbers of cores and hardware
threads. For a comparison showing the effects of allocating the same resources in different ways
see the next section.

The top left plot in Fig. 2 shows the figure of merit for the central timestep loop: with perfect
strong scaling the lines would be flat. Cab is faster for small runs but shows much worse parallel
scaling than Vulcan. The top right plot shows how much time in each run was spent doing MPI
communication, as reported by mpiP. (These mpiP measurements are for the whole code, not just
the central timestep loop, but that doesn’t make a major difference here.) The obvious conclusion
is that Vulcan has slower processors but a better interconnect. The bottom two plots, though, show
that there is another factor involved that may be even more critical at scale. Times spent in each
MPI communication step are much more variable on Cab than on Vulcan from one run to the next.
Operating system noise is a likely explanation: when interrupts occur during an MPI collective the
processors that are delayed keep all the others waiting. Contention for network resources with
other jobs running on the machine is another contributing factor. The BG/Q network is better at
isolating jobs from each other.

These MPI breakdown plots use the -o option to mpiP in order to filter out some variability that
happens during initialization and focus on the main timestep loop. To get -o to work on Cab we
changed the build to use static libraries. Though mpiP uses different numbers to identify MPI
callsites on the two different machines, we have arranged the figures so that corresponding callsites
appear in the same order and can be compared directly.

UMT2013 Threading and Hardware Counter Results

The examples in the previous section showed that OpenMP threading improved performance on
Vulcan for a fixed number of MPI tasks by using additional cores and hardware threads per task. It
is a more complicated question whether MPI or OpenMP threads provide the more efficient use of
a fixed allocation of hardware resources. This section explores the tradeoff between MPI and
OpenMP parallelism, and also highlights some of the detailed information available from BG/Q
hardware performance counters that helps interpret the differences between tests.

In the top row of Fig. 3 we show the performance for 64 nodes of Vulcan and of Cab as the tradeoff
varies from all-MPI to all-OpenMP on each node. Though there are 16 cores per node on each
machine, the 64 hardware threads on each BG/Q node can be accessed in any MPI/OpenMP
combination from (64×1) to (1×64). On Cab the combinations vary from (16×1) to (1×16). The
figure of merit used for these plots is slightly different from the one used in the scaling studies:
since the amount of machine hardware is held constant we do not divide by the number of MPI
tasks. Also note that because each test keeps the total number of mesh zones constant, but varies
the number of MPI tasks, the size of the spatial domain handled by each MPI task is changing as
we move from left to right across each plot.
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Figure 3: Performance for a fixed number of processors, showing changes as the
code shifts from pure MPI parallelism to heavy use of OpenMP threading. Top:
Figures of merit on Vulcan and on Cab. Bottom Left: Memory bandwidth per node
on Vulcan. Bottom Right: Memory traffic per work unit.

Several runs are shown with variations in spatial grid size and numbers of angles and energy
groups. (The grid sizes shown in each legend are the ones corresponding to 8 MPI tasks per node.
So on Vulcan a line labeled “12×12×12” actually uses grids that vary from 3×3×3 to
24×24×24 per MPI task as the number of tasks changes.) High figures of merit in these plots tend
to result from using large numbers of energy groups. All energy groups share the same geometric
quantities associated with a given combination of zone and angle, so in UMT2013 the loop over
energy groups is the innermost loop. With more groups the geometric calculations are amortized
over more unknowns. The lowest curve is the one using only three energy groups. This is also the
flattest curve, though. It runs more efficiently with large numbers of OpenMP threads because it
has a large number of angles to thread over. The other curves show more of a drop in performance
for large numbers of threads because they don’t have enough angles per octant to keep all the
threads busy.

The results for Cab show a sharper drop in performance for the (1×16) mode, even in the cases
with large numbers of angles that perform well with up to 64 threads on Vulcan. There are two
sockets on each node of Cab. Threading works well across the 8 cores on each Xeon chip, but
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Figure 4: BG/Q hardware performance counter information showing effects of
shifting from pure MPI to OpenMP for a fixed number of processors. Top: ratio
between int and float instructions, and int instructions per cycle, measured over
the full timestep loop which includes some unthreaded code. Middle: same
quantities measured only for the threaded loop over angles. Bottom: L1 and L2
cache miss rates for the threaded angle loop, which help explain why some test
cases achieved higher instruction rates than others.
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threading across the entire node is much slower due to low bandwidth between the two sockets.

The second row of Fig. 3 shows the use of memory bandwidth for UMT2013 on BG/Q, as reported
by the HPM (mpitrace) library [2]. The total bandwidth available on a BG/Q node in practice is
about 28 GB/s. A previous version of UMT was bandwidth-limited, but this was changed by a
revision in the data structure layout in UMT2013. None of the test cases here uses more than 19
GB/s. There is a strong and somewhat puzzling dependence on the number of threads per MPI
task, with pure-MPI cases using the most bandwidth. To attempt to explain why bandwidth use
declines so consistently with increasing thread count, the plot at lower right looks at memory
bandwidth divided by the figure of merit (with a constant scaling factor). The result is the number
of bytes of memory traffic required to execute each iteration of the algorithm, per unknown. The
downward trend in these curves for small numbers of threads can be interpreted as different threads
sharing data fetched into cache. For larger numbers of threads, though, the curves flatten out,
showing that the continued decrease in memory bandwidth is tied to the decrease in the figure of
merit: the code draws less memory simply because it is doing less useful work. The apparently
steady decline in memory bandwidth is thus seen to be a combination of two different effects for
different parts of the curves.

