
Evaluating HPC Networks via Simulation of
Parallel Workloads

Nikhil Jain†,?, Abhinav Bhatele†, Sam White?, Todd Gamblin†, Laxmikant V. Kale?

†Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551
?Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

E-mail: †{nikhil, bhatele, tgamblin}@llnl.gov, ?{white67, kale}@illinois.edu

Abstract—This paper presents an evaluation and comparison
of three topologies that are popular for building interconnection
networks in large-scale supercomputers: torus, fat-tree, and
dragonfly. To perform this evaluation, we propose a compre-
hensive methodology and present a scalable packet-level network
simulator, TraceR. Our methodology includes design of prototype
systems that are being evaluated, use of proxy applications
to determine computation and communication load, simulating
individual proxy applications and multi-job workloads, and
computing aggregated performance metrics. Using the proposed
methodology, prototype systems based on torus, fat-tree, and
dragonfly networks with up to 730K endpoints (MPI processes)
executed on 46K nodes are compared in the context of multi-
job workloads from capability and capacity systems. For the 180
Petaflop/s prototype systems simulated in this paper, we show
that different topologies are superior in different scenarios, i.e.
there is no single best topology, and the characteristics of parallel
workloads determine the optimal choice.

Index Terms—Multiprocessor interconnection networks, Net-
work topology, Computer simulation, Performance evaluation,
High performance computing

I. INTRODUCTION AND MOTIVATION

The interconnection network of a supercomputer plays
an important role in determining its overall efficacy.
Communication-intensive applications can achieve high scal-
ability only if a suitable, capable network is available, and if
those applications are able to exploit it efficiently. The inability
to scale communication to high node counts can prevent
the use of more compute nodes, undermining the benefit
of building large-scale systems. Hence, detailed performance
comparisons of different networks should be conducted to
identify the best and most suitable option for a particular
computing center’s expected workload.

Traditionally, analytical modeling has been used to decide
the best choice of networks and routing schemes [1], [2], [3],
[4], [5], [6], [7], [8]. However, these models make simplifying
assumptions about communication flow and congestion on
networks in order to be fast, thus leading to potentially
low-accuracy predictions. Alternatively, sequential flit- and
packet-level simulations have been used for higher-accuracy
performance predictions [9], [10], [11], [12]. This approach
can result in significantly high execution times for large
simulations, and can render the simulation of full, realistic
workloads infeasible.

Past work has used aggregate metrics such as average packet
latency and throughput to compare networks and routing

schemes [8], [13], [14], [15], [16], [17]. In these studies,
synthetic workloads parameterized on injection rate, message
size, and message destination are used. These metrics and syn-
thetic workloads fail to capture scenarios of practical impor-
tance to high performance computing (HPC). On production
HPC systems, one or many applications with communication-
computation and communication-communication dependen-
cies are executed as multi-job workloads. Complexities of
diverse scenarios found in such workloads cannot be replicated
using simple synthetic workloads.

This paper presents a comprehensive methodology to eval-
uate interconnection networks that addresses the aforemen-
tioned shortcomings. We propose that performance prediction
based on parallel packet-level simulations of diverse multi-job
workloads representing production HPC applications provides
meaningful insights about the efficacy of different networks
for HPC centers. Our work is motivated by three key software
developments in the HPC community.

First, the ROSS Parallel Discrete Event Simulation (PDES)
framework [18], [19] provides scalable parallelization of fine-
grained discrete event simulations. This has enabled devel-
opment of parallel packet-level network simulators that can
scale to thousands of cores as demonstrated by the CODES
framework [20], [21], [22].

The second development is connecting BigSim’s emulation
framework [10] with CODES via TraceR [23]. This not only
enables replay of control and communication flow of MPI [24]
and Charm++ [25] applications, but also makes it feasible to
include and model computation time in simulations. More-
over, virtualization in BigSim’s emulation framework enables
simulation of control and communication flows of prototype
systems much larger than the system running the emulation.
Fig. 1 shows that simulations performed using TraceR achieve
good strong scaling as the number of simulating cores is
increased, while allowing emulation on a few tens of cores.

Finally, representative proxy applications for several pro-
duction applications have been developed recently as part
of efforts such as the Mantevo project [26], the CORAL
collaboration [27], and NERSC-8/Trinity benchmarks [28].
These proxy applications provide an easy-to-use, customizable
way to capture and replay control and communication flow of
multi-job workloads of interest to the HPC community.

In this work, we augment both CODES and TraceR with
new capabilities, and deploy them to evaluate network topolo-

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 c©2016 IEEE

����

�����

������

��� ��� ��� ���� ���� ���� ����� ����� �����

�
��
��
��
��
��
��
��
��
��
�

��������������������������

���

��������
����������������

������������������

Fig. 1. Excellent strong scaling performance of ROSS enables massive
workload simulations using TraceR and CODES.

gies that are popular for building interconnects in large-scale
supercomputers. The main contributions of this paper are:
• We demonstrate the capabilities of TraceR to efficiently

simulate complex HPC workloads containing multiple
jobs for large-scale systems using different job place-
ments and task mappings.

• We have added dynamic routing to the torus model and
a new, full bisection bandwidth, fat-tree network model
in CODES.

• We present a comprehensive methodology for comparing
performance of different network topologies to build
future HPC systems.

• We evaluate networks based on torus, fat-tree, and drag-
onfly topologies using realistic workloads from capability
and capacity systems. To the best of our knowledge, this
is the first study that compares HPC networks for such
complex workloads.

II. AUGMENTATIONS TO CODES AND TRACER

In order to conduct studies on different networks using
multi-job workloads as described in Section III, several ca-
pabilities have been added to CODES and TraceR.

A. CODES

The CODES framework [20] is built upon ROSS [18] to
facilitate studies of HPC storage and network systems. CODES
allows instantiation of prototype networks based on packet-
level models defined in it. These instantiations are guided by
parameters such as network type, dimensions, link bandwidth,
switch latency, etc. At the beginning of this project, CODES
provided n-d torus [29] and dragonfly [13] network models
among others. The following improvements were made to the
network models in CODES as part of this work.
Deadlock avoidance mechanisms: A packet-level token flow
control mechanism is used in CODES to manage flow of
traffic. It can cause deadlocks if cyclic dependencies are
formed among the transmitted packets. To avoid deadlocks
in the torus model, we added Puente et al.’s bubble routing
scheme that uses an escape channel [30]. In the dragonfly
model, deadlocks have been avoided by using as many virtual

channels per link as the maximum number of hops a packet
may take as proposed by Kim et al. [13].
Dynamic routing in the torus model: The existing torus
model in CODES supports dimension-ordered static routing
only [21]. However, it has been shown that adaptive or
dynamic routing improves communication performance on
torus, especially for applications with large messages [31],
[32], [33]. Hence, we added a fully-adaptive minimal path
routing scheme to the torus network model.