As a separate issue, the memory footprint was also higher for cases with more MPI tasks, even
though all tests on each curve have the same number of unknowns. Missing points on some of the
curves were runs that failed due to insufficient memory. All of these missing points are on the left
sides of the various plots. We’re not including plots of memory usage because the results are
somewhat irregular. The memP tool does not appear to be thread-safe, and becomes more and
more likely to return corrupt results as the number of threads increases. There is also a heap
memory estimate returned by mpitrace, but this is consistently higher than the memP estimate even
in cases where memP appears to be functioning correctly. It appears that that mpitrace reports the
heap memory allocated to the process by the operating system, while memP reports the amount
actually used by the application.

The “overloaded” modes (64×1) and (32×2) on BG/Q use multiple MPI tasks per core. It is
surprising that these perform even as well as they do. The heavy use of both memory and memory
bandwidth in these modes, though, indicates that they do not make effective use of machine
resources and will not be practical for most production calculations.

The six plots in Fig. 4 show more information about these same runs obtained using the BG/Q
hardware performance counters. The top two plots were derived from measurements over the full
timestep loop, which includes both threaded and unthreaded code. The ratio between integer and
floating point instructions does not depend at all on the number of threads per task but only on the
number of energy groups. Integer instructions here are mostly indexing operations: striding
through the mesh. All of the test cases use at least as many int as float instructions. The highest
floating point usage occurs with large numbers of energy groups because these cases have more
work per mesh zone (recall that the loop over groups is the innermost loop). A BG/Q core can
perform at most one int and one float instruction per cycle, and it is unusual to see rates much
above 0.7 in practice. The plot on the right shows that the int instruction rate can reach a large
fraction of the maximum rate when the number of threads is small. The integer instruction rate
appears to be a primary limiting factor for UMT2013.

The second row of plots shows the same quantities measured only for the threaded loop over

9



LLNL-TR-677974 October 8, 2015

angles. The integer instruction rate is instructive. Each downturn in each of the curves happens
when the number of threads exceeds the number of angles per octant. Without this effect the
curves would be essentially flat. The plot above this one, that measures the same quantity over the
full timestep loop, shows a more steady decline in the instruction rate. This decline is therefore
associated with the unthreaded code outside the angle loop, which can dominate the run time when
the number of threads is large.

The final two plots in Fig. 4 give L1 and L2 cache miss rates as a fraction of loads. These help
explain the remaining differences between integer instruction rates for the various test cases. Some
features of the instruction rate curves are due to idle threads, as discussed above. The remaining
differences correlate with cache miss rates, and tests with higher instruction rates generally showed
lower cache miss rates. The lowest cache miss rates were for the test problem with the fewest
energy groups. This is the case that did the most integer operations per floating point operation,
reached the highest integer instruction rates, and drew the least bandwidth from main memory.

There are many other counters available in addition to the ones used for the figures. Almost no
SIMD instructions are generated by UMT2013, and none at all in the threaded loop over angles
where most of the work is done. If the code were modified to make better use of the SIMD
units—perhaps through explicit directives—then the SIMD counter information would give
valuable information about the effects of the change. The instruction cache miss rate turns out to
be an issue for one of the other apps (MCB). UMT2013 has a very low rate of instruction cache
misses, though, so this is not a performance issue worth exploring here.

MCB Weak Scaling

MCB is a 2D radiation transport code based on a Monte Carlo algorithm. Discrete particles are
tracked as they move through the mesh, interacting with the continuum material through scattering
and absorption. MPI parallelism is over spatial domains, threading is over local particles in each
domain. Because the mesh and the test problem are simple and our tests ran on power-of-two core
counts, we expected task-based parallel partitioning to be well balanced and to have high data
locality. The excellent MPI weak scaling results confirm this assumption.

Each absorbed particle changes the state of the material by depositing energy, so the particle loop
would not be thread-safe if threads could simultaneously write to the same material data location.
MCB deals with this problem by replicating the local mesh domain for each thread. Each thread
modifies its own copy. The separate thread copies of the deposition array are accumulated into a
master copy by a single thread once particle tracking is completed. This threading model works
well for small numbers of threads, but the synchronization step does not scale well as the number
of threads per MPI task becomes large.

Our weak scaling benchmark had 200000 particles per core and 10000 zones per core with about
3.2 scatters per zone crossing. The scattering opacity was 20 times the absorption opacity, so a
typical particle would scatter 20 times before being absorbed. We ran several different series of
tests. In the milestone presentation we showed only figure-of-merit results for two machines, and
only for modes from (16×4) to (1×64) on Vulcan and from (16×1) to (1×16) on Cab. Those plots
are the top row of Fig. 5. As a later followup we ran the code with mpiP on both machines, and
added the “overloaded” thread modes (64×1) and (32×2) on Vulcan. Results for these additional
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Figure 5: MCB weak scaling results. Top: Figure of merit plots for Vulcan and Cab
from original presentation. Middle: Additional results for Vulcan showing
overloaded modes 64 x 1 and 32 x 2 and the percentage of run time spent in MPI.
Bottom: Additional results for Cab showing MPI percentage of run time. Note that
both rows of additional results were run on fewer nodes than the original tests.
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runs are the second and third rows of the figure. These followup runs were done on fewer nodes
than the original tests, so we show both sets even though they contain some redundant information.

The figure of merit for MCB is tracks per second per core, where a track is the segment between
events for a single particle. Events include zone crossings as well as any interaction with the
background material. Vulcan had a peak performance of 480000 tracks/second/core, achieved on a
single node using all 16 MPI tasks with 4 threads per task. Other thread modes were slower but
only modes with 16 or more threads per task slowed down significantly. In all cases the
performance stayed nearly flat as core count increased. Even the largest runs on Vulcan showed
95% parallel efficiency on 8192 BG/Q nodes (131072 cores), independent of thread mode. The
mpiP tests show only a modest increase in the time spent in MPI communication up to 1024 nodes.
(The (64×1) mode, using 4 MPI tasks per core, is a minor exception. MPI timings were more
erratic in this mode for reasons we have not explained, though not enough to seriously impact the
overall performance results.)