Based on the routing scheme used in the torus networks
of IBM’s Blue Gene series [33], the implemented adaptive
routing scheme moves packets towards their destination by
making locally optimal decisions. When a packet arrives at an
intermediate router, it is forwarded to the port with minimum
occupancy of the buffers among the ports that move the packet
closer to its destination.
Fat-tree network model: We have added a full bisection
fat-tree network model with up to three levels of switches
to CODES. In our construction of fat-tree network using
radix k switches, sets of k

2 switches are grouped together
to form pods at the leaf and intermediate levels. Switches
from corresponding pods at the leaf and intermediate levels
are connected in an all-to-all fashion. Many switches of same
radix as the lower layers are used to form logical high radix
switches at the topmost layer as described in [34].

This mode of building fat-tree networks resembles a folded
Clos network [35], and is often used for practical deployment,
e.g. in Cab at Lawrence Livermore National Laboratory, and
in simulations [9], [36]. Given radix k switches and n levels,
the implemented fat-tree network model supports up to k

2 pods
and (k2)

n nodes. Alternate constructions of fat-tree which can
support k or 2k pods will be explored in a future work.

For the fat-tree network, several pattern specific static rout-
ing schemes have been proposed [37], [38]. Given our focus
on comparison of different networks using a diverse range
of benchmarks, we have implemented a pattern-oblivious
shortest-path adaptive routing scheme. In this scheme, when a
packet arrives at a switch, all ports through which the packet
can be forwarded are computed. Among these ports, the port
with minimum occupancy of buffer is selected to enqueue the
packet. We acknowledge that this routing scheme may not be
the best routing scheme for certain communication patterns,
but it provides a fair comparison of fat-tree networks with
other networks for the general case.

B. TraceR

TraceR is a successor to BigSim’s application simula-
tor [10], [39] that replays control and communication flow
on top of CODES [23]. The BigSim project is aimed at
developing tools that allow prediction and tuning of the
performance of applications before next generation machines
are available in production. The primary advantage of BigSim
is its ability to emulate and generate traces for large number of
endpoints (entities that initiate communication) using systems
with relatively small number of cores. We have added the
following capabilities to TraceR as part of this work:

Task mapping: The ability to map endpoints at runtime can
be critical to obtaining the best network performance [40],
[41], [8]. To enable topology-aware mapping in simulation,
we extended TraceR to accept a mapping file that determines
the placements of endpoints identified by their ranks to cores
in the prototype system being simulated. This allows TraceR
to more accurately reflect real world behavior.
Simulation configurations: Emulation of large-scale execu-
tions to generate traces can be cumbersome, especially when
application executions with many different message sizes and
computation times are to be emulated. To ease exploration of
such design space, we added the capability to change message
sizes and projected execution time during simulation. Users
can mark messages and computation tasks during emulation
with names of their choice, and then modify their values during
simulation via configuration input to TraceR. Additionally,
one can generate traces for only one iteration of application
execution, and let TraceR iterate over that work multiple times
during simulation.
Multi-job simulations and placement: Realistic workloads
in HPC include several applications of various sizes executing
simultaneously. Evaluating such scenarios is critical to deter-
mining the efficacy of different network for practical use cases.
To this end, TraceR has been augmented with the capability
to simulate many jobs executed simultaneously on prototype
systems. Different applications can be emulated independently
to generate traces. During simulation, description of individual
jobs (including the job size, location of traces, etc.) and
their placement on the network is provided to TraceR, which
then simulates them simultaneously. Within each job, task
mapping and simulation configurations can be set. Such multi-
job simulations with functionalities described above are not
possible in any other simulator.

Fig. 2 summarizes all input configurations that can be spec-
ified to TraceR and the output obtained from the simulations.

TraceR, CODES

✓ Execution time of each job
✓ Timer prints from individual jobs
✓ Total traffic on individual links

Network
configuration:

topology
#nodes

#endpoints per node
bandwidth

latency
buffer size

routing

Application
configuration:

#jobs
placement of jobs

task mapping in jobs
size of individual jobs
iteration count of jobs

message size sub
computation time sub

software latency

Input

Output

Fig. 2. Various configurable input parameters (w.r.t. the network model and
application traces) and output of TraceR.

Simulation validation: The torus and dragonfly network mod-
els have been extensively validated [20], [23]. For all the net-

work models, we have executed controlled micro-benchmarks,
e.g. ping-pong, and have ensured by manual inspection that
at every step, the simulation behaves as expected. The torus
model has been further validated by comparing simulation
results from TraceR with executions on a IBM Blue Gene/Q
system for three benchmarks: pair-wise ping-pong, multi-pair
ping-pong, and a permutation pattern in which every MPI
rank communicates with its diagonally opposite MPI rank.
For both static and dynamic routing, predictions within 2%
of real execution time were observed. The fat-tree model has
been validated by comparing observed latency and throughput
from TraceR with BookSim’s prediction [9]. It has also been
validated by comparing predictions from TraceR with runs of
the three aforementioned benchmarks on Catalyst, a system
with fat-tree network.

III. EVALUATION METHODOLOGY

We follow a four step methodology that enables compre-
hensive evaluation and comparison of different networks.

1) Prototype system design: The first step for evaluating a
network is designing a prototype system that can be instanti-
ated in CODES. As shown in Fig. 2, this requires selecting
many parameters that are part of the network configuration
provided as input to TraceR. Section III-A describes in detail
the significance of these options, and the choices that have
been made for results presented in this paper.

2) Workload selection: Next, we select a set of benchmarks
and proxy applications that are simulated on the systems. The
choices made here depend primarily on the computation and
communication patterns that are expected to be run on the
systems. Recent focus of the HPC community on developing
proxy applications helps in this step since it provides easy-
to-use, customizable codes that represent diverse applications
executed on production systems [26], [27], [28]. We have
chosen four benchmarks and two proxy applications that
represent and span a wide-range of application design space
in HPC:
• STENCIL: near-neighbor communication in 3D with re-

laxation updates [42], [43], [44].
• TRANSPOSE: permutation communication with matrix-

matrix multiplication [45], [46].
• FFT: all-to-all messages with 1D fast Fourier transform

computation [47], [48], [46].
• FINE-GRAINED: small messages to many neighbors with

property updates [49], [50].
• KRIPKE: discrete-ordinates (SN) transport code with

sweeps and critical path messaging [51].
• QBOX-MINI: multiple MPI collectives in first principles

molecular dynamics [52].
Using these proxy applications, we create workloads that

represent three different modes in which supercomputers are
used in general: a) Single jobs: only one application is
executed on the entire system, b) Capability workloads: a
few large-sized applications are executed simultaneously, and
c) Capacity workloads: many jobs with variable sizes are
executed on the system simultaneously.