In contrast, Cab had a peak figure of merit roughly 5 times that of Vulcan, but with somewhat
poorer MPI performance. Most thread modes showed good weak scaling out to 256 nodes. The
(1×16) mode was significantly slower—as we would expect based on the UMT performance
shown in Fig. 3—and also scaled more poorly. The MPI percentages of run time were much higher
and more erratic than on Vulcan for all thread modes, even for small numbers of MPI tasks.

MCB Strong Scaling

For strong scaling we ran a benchmark with a constant global size of 51200000 particles in a
768×768 mesh. It had an average of 86.8 particles per zone and 6.667 scatters per zone crossing.
Run on a range from 1 to 1024 Vulcan nodes, this translates to a high of 36864 zones and 3200000
particles per core down to a low of 36 zones and 3125 particles per core. On Cab we only ran out
to 256 nodes, giving a low of 144 zones and 12500 particles per core.

On the BG/Q machine strong scaling was good out to 256 nodes for all thread modes, and even
past this point the drop in performance was not precipitous. The relative efficiency of the different
thread modes was similar to what we saw in the weak scaling test: the (16×4) mode was always
the fastest and the modes with 16 or more threads per task were always slowest. The MPI
percentage of run time tended to be higher for the tests with more MPI tasks, which is not
surprising but confirms that the relative performance of different thread modes is unrelated to MPI
communication time.

Results from Cab were more erratic and showed a much higher percentage of time spent in MPI,
and the poorest performance and scaling behavior were for the (1×16) mode, all as we would
expect based on the behavior of other tests. One surprise, though, is that in the strong scaling limit
the performance of the pure-MPI (16×1) mode actually improved, and hints of similar behavior
are visible in the plots for some but not all of the other modes. Our best explanation is that the
extremely small problem sizes per core in the strong scaling limit may have fit better into cache.

(As with weak scaling, the original runs shown in the milestone presentation lacked the (64×1)
and (32×2) thread modes on Vulcan. We later repeated the tests and included those modes. In this
case the original plots show no additional information and so only the newer runs are shown here.
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Figure 6: MCB strong scaling results. Top: Vulcan. Bottom: Cab. All runs on both
machines used the same problem size, though on Vulcan this problem could be run
on more nodes and with more threads per node. The missing data point on the
Vulcan plots was a case that ran out of memory.

The minor uptick in MPI percentage visible for the (4×16) mode for 1 or 2 nodes did not appear in
the earlier plots and so does not appear to be a repeatable measurement. Other minor glitches in
the original tests disappeared in the newer runs. Vulcan results are more repeatable than those on
Cab but not perfectly so.)

The percentage of time spent in MPI increased roughly as the square root of the core count, for
both machines. This is not an unusual result. It correlates with the change in surface-to-volume
ratio for the individual spatial domains, and thus with the expected ratio of message traffic to local
computation.

MCB Single-Node Tests with Hardware Counter Measurements

Mesh resolution and particle count are independent parameters that determine the computational
size of the problem, and MCB’s performance depends on these parameters in different ways. We
explored these effects by running the four combinations of 50000 or 200000 particles per core with
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Figure 7: MCB performance on a single node of BG/Q, showing changes as the
code shifts from pure-MPI to pure-OpenMP threading. The ratio of integer to
floating point instructions is much higher than for UMT. Though the rate of
computing tracks falls off with threading, the int instruction rate does not, the
reason being that more instructions are being spent on combining the results from
different threads. Floating point instructions per track also increase with threading
but are driven more by the number of zones than the number of particles. Curve
labels refer to the numbers of particles and zones per core.
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Figure 8: More MCB single-node results for BG/Q: L1 miss rates are high for both
data and instruction caches. The L1P rate is also high, meaning that most loads
that miss L1D or IL1 have to go to L2. The L2 miss rate is moderate, and as a result
the use of main memory bandwidth averages about a quarter of the practical
maximum of about 28 GB/s. Finally, the plot at lower left shows how the heap
memory usage rises with the number of OpenMP threads, and how this increase is
driven much more by the size of the mesh than by the number of particles in the
problem.
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2500 or 10000 zones per core. All combinations simulate the same physics—same opacity and
same physical domain size—but not with the same accuracy. The high mesh resolutions
corresponded to an average of 3.2 scatters per zone crossing, the lower to 6.4, because the relative
number of zone crossings increases as zones become smaller. We ran each combination on a single
Vulcan node, using all 64 available hardware threads but in different combinations of MPI tasks
and OpenMP threads.

Examination of BG/Q hardware counter data helps to explain the changes in MCB performance for
these different sets of parameters, just as it did for UMT. In Fig. 7 and 8 we show some of the
relevant results. In the first plot we see that performance is best when the number of OpenMP
threads is small, as we also saw in the scaling studies. This is similar to the behavior we saw for
UMT. Unlike UMT, though, the numbers of instructions executed per cycle do not decrease with
increasing thread count. For UMT performance dropped off because there were not enough angles
to keep all threads busy at once. With MCB, as the number of threads per task increases the code
may actually execute more instructions in a given time, but more of that time goes into mesh
synchronization work that does not contribute directly to the figure of merit.

The highest performance curve is for the largest number of particles and the smallest number of
zones per core. This is not surprising given that the figure of merit is based on the number of
particle tracks computed, not on processing the mesh data. It says nothing about the best way to
run the code to achieve a desired solution accuracy. In this study we’re trying to understand code
behavior at the machine level, not the algorithm level. Since we’re not looking at solution accuracy
there isn’t enough information here to pick an optimal ratio of particles to zones. What we do gain
from these comparisons, though, is additional insight into what parts of the algorithm are incurring
which sorts of expenses.

The ratio between integer and floating point instructions is very high for MCB. The random
numbers that govern all particle events are generated through an integer process. In addition, MCB
computes energy deposition using integer arithmetic so that results will be repeatable for
debugging purposes. (In floating point arithmetic the results would depend on the order in which
different particles deposit their energy and so repeating a parallel calculation exactly would not be
possible.) The dependence of the int to float ratio on the number of OpenMP threads reveals a
curious pattern: At low thread counts all cases run at the same ratio, but for higher thread counts
the instruction ratio depends on the numbers of particles and zones per core. Increasing the particle
count drives up the relative number of int instructions, but increasing the zone count keeps the ratio
more nearly balanced.

The integer instruction rate is a key limiting factor for MCB. Vulcan can execute at most one
integer instruction (and one floating point instruction) per cycle per core. Rates seen in practice
tend not to be much over 0.7 even for very efficient codes. The rates shown for MCB in Fig. 7
range from 0.4 to 0.65. These are not too far below the practical maximum. Cache miss rates,
particularly the L1 caches, offer a plausible explanation for why they fall short—more on that
below.

There is not a strong correlation between performance in terms of particle tracks and in terms of
instruction rates. Fig. 7 shows rates for both integer and floating point instructions. The integer rate
actually increases with increasing thread count, particularly the case with many particles and few
zones. The floating point rate is much lower in absolute terms but also rises initially with

16



LLNL-TR-677974 October 8, 2015

threading, as does the figure of merit in tracks per second, so at low thread counts the performance
and instruction rates do appear to be coupled. Above 8 threads per task, though, the floating point
instruction rate starts dropping again, and the case with many particles and few zones shows the
steepest decline.

Plotting the instructions executed per track makes the differences stand out even more strongly.
Integer and floating point work per track both increase for high thread counts, and the increases are
both most pronounced when there are many zones and few particles per core. The apparently
steady int to float ratio for this case in the upper left plot masks the fact that both integer and
floating point instructions per track are both rising steeply. For the other cases the integer work
rises faster than floating point.

It is clear from these results that there are code features that depend on the number of particles and
others that depend on the number of zones, that these (possibly) separate code sections drive the
hardware in measurably different ways, and that both are threaded in ways that scale well only to
small numbers of threads. It is likely that at least part of the zone-dependent work is involved in
combining the energy deposition arrays for the different threads, since these arrays increase in size
with both the zone count and the number of threads. We have not attempted to instrument the
separate sections of code in MCB; this would have to be done with care because it would require
instrumentation calls within a threaded loop. Such tests, along with code modifications to try to
improve thread performance, would be an obvious next step to take.

Figure 8 shows additional counter results for the same test problems. The L1D (data) cache miss
rates are quite high for small numbers of threads. These “overloaded” modes with multiple MPI
tasks per core also caused the highest miss rates for UMT, but not to the extreme we see here with
MCB. The IL1 (instruction) cache miss rate is also high—for UMT this rate was small enough to
be insignificant. MCB drives the IL1 rate up because of frequent branches in the inner loop over
particles; every time the Monte Carlo scheme rolls the dice to find out what happens next, that’s
another branch. We have plotted L1D and IL1 miss rates with the same scale so that they can be
directly compared. The L2 latency resulting from the combination of L1D and IL1 is likely the
reason why MCB integer instruction rates can go as low as 0.4 per cycle per core.

The L1P (prefetch) buffer miss rate adds little new information. Only a fraction of loads that miss
L1D or IL1 hit in L1P. Most go to L2. The L2 miss rate is significant but not extreme (it’s close to
the rate we saw for UMT). On BG/Q the L2 cache is the last stop before main memory. The
memory bandwidth requirement for MCB comes out to about a quarter of the maximum. The
bandwidth curves track the L2 miss rate curves fairly closely, much more than they did for UMT.
This is because UMT allows unneeded threads to go idle for high thread counts, whereas MCB
keeps its threads busy doing “unproductive” synchronization work. MCB is not bandwidth-limited
on BG/Q, though it could cross that line on plausible future machines.

The final plot, at lower left in Fig. 8, shows heap memory sizes used by these runs. These were
obtained using mpitrace because the memP tool would not work for MCB. The plotted estimated
heap use per node is actually the maximum heap use across all tasks, multiplied by the number of
tasks per node. This was a good estimate because the mesh and the particles are both well balanced
among the tasks in this simple test problem.

MPI parallelism in MCB is over spatial domains. As the number of MPI tasks in our experiment
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Figure 9: Grid layout and difference stencils for the AMG test problem. (This figure
is copied from the AMG2013 source code distribution.[1])

decreases, the size of the mesh domains for each task increases by the same factor, so the total
mesh size remaines the same. Each thread, however, carries its own copy of its mesh domain so the
memory used for the mesh increases with the number of threads per task. In the limit of high
thread count the memory allocated for the mesh can be much larger than the memory used for
particles. We see this effect in the plot, where the curves that rise most steeply are the ones with a
large number of zones per core.