TABLE I
DESIGN CHOICES FOR PROTOTYPE SYSTEMS. SPECIFIC VALUES SHOW THE CONFIGURATIONS SIMULATED AND COMPARED IN THIS PAPER.

Design Choice Torus Dragonfly Fat-tree

Number of nodes (n) ∼46656 ∼46656 ∼46656
Router radix (r) 13 6× ceil

((
n
18

)n
4

)
= 48 2× ceil

(
n

1
3

)
= 72

Nodes per router 1 r/6 = 8 r/2 = 36
Routing scheme Shortest-path adaptive Adaptive hybrid Shortest-path adaptive
Network specifics 6D torus: 6×6×6×6×6×6 240 groups with 24 routers each 3-level with full bisection

3) Emulation and simulation: After creating the workloads,
we emulate each of the proxy applications with different
job-sizes using BigSim’s emulation framework to generate
traces that drive the simulation. During emulation, we tag
computation routines and message sends with unique names
so that their characteristics, e.g. time to perform computations
and size of the messages, can be changed during simulation.

To conduct simulations using TraceR, different job place-
ments and task mappings are created in order to optimize
execution on each prototype system. For every proxy ap-
plication, computation time and message sizes used in the
simulation have been decided based on problem sizes that
are typically used for them at a given scale and using the
benchmarking information available from the CORAL and
Trinity procurement websites [27], [28]. Computation time is
obtained by benchmarking the proxy applications on current
systems and projecting those values based on the expected
flop/s provided by prototype systems. The simulation results
thus obtained provide the performance metrics that are used
for evaluating the prototype systems.

4) Combining aggregated performances: The last step in our
methodology is to compute aggregated performance metrics
for high level comparison of different networks. Section VII
provides details related to this step.

A. Prototype System Design
We focus on three topologies that are widely used in

production HPC interconnects (torus, fat-tree, and dragonfly)
to build prototype systems of similar capabilities. Since the
general trend in HPC is to measure a system’s capability by
the peak flop/s it provides, the prototype systems we build for
comparison also have similar peak flop/s. Further, to eliminate
the effect of variable flop/s per node, we assume that nodes
with 4 TF peak capacity are used in each prototype system.
The end result is that we compare different network topologies
assuming similar node counts. This also implies that for our
prototype systems to have compute capacity similar to next
generation supercomputers (∼180 PF), the prototype systems
have ∼46 K nodes.

In order to primarily focus on the effects of interconnect
topology, we keep the following design choices constant across
different prototype systems: bandwidth of links connecting a
pair of routers (12.5 GB/s), injection bandwidth of bus/link
that connects a node’s NIC to its router (12.5 GB/s or 25
GB/s), size of packets that are created by the NIC (1,024
bytes), and buffer size of the virtual channels that store packets

in transit (64 packets). Two variations of prototype systems are
simulated for all topologies: one in which injection bandwidth
between the NIC and the router is same as the link bandwidth
- 12.5 GB/s (called BALANCED INJECTION), and the other
in which the injection bandwidth is 2× the link bandwidth
- 25 GB/s (called HIGH INJECTION). This has been done to
prevent the injection bandwidth from being the bottleneck for
configurations with imbalanced communication load.

Design choices made based on the network topology include
the connectivity of routers, number of nodes per router, and
available routing schemes. The number of nodes per router is
selected so that each network is balanced, i.e. when uniformly
distributed traffic is generated from all nodes, routers should be
able to forward packets without delays in an ideal scenario.
Table I summarizes the topology dependent design choices
made in our prototype systems that are described here for
each of the topology.

Torus: A generic n-dimensional torus can be viewed as
an extension of a n-dimensional grid in which the edges are
wrapped around to form rings. Torus of various dimension
(two to six) have been used in many supercomputers in the
last decade [29], [53], [54], [55]. In a typical torus network,
messages travel many hops when sent from a source node to a
destination node. Thus, the best one can do to create a balanced
torus-based system is to attach only one node per router [56].
Since the bisection bandwidth typically increases as the num-
ber of dimensions are increased, our prototype system based
on torus uses a 6D torus, which is the largest dimensionality
that has been used in a production torus-based system [53].
The 46, 656 nodes are arranged as 6× 6× 6× 6× 6× 6.

Dragonfly: Dragonfly is a multi-level dense topology aimed
at making use of high-radix routers [13], [57]. A typical
dragonfly consists of two levels of connections. At the first
level, routers are connected via a dense topology, e.g. an all-
to-all, to form groups. The groups behave as virtual routers
which are in turn connected in an all-to-all manner. Dragonfly
and its variations have been used in recent supercomputer net-
works [58], [57], and is expected to be the network topology
of Aurora [59].

Kim et al. [13] proposed that for a dragonfly network built
using routers with radix k, k

4 ports should be connected to
compute nodes, k

2 ports should be used for local connections
within a group, and k

4 connections should be used for global
connections across groups. These values are suitable for cre-
ating a balanced system which uses direct routing, i.e., for
every packet injected onto the network, two local and one

��

����

����

����

����

��

����

��� ���� �� ���

��
��
��
��
��
���
��
��
��
�
��
��
��
��
��
���
��
��
��
�

��������������������

����������������������������������

����� �������� ��������

�

�

�

�

�

�

�

��� ���� �� ���
��������������������

������������������������������

��

����

��

����

��

����

��

��� ��� ���� ����

��
��
��
��
��
��
��
��
��
��
���
��
��
��

��������������������

�������������������������������������

����� �������� ��������

�

�

�

�

�

�

�

��� ��� ���� ����
��������������������

���������������������������������

Fig. 3. TRANSPOSE: The fat-tree machine provides the best performance, while the torus machine has the worst performance in most cases. FINE-GRAINED:
The torus machine provides the best performance with balanced injection; the dragonfly machine gets the most benefit from having higher injection bandwidth.

global links are used in the worst case.
However, recent studies and practical deployments [8], [60],

[58] have shown that indirect or hybrid routing is essential to
obtain good performance on dragonfly networks. With indirect
routing, three local links and two global links may be used for
a given packet. Thus, in a balanced system which uses indirect
routing, k

6 ports should be connected to nodes, k
2 ports should

be used for local connections, and k
3 ports should be used for

global connections. These values are used in our prototype
system that consists of 240 groups each with 24 routers.