AMG2013 Introduction and Hardware Counter Results

The AMG2013 proxy app uses algebraic multigrid to solve a linear system derived from difference
stencils on the multiblock mesh shown in Fig. 9, with the added complication that different stencils
are applied on different blocks of the mesh. It is based on code in the hypre linear solver
library [7]. Algebraic multigrid itself is a complex algorithm which treats the mesh as
unstructured, represents the matrix using a general sparse representation, and then constructs a
series of coarsened representations of this matrix in a mathematically sophisticated way. This
construction process is the “setup” phase. In the “solve” phase the multilevel representation is used
to solve the linear system in O(N) time, where N represents the total number of unknowns. Both
phases are parallelized, both use a combination of MPI and OpenMP, but as with UMT and MCB
the MPI implementation is more mature. Both forms of parallelism have been more completely
optimized in the solve phase because this phase is more straightforward, because it operates on
fixed data structures, because a single call to setup can be amortized over many calls to solve (if the
user needs solutions for many different right hand side vectors), and perhaps because the solve has
historically been seen as more mathematically interesting.

The solve is an iterative process. The benefit of using a multigrid method is that this stage can be
completed in O(1) iterations, independent of N , whereas most other iterative linear solvers require
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increasing numbers of iterations for larger N . Setup is not iterative and merely sets the stage for
the solve phase. Scaling the setup phase presents no mathematical difficulties, but building the
complex, data-dependent structures is difficult to implement efficiently. Setup is harder to thread
than the solve phase.

AMG is a more complex algorithm than either UMT or MCB, it can be more communication-
bound, and our characterization results are less conclusive for it than for the other two proxy apps.
We therefore used the UMT and MCB results to satisfy the milestone and omitted most of those
for AMG. Conclusive or not, though, there are interesting trends here that suggest avenues for
future study, and there are measurements that help corroborate some of our observations for UMT
and MCB.

We do not have extensive results for AMG using the BG/Q hardware counters. Because scaling
and global communication are such critical issues for AMG we put more effort into the mpiP
results detailed in the sections below. We did run a few representative tests to measure the
hardware counters to get an idea of their typical values but did not investigate their dependence on
problem input parameters or machine configuration in any systematic way.

The values we will quote are for a run on 4 nodes of Vulcan with 64 MPI tasks using the (16×4)
thread mode, and a similar but larger run on 16 nodes. In these runs AMG was even more
integer-intensive than MCB. The setup phase used 99% integer instructions, the solve phase
92-93%. This is not surprising given the unstructured matrix representation with a single unknown
per zone and the frequent transfers between different levels of refinement. The setup phase is
responsible for building the solver infrastructure and includes control logic at the scale of
individual matrix elements, whereas the solve phase runs with existing data structures and less
fine-grained control logic, so it makes sense that solve is more floating-point intensive. Memory
bandwidth was low during setup but was over 18 GB/s during solve, comparable to the highest
rates seen with UMT. Though the solve phase as a whole is not bandwidth limited some portions of
it may be, since the memory access intensity is presumably not uniform throughout the entire
solve. Instruction issue rates ranged from 0.45 to 0.7 per cycle per core and were similar for setup
and for solve phases of the same problem. L1D cache miss rates hovered near 10% and were likely
a factor in limiting the instruction rate, but some of the tests suggest that L2 efficiency could be
even more important. During the solve phase, loads that miss in L1D often hit in the prefetch
buffer L1P, whereas during setup most L1D misses hit in L2. The derived statistics for cache
behavior do not always vary in the expected directions, which suggests that some other limiting
factor may also be in play. Instruction cache misses—which we did not measure—could be a
factor during setup but are unlikely to amount to much during solve.

As well as telling us something about AMG, these results help confirm that similar numbers we
saw for UMT and MCB were not unique to those particular applications. The high memory
bandwidth of the solve phase was similar to rates we saw for UMT, and the high ratio of integer to
floating point instructions was similar to that for MCB.

AMG2013 Weak Scaling and Threading

We structured the AMG weak scaling study a bit differently from the other two proxy apps. We did
not vary the problem parameters, but we did test a large number of different thread modes for weak
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Figure 10: AMG weak scaling. The top row shows a large number of different
thread modes on Vulcan, not all of which use the full 64 hardware threads on each
node. Wall clock times rather than rates are shown so lower curves are faster.
Some modes are extremely slow for the setup phase, so the top left plot uses a log
scale. The middle row shows the same results, but limited to the fastest modes for
each phase—these are not the same modes for setup and for solve. The bottom
row shows similar results for Cab.
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scaling on BG/Q. All tests were normalized to a 16× 16× 16 domain on each physical core
(multiply this by 16 to get the problem size per node). We kept the data per core constant but the
data per MPI task changed depending on the number of OpenMP threads per task. For example,
when using 2 MPI tasks per node and 8 OpenMP threads per task, the problem size per task
becomes 32× 32× 32. The problem size per core still remains the same at 16× 16× 16.

Setup and solve were timed separately. The first row of Fig. 10 shows timings for many different
thread modes, not all of which use the full 64 hardware threads on each node. A few individual
runs seem anomalously slow which may be due to transient conditions or running on a slow node;
we did not repeat these tests but we suspect the outlying results would change if we did. Ignoring
the outliers, though, all thread modes show good MPI weak scaling, but the setup phase shows
consistently poor performance for large numbers of threads. Note that we had to use a log scale for
setup in order to show the slowest modes.

The second row shows only the fastest eight modes for each phase and does not need a log scale.
Not all of the modes are the same for setup and for solve. Setup is fastest in modes with few
OpenMP threads, while solve is fastest in modes that use all 64 hardware threads on each node.
The conclusion is that not all parts of the setup phase have been efficiently threaded. The third row
shows similar weak scaling timings for Cab. Fewer thread modes were tested but the results are
similar to those for Vulcan and to the results for the other two proxy apps. Solve shows better
thread performance than setup, but even for solve the (1×16) mode is anomalously slow.