For the dragonfly-based prototype system, loop-back links
are left unused for intra-group connections for ease of simu-
lations with CODES. Further, since a full-sized system built
using 48 port routers has ∼73K nodes, we use only ten global
links per router (instead of 16) and increase their bandwidth
by 1.6× to restore the balance of the system.

Fat-tree: The key idea behind the fat-tree network is
the following: in a tree topology, the loads on the links
increase as we approach the root; thus, link bandwidth should
be higher for the links closer to the root [61]. Practical
deployments of fat-tree replace the fat switches near the
root with many smaller switches that logically behave as
one large switch as described in Section II-A. This topology
has been widely adopted for deployment of Infiniband-based
supercomputers [62], [63]. Fat-tree is also expected to be
used in two of the largest next generation supercomputers,
Summit [64] and Sierra [65]. Our simulations construct 3-level
fat-tree networks using 72 radix switches.

Routing: Network-specific adaptive routings have used for
the results shown in this paper for all the topologies because
they provided better performance than static routing in all our
experiments.

IV. SINGLE JOB SIMULATIONS

In single job simulations, all nodes of the prototype system
are assigned to the same proxy application. Depending on
the application, either four or sixteen endpoints are executed
on each node. Here, endpoint refers to a control flow that
generates communication, e.g. an MPI process. For each proxy
application, we have attempted to find the best execution time

by trying different routing schemes and task mappings. Since
adaptive routing provides the best execution for all applications
and systems, results for other routing schemes are omitted.

A. Communication-only Simulations

Fig. 3 presents the predicted execution time for the
TRANSPOSE and FINE-GRAINED benchmarks executed in
communication-only mode with 16 endpoints per node. In
every iteration of TRANSPOSE, each endpoint exchanges a
message with another endpoint that is far away from it in rank
space. Hence, communication-only TRANSPOSE stresses the
bisection bandwidth of the network. In the presented results,
the execution time of the torus machine is taken as the base
value that increases almost linearly with the message size.

Fig. 3 (a-b) show that the fat-tree machine consistently
provides up to 40% faster execution in comparison to the torus
machine for BALANCED INJECTION. This is expected since
the bisection bandwidth of the fat-tree network is significantly
greater than the bisection bandwidth of the torus network.
Execution time on the dragonfly machine is significantly better
than the torus machine for many message sizes, but is worse
than the fat-tree machine though their networks have similar
bisection bandwidths.

There is large variation in the performance of the dragonfly
machine. Such variations are observed in the behavior of
the dragonfly network in many results presented in the rest
of this paper. These variations are most likely due to its
hybrid UGAL-L routing scheme that makes greedy decisions
based on limited local information [13]. This hypothesis is
supported by the presence of links that are hot-spots for
cases in which the performance of the dragonfly network is
low. Nonetheless, performance obtained with hybrid UGAL-L
routing is significantly better than the performance obtained
with static routing and indirect routing.

For simulation of TRANSPOSE, the impact of using HIGH
INJECTION instead of BALANCED INJECTION is marginal
both in terms of absolute execution time and relative behavior
among the different networks.

In the FINE-GRAINED benchmark, each endpoint exchanges
small sized messages with approximately 1,000 partners.

���

���

���

����

����

����

� �� �� ��

����������
������������������
�����������������
������������������

��
��
��
��
��
��
��
��
��
��
���
��
��
��

������������������

��������������������������������

����� �������� ��������

�

�

�

�

�

�

� �� �� ��
������������������

����������������������������

��

����

����

����

����

�����

�����

� �� ��

���������� ������������������ �����������������

��
��
��
��
��
��
��
��
��
��
���
��
��
��

������������������

�������������������������������

����� �������� ��������

�

�

�

�

�

�

�

� �� ��
������������������

���������������������������

Fig. 4. STENCIL: Task mapping impacts performance on all machines. KRIPKE: Task mapping and network topology have a negligible effect on performance.

Fig. 3 (c) shows that when the message size is up to a few
hundred bytes, the execution time does not change with the
message size since the software delay, router delay, and link
delay are the primary bottlenecks. For the smallest message
size (100 bytes), the torus machine is fastest due to higher
router and link counts, which helps in reducing the critical
path overheads caused by the fixed delays. For simulation
of FINE-GRAINED with all other message sizes, the benefit
of higher router and link counts in a torus is normalized by
contention for links caused by higher hop counts, and thus
similar execution time is obtained for all the networks with
BALANCED INJECTION

Increase in the bandwidth between NICs and routers (using
HIGH INJECTION) has a positive effect on the dragonfly and
torus machines, both of which provide better distribution of
traffic over their links. This results in significant reduction
in the execution time at relatively larger message sizes. In
contrast, HIGH INJECTION does not affect either the traffic
distribution or execution time on the fat-tree machine.

B. Grid-based Proxy Applications
In both STENCIL and KRIPKE, the 3D application domain

is divided among endpoints arranged in a 3D Cartesian grid.
In every iteration of the STENCIL proxy application, each
endpoint exchanges boundary data with its six immediate
neighbors and then performs relaxation-update. Fig. 4 (a-b)
show results for executing STENCIL with 16 endpoints per
node; each endpoint contains 180 × 180 × 180 grid points
with 40 variables [42]. The projected computation time used in
these simulations for relaxation-update is 36 ms per iteration.

Task mapping has a significant impact on execution time of
STENCIL on all systems. On torus and fat-tree machines with
linear mapping, we found injection of data from NIC to be
the primary bottleneck for STENCIL. Hence as better grouping
of endpoints is performed, which reduces the amount of data
that needs to be injected onto the network, the execution time
reduces. On the dragonfly machine, grouping also helps reduce
load on a few links that are otherwise overloaded due to the
near-neighbor communication pattern.

With HIGH INJECTION, execution time is reduced on all
systems for STENCIL. However, the fat-tree machine makes

the best use of the increased injection bandwidth by grouping
endpoints at the level of router and using the higher bandwidth
for a large fraction of its communication.

In contrast to STENCIL in which all endpoints communicate
simultaneously, KRIPKE performs a sweep that starts from
corners of the particle grid and travels towards the center of
the grid. Computation is performed both at the beginning of
the iteration and when the sweep wavefront reaches a specific
endpoint. These computation times are projected to be 52
ms and 1.1 ms, respectively, assuming 4 endpoints per node.
Depending on their location in the grid, different endpoints
send 1 to 256 messages of size 74 KB each.

Fig. 4 (c-d) show that mapping, network topology, and
injection bandwidth have no impact on the execution time of
KRIPKE despite high variation in link traffic within a network
and among networks. This is because KRIPKE’s sweep creates
a linear dependence in the communication flow and hence all
networks are under-utilized. For example, on the most loaded
link in the torus network, only 70 MB data is transferred,
though the link can transfer 11 GB data in the given time
when fully utilized.