AMG2013 Weak Scaling: Variability and mpiP Results

We know from the UMT study (Fig. 2) that run times on Cab are somewhat variable. With AMG
we tested this variability in the weak scaling test series, focusing on the pure-MPI (16×1) mode.
The first row of Fig. 11 shows the results for both the setup and the solve phase. The setup phase
appears to be more variable than the solve, except for a single outlier in the solve tests at 256 nodes
where one of the runs took more than twice as long as the others. We don’t know the reason for
this particular outlier—not even whether it was a delay on the network, or on one of the processors.
Some variability in Cab timings for other performance tests has been traced to a few slow machine
nodes. That explanation doesn’t seem to work well here, though, since setup and solve phases of
the same runs vary in different ways. Instrumentation of similar runs using mpiP, though, does
provide at least a partial explanation for the general fact that some results are more variable than
others.

During the setup phase there is a steady increase in the times spent both in communication and in
computation, and communication is always a major portion of the time. This breakdown is shown
in the middle row of Fig. 11. During the solve phase, though, communication times are a smaller
but gradually increasing proportion of the total until 256 nodes are used, at which point the
communication time appears to jump sharply. The breakdowns shown are averages over four runs,
and much of this jump is due to one particularly slow run which inflated the average.

Whatever its cause, performance variability seems more strongly associated with
communication-heavy phases of the algorithm, and manifests itself primarily through larger
communication costs. In the final row of Fig. 11 we break communication times down by the type
of MPI call and see that MPI Allreduce has particularly bad scaling performance.
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Figure 11: Top: Weak scaling timings on Cab in 16 x 1 mode showing multiple runs
per test. Middle: Times spent in communication and computation per run
(averaged over four runs). Bottom: Times spent in various MPI routines
(aggregated over call sites for those routines).
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In each case shown in Fig. 11 the cost attributed to computation tended to increase in tandem with
communication but to a proportionally lesser extent. The same correlation appears in results for
Vulcan presented below. It is not clear whether all of this correlated change is real—due perhaps to
the increased number of multigrid levels the code builds for larger problem sizes—or whether
some of it could be a measurement artifact. As evidence that it may be partly an artifact, note that
the totals of communication and computation time as reported by mpiP don’t match very closely
with the total times shown on the row above and in Fig. 10. The two sets of timings are gathered by
different mechanisms, with the mpiP results being aggregated and averaged over all MPI tasks. We
would have to look more closely at how mpiP attributes costs to different phases if we wanted to
better understand this apparent discrepancy.

We turn now to some results from Vulcan, where variability is not so much an issue but node counts
can be much higher. There is an algorithmic option set in the AMG proxy app at build time (and in
the hypre library from which it is derived) that we had to use in order to get good weak scaling
performance at high processor counts. This option is --with-no-global-partition. At
the time of this study this option was not the default in hypre because the hypre developers were
concerned it might hurt performance for small numbers of processors. In our tests it produced such
a strong improvement in setup times, though, that we recommend it for any hypre installation
intended for large-scale computing. There was no observable effect on the time for the solve phase.
The upper left plot in Fig. 12 shows timings on Vulcan using the pure-MPI (64×1) mode with and
without this option. The upper right plot shows the breakdown by MPI calls with global
partitioning (that is, with the --with-no-global-partition turned off). All of our other
AMG timings in this report had this option turned on, including those in Figures 10 and 11 along
with the second and third rows of Fig. 12.

The middle left plot of Fig. 12 shows the communication and computation costs on Vulcan (using
--with-no-global-partition). The communication times are a smaller proportion of the
total times than on Cab and are scaling fairly well. The middle right plot gives the corresponding
breakdown by MPI call, and can be directly compared to the result with global partitioning above
it. These show that the MPI implementations are very different for the two versions of the
algorithm, and that heavy use of MPI Allgather and MPI Allgatherv contribute to the
nonscalable behavior of the less efficient version. Note that these breakdowns combine the times
for the setup and solve phases. Separate breakdowns for setup and solve for the more efficient
version are in the bottom row, though the result for 2048 nodes is missing for solve because of a
memory problem in mpiP itself. This last row of Fig. 12 can be directly compared to the similar
results for Cab in the last row of Fig. 11.

AMG2013 Strong Scaling

We have only one strong scaling result for AMG in this study, which was run on Cab. This test
started with a 32× 32× 32 domain per physical core when running on 32 nodes and reduced down
to 16× 16× 16 domains on 256 nodes, maintaining a constant overall problem size. This is not a
huge dynamic range but the results highlight many of the same effects we saw in the weak scaling
tests.

Figure 13 is a log-log plot. With ideal scaling all of the curves would be straight lines with the
same slope. The most obvious departure from this ideal, the increase in time for the solve phase at
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Figure 12: Top Left: Weak scaling runs on Vulcan in 64 x 1 mode with and without
the –with-no-global-partition option. The setup without this option was not only
slower, it ran out of memory for more than 512 nodes. Other plots show the
communication and computation costs for the preferred version where this option
is used, the breakdown by MPI routine for both versions, and the breakdown
divided into setup and solve phases for the preferred version.
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Figure 13: Strong scaling test of AMG on Cab showing setup and solve times and
two different threading modes. Note that both axes are log scale.

128 nodes, may not be real—it may be an example of the variability of results we sometimes see
on this machine. In any case we have no other explanation to offer for this anomaly. The solve
times for 32, 64, and 256 nodes all fall on a nearly straight line. Not only that, they fall on the same
straight line, due to the effective threading of the solve phase.

The curves for the setup phase are not as straight, nor are they as close to each other. At low node
counts the (16×1) mode is considerably faster than (8×2) because the setup phase is not threaded
as effectively. At higher node counts, though, this difference shrinks and then reverses itself. Both
curves tilt upward slightly—meaning that they do not scale perfectly—but the (16×1) curve tilts
up more. We believe this may be because setup includes more fixed costs and does not strong scale
as well as solve. The (16×1) mode is running more MPI tasks and so shows this effect more
clearly than (8×2).

BG/Q Torus Mapping Results for AMG

In the sections above we have presented information on MPI scalability, OpenMP threading, and
on-node performance characteristics for all three of the proxy apps UMT2013, MCB, and
AMG2013. We have used some standard tools, mainly mpiP and the hardware counter information
available on BG/Q machines, but the focus has been on the apps rather than on the tools
themselves.

In addition to those more standard results, though, we have also looked at some of these apps in
more unusual situations and with more experimental performance tools. This shifts the focus away
from evaluating the apps and toward evaluating these new techniques to see if they can tell us
something interesting about how to understand performance on advanced machines. The
remaining sections of this report will present a sampling of these experimental results and will be
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Figure 14: Changing to an alternative BG/Q torus mapping causes messages to
take more hops through the network but decreases execution time, possibly by
decreasing contention. These runs were done in the pure-MPI 64 x 1 mode.

less systematic than the sections above.

Figure 14 compares the performance of AMG2013 for two different schemes for arranging MPI
tasks on the interconnect [8]. This is done by trying two different system-provided layouts on the
5D torus. Ideally we would expect that lowering the number of hops messages take through the
network would reduce the amount of network congestion and hence improve performance. But
here we see an inverse correlation. The default mapping ABCDET puts adjacent MPI tasks on the
same node and gives many fewer hops than an alternative mapping TABCDE, but yields slower run
times. Understanding contention on networks is challenging and at this point we do not have a
good idea of why TABCDE does a better job with increased hop counts. One possible explanation
is that the TABCDE mapping reduces the congestion on the injection FIFOs by reducing the
number of source MPI processes trying to send messages to the same destination node. Another
possible reason is that on Blue Gene/Q it is faster to move data off a remote process (presuming it
is in cache) than from main memory to cache. So while ABCDET features lower hop counts, it
also features more messages that are not off-node that involve moving data through memory.

Using NVRAM to Supplement Main Memory for UMT

The Catalyst machine at LLNL is similar to the Sandy Bridge TLCC2 machine Cab but uses
12-core Xeon E5-2695 v2 Ivy Bridge processors. Its most distinguishing features are large
memory (128GB per node) and an additional 800GB of SSD NVRAM per node. Given that UMT
with its six-dimensional discretization requires storage of large amounts of data, and that future
architectures may provide less memory per processor and may require use of complex hierarchical
memory systems, it was interesting to look at whether UMT could use the SSDs on Catalyst as a
supplement to main memory. (Other Lab codes have begun to do so. [9])

The software package DI-MMAP, currently under development at LLNL [10], allows pages on the
heap to migrate between NVRAM and main memory as needed. A buffer in main memory holds
the currently resident pages. If this buffer is large enough to contain the entire heap, then the
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Figure 15: Performance on a single node of Catalyst as a function of the DI-MMAP
buffer size in main memory. When the buffer size is too small, allocated pages
migrate to NVRAM and execution time goes up. The large increases in run time
observed for small buffers with both MPI and OpenMP parallelism show that the
current implementation is not effectively managing memory for UMT.

application runs nearly as fast as it would normally (measurements with UMT2013 showed a
slowdown of around 15% compared to the same tests run without DI-MMAP). If the heap is too
large for the buffer then some pages will only exist in NVRAM at any given time and may be
swapped into the buffer as needed.

The obvious approach was to allocate a buffer that nearly fills main memory on a node and then
experiment with UMT2013 test problems larger than the buffer. This turned out to be more
difficult than expected. UMT2013 is an idealized proxy app, and though it scales well to large
numbers of MPI tasks it is not set up to handle unusually large memory sizes per task. The grid
generator scales very poorly with increasing zone count per spatial domain. Though this
initialization time is not counted as run time for the application itself, it quickly becomes
prohibitive—hours to initialize a test that would take minutes to run. There are also built-in limits
on the numbers of angles and energy groups. Rather than try to modify UMT to enable larger
problem sizes, we decided to frame the test a different way. After all, dealing with a large main
memory was not the point of the exercise.

Figure 15 shows timings for two series of tests, each one holding the problem size fixed while
varying the size of the buffer allocated in main memory. This not only avoids the need to construct
very large test problems, it also allows us to estimate the costs of swapping pages to NVRAM
without the complication of changing other computational costs at the same time. Both test
problems ran on a single node of 24 cores. One used 24 MPI tasks, the other used 24 OpenMP
threads (though the code was built with support for MPI+OpenMP in both cases).

The run times approach a constant value for all buffer sizes large enough to contain the entire
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the figure of merit without any power limitation.

allocated heap. As the buffer becomes smaller than the heap size, though, run times increase
dramatically. Even small amounts of memory moving to and from NVRAM can use more time
than the rest of the algorithm combined.

This is a disappointing result and has not yet been explained. On the bright side is the fact that
DI-MMAP worked at all for this code. This is its first use with MPI, and DI-MMAP developer
Brian Van Essen had to make significant modifications in order to get it running. He believes there
may be an interaction with MPI that causes pages to migrate more than necessary, so improvement
in future versions of DI-MMAP is possible. On the other hand, the access patterns used by
UMT2013, such as the fact that the code accesses almost all of its memory every timestep, may
render this sort of automatic approach impractical. It may be necessary to modify the code in order
to explicitly stage access to memory before it is needed, much as MPI codes can be structured to
overlap communication and computation.