C. Proxy Applications with Collectives
We now present results on proxy applications with collective

operations: FFT and QBOX-MINI. In FFT, endpoints are
arranged as a 3D grid (96×48×40) and a 3D data grid of size
either 20483 or 81923 is divided among them. One step of FFT
computation is simulated by performing all-to-all operations
within sub-communicators defined along the third dimension
of the 3D grid of endpoints. In order to study the effect of
communication, we do not allow grouping of endpoints within
a sub-communicator onto a node. Computation time for FFT
is projected to be 1.1 ms and 6.7 ms for the small and large
grid, respectively.

Fig. 5 (a-b) show that similar performance is obtained for
all systems with BALANCED INJECTION. A look at the per
link traffic data reveals that despite up to 2× difference in
average traffic per link across different network topologies,
links that form the bottleneck in different networks have
similar number of bytes flowing through them. With HIGH
INJECTION, the distribution of traffic improves for dragonfly

��

���

����

���� �� ���� ��
���������� ����������

��
��
��
��
��
��
��
��
��
��
���
��
��
��

����������������������������

����� �������� ��������

�

�

�

���� �� ���� ��
���������� ����������

������������������������

��

���

���

���

����

����

����

� �� ��

����������

�����������������

���������������������

��
��
��
��
��
��
��
��
��
��
���
��
��
��

������������������

����������������������������������

����� �������� ��������

�

�

�

�

�

�

�

� �� ��
������������������

������������������������������

Fig. 5. FFT: Similar execution times are observed on all machines; HIGH INJECTION improves performance on dragonfly and torus machines by up to
27%. QBOX-MINI: Random mapping is necessary to obtain the best performance on the dragonfly machine; HIGH INJECTION improves performance on all
machines.

and torus networks. As a result, up to 27% reduction in
execution time is observed. In contrast, as seen before, the
impact of higher injection on the fat-tree network is negligible.

In QBOX-MINI, endpoints are arranged in a 2D grid with
column-major ordering. Domain data such as electronic states
are divided among columns of endpoints in the 2D grid.
Within a column, a given electronic state is divided among
the endpoints. Every iteration begins with a pair of line-
FFT computations on each endpoint followed by all-to-alls
within the columns and a line-FFT on the endpoints. Then,
all-reduce operation is performed within rows of the 2D grid
of endpoints, followed by more computation.

Fig. 5 (c-d) show that by choosing the right type of mapping,
similar performance can be obtained for all systems with
BALANCED INJECTION. While a randomized mapping is the
best for the dragonfly machine, a linear mapping that places
endpoints within a column close to each other is not good.
Random node mapping strikes a good balance and provides
reasonable performance for all systems. Increasing injection
bandwidth improves performance for all systems. For the
fat-tree machine, the improvement is significant only when
linear mapping is used because majority of communication is
between the NICs and switches.

V. CAPABILITY WORKLOAD SIMULATIONS

In the capability workload simulations, four jobs are ex-
ecuted simultaneously on a given system. We fix the size of
each of these jobs to be 11,520 nodes, i.e. one-fourth of the full
system. Depending on the application, different message sizes,
projected computation time, and number of endpoints per node
are chosen. Also, based on the expected time per iteration,
different applications are simulated for varying number of it-
erations to make them execute for similar amount of total time
in the ideal scenario. Both TRANSPOSE and FINE-GRAINED
proxy applications are also simulated with computation, unlike
Section IV-A in which they were simulated in communication-
only mode. Two types of job placements are simulated: linear
distribution and random distribution of nodes among jobs. Best

possible task mapping is used within each job based on the
results from the previous section.

Fig. 6 presents the predicted execution time for each ap-
plication simulated as part of six different workloads. Results
from simulation of additional workloads are omitted due to
lack of space. In Fig. 6 (a-b), predicted times for running
four STENCIL and four TRANSPOSE jobs are shown. With
linear job placement, all four jobs within a workload finish
execution in similar time. This shows that all networks are
able to minimize interference for symmetric workloads. How-
ever, when random job placement is used for TRANSPOSE,
significantly different execution times are observed for the
jobs running on the dragonfly machine. More experiments
with minor changes in application configuration show that
jobs running on the dragonfly network experience significant
variations with random job placement.

In terms of absolute time, torus and fat-tree machines
provide similar execution time for both workloads with BAL-
ANCED INJECTION. Dragonfly machine is only 7% slower
for the 4-STENCILs workload, but is 53% slower for the 4-
TRANSPOSEs workload. This is because while the average
traffic on links of the dragonfly network is similar to that of
torus and fat-tree networks, the bottleneck links on the drag-
onfly network have up to 2× higher load. With randomized
placement, load on the bottleneck links of torus either remains
similar (for STENCIL) or decreases (for TRANSPOSE). For the
dragonfly network, with randomized job placement, execution
time and worst-case link traffic increases for STENCIL and
decreases for TRANSPOSE.

Use of HIGH INJECTION improves performance in most
cases in Fig. 6 (a-b), especially for the execution of four
STENCIL jobs on the fat-tree machine. This trend is similar
to the one observed in the previous section, where the best
blocked task mapping limits a significant fraction of the
communication to links connecting NICs and routers. For 4-
TRANSPOSEs workload, HIGH INJECTION also leads to better
traffic distribution for all networks, thus reducing load on the
most loaded links.

Fig. 6 (c-f) present prediction results for parallel workloads

���

����

����

����

������ ������ ������ ������

��������������������������������

��
��
��
��
��
��
��
��
��
��
���
��
��
��

���������������

������� ��������� ������������ ��� ������ ���������

����� �������� ��������

���

���

����

����

����

����

������ ������ ������ ������

��������������������������������

�����������������

����� �������� ��������

����

����

����

����

����

����

����

������ ������ ������ ������

��������������������������������

���

���

���

���

����

����

����

����

������ ������ ������ ������

����������������������������������
��
��
��
��
��
��
��
��
��
���
��
��
��

��

��

����

����

����

����

�����

������ ������ ������ ������

��������������������������������

������������������������������������

��

����

����

����

����

������ ������ ������ ������

��������������������������������

��������������������������������������

Fig. 6. Capability workloads with different job placements. The torus machine consistently provides good performance. Randomized placement can impact
performance on the fat-tree machine. The dragonfly machine shows large variations with job placement and different injection bandwidths.

that comprise four different proxy applications each. In these
results, the torus machine is consistently among the best
performing systems. This is because it consistently provides
a good distribution of traffic without excessively overloading
a few links. Use of random job placement typically increases
the average traffic for the torus network but does not increase
the load on the bottleneck links significantly. Thus, it does
not affect the execution time, except for TRANSPOSE which
benefits from the higher available bisection bandwidth.