Power Bound Experiment

Available electric power is already a major design consideration for large parallel computers, and
in the future it may be necessary to explicitly manage the power requirements of individual jobs.
The reason is that power use varies according to the characteristics of particular codes and it is
expensive to overprovision a computer center with power capacity that is not typically needed. It is
not yet clear, though, what a power-aware scheduler or a power-aware application would need to
look like in practice. We could imagine limiting the number of nodes available to power-hungry
applications at any one time, or allocating more power to performance-critical sections of a
single code.
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The MSR library [11] on Cab allows a user job to set an upper bound on power available to each
processor socket. As a simple experiment, we ran each of our three proxy apps over a range of
power bounds in order to see how this limitation would affect performance. The results are shown
in Fig. 16. Each of the three apps degraded gracefully as the bound was decreased, but they did so
at different rates. To limit any variation due to running on different nodes of Cab, we ran all of the
tests for each curve within a single batch script, so that all points on a curve represent results for
the same set of physical processors. Different curves represent results from different batch jobs and
so probably ran on different processors. Each curve is normalized so that speed without a power
bound is 1.0.

The first two curves were for UMT and show that results from similar tests are repeatable. UMT
makes heavy use of both floating-point and memory bandwidth and showed the strongest
sensitivity to the power bound. Performance was constant for a bound of 95 watts or higher but
declined steadily below that. The next two runs were for MCB using two different thread modes.
The two modes gave similar performance, which was constant for bounds of 85 watts or higher.
Performance at lower power levels does seem consistently slower for the (8×2) mode, but the
differences are small enough that they could be due to running the two series of tests on different
processors rather than to different power requirements of different thread modes. The two identical
UMT curves differ by a comparable amount.

For AMG we plot the performance separately for the setup phase and the solve phase of each run.
The solve phase does significant floating-point work and uses memory bandwidth as heavily as
UMT. Its performance is constant at 85 watts and above, but below that degrades at a rate between
those for UMT and MCB. The setup phase, though, does little floating-point work and has lower
memory bandwidth requirements, and has the most forgiving power requirements. Setup ran at full
speed all the way down to a 60-watt power bound.

To be clear, we did not place power bounds on DRAM itself, only on the CPU sockets. We also did
not explore other possibilities: the MSR library allows setting separate power bounds for each
socket, measuring the actual power usage directly, and adjusting power bounds on timescales of a
few milliseconds. A complex heterogeneous application could control its power usage in complex,
fine-scale ways. Whether it would be useful for it to do so is another question entirely, but it is at
least a question worth considering.

Performance Tool Lessons Learned

The performance tools gave useful information but did not always work well—some of the
problems were outright bugs. Some issues were described in more detail in earlier sections. Here is
a quick summary of difficulties encountered:

• Building UMT with dynamically-linked libraries caused trouble for both mpiP and memP,
though many features could be made to work.

• mpiP post-processing does not scale well without the -l option.

• memP can give incorrect heap sizes with run with threads or when run on Catalyst even
without threads.
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• memP shows the heap size used by the program, which may be significantly smaller than the
total size of the memory pool allocated to the process by the operating system.

• memP never worked for MCB.

• At high instruction cache miss rates some derived quantities returned by the HPM library on
BG/Q became unreliable with the default counter group 0. Using HPM GROUP=8 avoided
this problem by explicitly including instruction cache misses.

Conclusions

This is a work in progress, and the conclusions we can draw from studying proxy apps alone can
only be tentative. Further work will require comparison with production codes running more
complex simulations with real-world applications. We must also understand how codes behave on
additional architectures with accelerators and more complex memory hierarchies. Nevertheless a
few interesting results are apparent from these proxy app experiments alone.

MPI scaling was generally good. This is not surprising. Codes and algorithms have been designed,
studied, written, and rewritten for distributed-memory parallel computers for quite a few years
now, not just in academic research but in the lab environment that produced these algorithms. The
parallel machines themselves have also gone through several generations of evolution to better
support programmatic applications. The significant differences between the machines examined
here highlight the importance of consistency in node and interconnect performance for large-scale
bulk-synchronous applications. A conclusion is that either that consistency must be maintained in
future architectures, or the largest-scale applications will have to move away from
bulk-synchronous programming models in order to adapt better to a changing runtime environment.

The results for on-node performance with OpenMP show that the current threading models in all
three proxy apps are effective only for small numbers of threads. UMT2013 may make more
efficient use of memory bandwidth than earlier UMT versions, but it is still near the bandwidth
limit for BG/Q. The solve phase of AMG2013 also approached the memory bandwidth limit.
Cache performance was reasonable for all three apps but differences in cache miss rates may
explain some of the performance differences we observed. Both threading and memory
management are likely to drive future developments in code and compiler design; these issues
appear to be less settled than MPI parallelism.

The high ratio of int to float instructions shows how integer instructions cannot be considered an
afterthought for complex codes, even for a mesh-based code like UMT2013. Integer instruction
rate was the most important factor limiting UMT performance, though floating-point operations
were also significant. The other two proxy apps were even more lopsided, to the point where
floating-point operations seemed almost irrelevant. Future architecture choices should take this
into account, and not focus too much on features such as floating point vectorization that may only
benefit a limited set of codes.

On the issue of how to use NVRAM and other new additions to the memory hierarchy, we have
only scratched the surface. Preliminary experiments shown here were not promising, and suggest
that major shifts in algorithm design may be needed. The experiment involving BG/Q torus
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mappings showed that complex hardware environments can behave in counterintuitive ways, and
that the most obvious task layouts may not be the optimal ones. The power bound experment shows
that different codes behave in different ways under limited power. If power restrictions become
more important on future machines it may be necessary to take such variations into account.
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