The performance of the fat-tree machine closely follows the
torus machine but is typically worse than the torus machine,
especially for TRANSPOSE, where the torus network is sig-
nificantly faster. For all simulations, bytes on most congested
links in the fat-tree network are higher than the corresponding
value on the torus network. Random job placement leads to
further increase in execution time on the fat-tree machines for
many applications in the data sets.

The average execution time on the dragonfly machine is
worst among the three networks, and so is the amount of traffic
on the most congested links in the dragonfly network. In the
cases where the linear job placement leads to bad performance,
use of random job placement is able to better distribute the
traffic and improve performance significantly for the dragonfly
machine.

Use of HIGH INJECTION helps reduce the execution time for

torus and dragonfly machines for four applications: STENCIL,
TRANSPOSE, FFT, and QBOX-MINI. These results are consis-
tent with the observations made in the analysis of single job
simulations. For the fat-tree machine, HIGH INJECTION has
a positive impact consistently only for STENCIL and QBOX-
MINI. However, for FFT, it hurts performance significantly as
shown in Fig. 6 (f). A detailed look at the link traffic statistics
reveals that significant link load imbalance is observed in
this simulation, and hence performance of all applications is
negatively impacted.

VI. CAPACITY WORKLOAD SIMULATIONS

A common usage scenario for many large-scale systems
called execution in capacity mode involves scheduling hun-
dreds of jobs of varying sizes. In this section, we mimic
execution in capacity mode by simulating 350 jobs of different
sizes ranging from 32 nodes to 1,024 nodes with either 4 or
16 endpoints per node. For each job, one of the six proxy
applications is selected in a uniformly random manner to
determine the computation and control flow of the job.

Depending on the size of the job and the proxy application
assigned to it, different message sizes and computation times
are used in the simulations. These parameters are chosen such
that each proxy application is either weak-scaled or strong-
scaled. For a given combination of proxy application and job

 16

 32

 64

 128

 256

 512

Fine-grained Transpose Stencil FFT Kripke Qbox-mini

Ex
ec

ut
io

n
tim

e
(m

s)
(a) Linear job placement of 32-64 node sized jobs (balanced injection)

Fine-grained Transpose Stencil FFT Kripke Qbox-mini

(b) Linear job placement of 128-1024 node sized jobs (balanced injection)

16

32

64

128

256

512

Fine-grained Transpose Stencil FFT Kripke Qbox-mini

Ex
ec

ut
io

n
tim

e
(m

s)

(c) Random job placement of 32-64 node sized jobs (balanced injection)

Fine-grained Transpose Stencil FFT Kripke Qbox-mini

(d) Random job placement of 128-1024 node sized jobs (balanced injection)

16

32

64

128

256

512

Fine-grained Transpose Stencil FFT Kripke Qbox-mini

Ex
ec

ut
io

n
tim

e
(m

s)

(e) Linear job placement of 32-64 node sized jobs (high injection)

Fine-grained Transpose Stencil FFT Kripke Qbox-mini

(f) Linear job placement of 128-1024 node sized jobs (high injection)

16
32
64

128
256
512

1024

Fine-grained Transpose Stencil FFT Kripke Qbox-mini

Ex
ec

ut
io

n
tim

e
(m

s)

(g) Random job placement of 32-64 node sized jobs (high injection)

Fine-grained Transpose Stencil FFT Kripke Qbox-mini

Torus Fat-tree Dragonfly

Fine-grained Transpose Stencil FFT Kripke Qbox-mini

(h) Random job placement of 128-1024 node sized jobs (high injection)

Fig. 7. Evaluating performance of a capacity workload with 350 jobs of sizes 32–1,024 nodes. Fat-tree and torus machines provide the best performance with
linear and random job placement, respectively. With HIGH INJECTION, different network topologies provide the best performance for different applications.

size, the same trace is used to drive every job that is assigned
that combination.

The capacity workload is simulated on all three prototype
systems using either linear or random job placement and with
BALANCED INJECTION or HIGH INJECTION. Fig. 7 presents
the results obtained for these simulations wherein predicted
execution time for each job is shown. The graphs on the
left side show results for all 250 small jobs of size 32-64
nodes, while the right graphs are for the remaining 100 jobs
of size 128-1,024 nodes. For ease of presentation, the jobs are
arranged based on the proxy applications assigned to them.
The jobs of each proxy application are sorted in an ascending
order based on the number of nodes assigned to them.

With linear job placement using BALANCED INJECTION
(Fig. 7 (a-b)), we observe that minimal variation and similar
execution time is predicted for all jobs executing FINE-
GRAINED and KRIPKE. For TRANSPOSE, STENCIL and FFT,
the fat-tree machine provides the best performance.

The performance of the torus machine is similar to the
fat-tree machine for TRANSPOSE, but the execution time on
the dragonfly machine can be twice as high. For small jobs
of STENCIL, the dragonfly machine’s performance is worse
than the fat-tree while showing significant variations for larger
jobs. For QBOX-MINI, the execution time is minimum for the

dragonfly machine except when the job size is 1,024 nodes.
The torus machine does worse than both other systems in
most cases for QBOX-MINI. Overall, the fat-tree machine
provides the best performance which is also reflected in its
traffic distribution. The load on the most congested link on the
fat-tree network is 10% and 57% less than the corresponding
values on the torus and dragonfly networks, respectively.

With random job placement using BALANCED INJECTION
(Fig. 7 (c-d)), a few key differences are observed. For TRANS-
POSE, the performance on the dragonfly machine improves
and is closer to other machines, especially for large job-sizes.
However, there is high variability across different TRANSPOSE
jobs executed on the dragonfly machine. The execution time
for STENCIL jobs running on the dragonfly machine is also
reduced. In contrast, many TRANSPOSE and STENCIL jobs
running on the fat-tree machine are now slower. Marginal
impact is observed on runtime of similar jobs running on the
torus machine.

With random job placement, performance of FFT on both
torus and dragonfly machines improves significantly in com-
parison to linear job placement, while similar jobs executing
on the fat-tree machine run longer. Higher variability and
execution time is predicted for KRIPKE and QBOX-MINI on
dragonfly and fat-tree machines but the performance of the

��

����

����

����

����

����

����

����

����

����

����������� ��������������� �������������

��
��
��
�
��
��

�
��
��
��

���

�����
��������
��������

��

����

����

����

����

����

����

����

����

����

����������� ��������������� �������������

��
��
��
�
��
��

�
��
��
��

���

�����
��������
��������

Fig. 8. Different networks provide the best performance for different workloads and configurations. Higher injection is beneficial for performance of dragonfly
and fat-tree machines. For capacity jobs, results with both linear and random job placements are shown.

torus network is unaffected. In general, the torus network is
predicted to perform the best with random job placement, with
worst case link load being 30% and 50% less than the fat-tree
and dragonfly networks respectively.

When HIGH INJECTION is used with linear job place-
ment (Fig. 7 (e-f)), execution time for most applications
(TRANSPOSE, FFT, STENCIL, and QBOX-MINI) on the fat-
tree machine reduces. However, its impact on performance on
torus and dragonfly machines is minimal, except for QBOX-
MINI. The predicted time for QBOX-MINI on the dragonfly
machine reduces significantly with HIGH INJECTION.

In contrast, when the injection bandwidth is increased for
random job placement (Fig. 7 (g-h)), the performance on the
fat-tree machine drops heavily although the distribution of
traffic on its links does not change significantly. We were
unable to find the root cause of this extreme slowdown on the
fat-tree machine. The impact of HIGH INJECTION on torus
and dragonfly networks is limited when using random job
placement as was the case with linear job placement.

VII. AGGREGATING PERFORMANCE METRICS

We define the aggregated performance of a workload W
that consists of n jobs as the sum of the effective bandwidths
achieved by each individual job, i.e.,

P (W) =

n∑
i=1

commi

ti

where commi is the total number of bytes communicated by
job i and ti is the predicted execution time of job i.

Fig. 8 compares the three networks using the aggregated
performance of all single jobs and all workloads. The x-axis
shows from left to right: all single jobs (in the same order
as Fig. 7), all capability workloads (in the same order as
Fig. 6) and the capacity workload from Section VI with two
placements (linear, random). In these plots, for each workload
and network combination, the best aggregated performance
from among the different job placements is shown.

For scenarios with BALANCED INJECTION (Fig. 8 (a)),
we observe that all machines provide similar aggregated

performance for most single jobs. This is because different
task mappings are able to optimize network utilization, except
for communication-only TRANSPOSE whose performance is
limited by bisection bandwidth. For capability workloads
simulated in this paper, the torus machine consistently achieves
the best performance, while the fat-tree machine is marginally
worse. The trend is reversed for the capacity workload, in
which fat-tree achieves the best performance using linear job
placement and torus is marginally worse (4%) using random
job placement.

With HIGH INJECTION (Fig. 8 (b)), different machines
provide the best aggregated performance for single jobs. For
capability workloads, the aggregated performance increases
on all networks in comparison to the BALANCED INJECTION
scenario. However, the torus machine continues to achieve the
highest aggregated performance for most capability workloads.
Similarly, the fat-tree machine still has the highest aggregated
performance for the capacity workload, which is 16% and 34%
greater than the torus and dragonfly machines, respectively.

VIII. DISCUSSION AND FUTURE WORK

In order to utilize HPC systems effectively, new methods
are needed to analyze diverse realistic workloads over an array
of network alternatives. In this paper, we have demonstrated
that TraceR built on top of CODES is capable of simulating
large-scale systems executing such realistic and complex HPC
workloads.

We have leveraged TraceR to demonstrate a comprehensive
methodology useful for comparing performance of different
network topologies. Using this methodology, specific pro-
totype systems based on popular network topologies were
explored for a variety of realistic workloads. For single job
executions, we found that the use of task mapping leads to
similar performance for all networks. With higher injection
bandwidth, different networks achieve best performance. For
multi-job workloads with a few large jobs, the torus network
consistently achieves the best performance with the fat-tree
network’s performance being slightly worse. For the capacity
workload designed by us, the aggregated performance of
the fat-tree machine is the best. We also found that the

dragonfly machine is more likely to show higher variability
in performance when multiple jobs are executed on it using
randomized job placement.

Given the numerous parameters related to network design,
and the diversity in workloads routinely run at different HPC
centers, it is desirable to conduct similar detailed studies to
find the optimal network for a given scenario. We hope that
the new simulation capability and methodology presented in
this paper can be deployed to make optimal choices based on
the requirements of different supercomputing centers.

In the future, we plan to extend this methodology to include
dollar cost estimates for network procurement and operation.
By combining performance metrics with cost estimates, we
can compare performance efficacy of different networks with
respect to their procurement and operational costs. We also
plan to simulate fat-tree network models with programmable
connectivity and different routing schemes.

ACKNOWLEDGMENT

The authors thank Misbah Mubarak and John Jenkins for
their help in this project. The authors also thank Adam Moody
for sharing information on fat-tree networks and Chad Wood
for proofreading the paper.

This work was performed under the auspices of the
U.S. Department of Energy (DOE) by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344
(LLNL-CONF-690662). This research was partly funded by
the following grants: NSF SI2-SSI Grant ID ACI 13-39715,
U.S. DOE Award Number DE-NA0002374 and the Blue
Waters sustained-petascale computing project (NSF Award
Number OCI 07-25070). This research used resources at
the Argonne Leadership Computing Facility and Oak Ridge
Leadership Computing Facility, both supported by the Office
of Science of the U.S. DOE.

REFERENCES

[1] M. Ould-Khaoua and H. Sarbazi-Azad, “An analytical model of adaptive
wormhole routing in hypercubes in the presence of hot spot traffic,”
IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 3,
pp. 283–292, 2001.

[2] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “Logp: Towards a realistic model
of parallel computation,” in Fourth ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming PPOPP, San Diego,
CA, May 1993.

[3] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“Loggp: incorporating long messages into the logp modelone step closer
towards a realistic model for parallel computation,” in Proceedings
of the seventh annual ACM symposium on Parallel algorithms and
architectures, ser. SPAA ’95. New York, NY, USA: ACM, 1995, pp.
95–105. [Online]. Available: http://doi.acm.org/10.1145/215399.215427

[4] D. Martinez, J. Cabaleiro, T. Pena, F. Rivera, and V. Blanco, “Accurate
analytical performance model of communications in mpi applications,”
in Parallel Distributed Processing, 2009. IPDPS 2009. IEEE Interna-
tional Symposium on, May 2009, pp. 1–8.

[5] M. J. Clement and M. J. Quinn, “Analytical performance prediction on
multicomputers,” in Supercomputing, 1993, pp. 886–894.

[6] C. A. Moritz and M. I. Frank, “Logpc: Modeling network contention in
message-passing programs,” SIGMETRICS Perform. Eval. Rev., vol. 26,
no. 1, pp. 254–263, Jun. 1998.

[7] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific language
for performance modeling,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 84:1–84:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389110

[8] N. Jain, A. Bhatele, X. Ni, N. J. Wright, and L. V. Kale, “Maximizing
throughput on a dragonfly network,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp.
336–347. [Online]. Available: http://dx.doi.org/10.1109/SC.2014.33

[9] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate network-
on-chip simulator,” in IEEE International Symposium on Performance
Analysis of Systems and Software, 2013.

[10] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé, “Simulation-
based performance prediction for large parallel machines,” in Interna-
tional Journal of Parallel Programming, vol. 33, no. 2-3, 2005, pp.
183–207.

[11] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - Simulating
Large-Scale Applications in the LogGOPS Model,” in Proceedings of
the 19th ACM International Symposium on HPDC. ACM, Jun. 2010,
pp. 597–604.

[12] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A.
Evensky, and J. Mayo, “A simulator for large-scale parallel computer
architectures.” IJDST, vol. 1, no. 2, pp. 57–73, 2010.

[13] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” SIGARCH Comput. Archit. News, vol. 36,
pp. 77–88, June 2008.

[14] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: A cost-
efficient topology for high-radix networks,” SIGARCH Comput. Archit.
News, vol. 35, no. 2, pp. 126–137, Jun. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1273440.1250679

[15] M. Besta and T. Hoefler, “Slim fly: A cost effective low-diameter
network topology,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’14. IEEE Press, 2014, pp. 348–359.

[16] G. Kathareios, C. Minkenberg, B. Prisacari, G. Rodriguez, and T. Hoe-
fler, “Cost-Effective Diameter-Two Topologies: Analysis and Evalua-
tion.” ACM, Nov. 2015, in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC15).

[17] N. Jiang, L. Dennison, and W. J. Dally, “Network endpoint congestion
control for fine-grained communication,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’15. New York, NY, USA: ACM, 2015.
[Online]. Available: http://doi.acm.org/10.1145/2807591.2807600

[18] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: A high-performance,
low-memory, modular Time Warp system,” Journal of Parallel and
Distributed Computing, vol. 62, no. 11, pp. 1648–1669, 2002.

[19] E. Mikida, N. Jain, E. Gonsiorowski, P. D. Barnes, Jr., D. Jefferson,
C. D. Carothers, and L. V. Kale, “Towards pdes in a message-driven
paradigm: A preliminary case study using charm++,” in ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (PADS), ser.
SIGSIM PADS ’16 (to appear). ACM, May 2016.

[20] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Enabling
parallel simulation of large-scale hpc network systems,” IEEE Trans.
Parallel Distrib. Syst., 2016.

[21] M. Mubarak, C. D. Carothers, R. Ross, and P. Carns, “A case study
in using massively parallel simulation for extreme-scale torus network
codesign,” in SIGSIM PADS’14, 2014, pp. 27–38.

[22] ——, “Modeling a million-node dragonfly network using massively
parallel discrete-event simulation,” in High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion:, Nov
2012, pp. 366–376.

[23] B. Acun, N. Jain, A. Bhatele, M. Mubarak, C. D. Carothers, and L. V.
Kale, “Preliminary evaluation of a parallel trace replay tool for hpc
network simulations,” in Workshop on Parallel and Distributed Agent-
Based Simulations, ser. PADABS, EURO-PAR, Aug. 2015.

[24] “MPI: A Message Passing Interface Standard,” in MPI Forum,
http://www.mpi-forum.org/.

[25] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni,
M. Robson, Y. Sun, E. Totoni, L. Wesolowski, and L. Kale, “Parallel
Programming with Migratable Objects: Charm++ in Practice,” ser. SC,
2014.

http://doi.acm.org/10.1145/215399.215427
http://dl.acm.org/citation.cfm?id=2388996.2389110
http://dx.doi.org/10.1109/SC.2014.33
http://doi.acm.org/10.1145/1273440.1250679
http://doi.acm.org/10.1145/2807591.2807600

[26] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratories, Tech. Rep., September 2009.

[27] “CORAL Collaboration Benchmark Codes,” https://asc.llnl.gov/
CORAL-benchmarks.

[28] “NERSC-8 / Trinity Benchmarks.” [Online]. Avail-
able: http://www.nersc.gov/users/computational-systems/cori/
nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks

[29] M.Blumrich, D.Chen, P.Coteus, A.Gara, M.Giampapa, P.Heidelberger,
S.Singh, B.Steinmacher-Burow, T.Takken, and P.Vranas, “Design and
Analysis of the Blue Gene/L Torus Interconnection Network,” IBM
Research Report, December 2003.

[30] V. Puente, R. Beivide, J. Gregorio, J. Prellezo, J. Duato, and C. Izu,
“Adaptive bubble router: a design to improve performance in torus net-
works,” in Parallel Processing, 1999. Proceedings. 1999 International
Conference on, 1999, pp. 58–67.

[31] L. Schwiebert and D. N. Jayasimha, “On measuring the performance of
adaptive wormhole routing,” hipc, vol. 00, p. 336, 1997.

[32] S. Kumar, Y. Sabharwal, R. Garg, and P. Heidelberger, “Optimization
of all-to-all communication on the blue gene/l supercomputer,”
in Proceedings of the 2008 37th International Conference on
Parallel Processing, ser. ICPP ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 320–329. [Online]. Available: http:
//dx.doi.org/10.1109/ICPP.2008.83

[33] D. Chen, N. Eisley, P. Heidelberger, S. Kumar, A. Mamidala,
F. Petrini, R. Senger, Y. Sugawara, R. Walkup, B. Steinmacher-Burow,
A. Choudhury, Y. Sabharwal, S. Singhal, and J. J. Parker, “Looking
under the hood of the ibm blue gene/q network,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2012, pp. 69:1–69:12. [Online].
Available: http://dl.acm.org/citation.cfm?id=2388996.2389090

[34] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 63–74, Aug. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1402946.1402967

[35] X. Yuan, “On nonblocking folded-clos networks in computer commu-
nication environments,” in Parallel Distributed Processing Symposium
(IPDPS), 2011 IEEE International, May 2011, pp. 188–196.

[36] K. Underwood, M. Levenhagen, and A. Rodrigues, “Simulating red
storm: Challenges and successes in building a system simulation,” in
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, 2007, pp. 1 –10.

[37] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Optimized
infinibandtm fat-tree routing for shift all-to-all communication patterns,”
Concurrency and Computation: Practice and Experience, vol. 22, no. 2,
pp. 217–231, 2010. [Online]. Available: http://dx.doi.org/10.1002/cpe.
1527

[38] B. Prisacari, G. Rodriguez, C. Minkenberg, and T. Hoefler, “Fast
pattern-specific routing for fat tree networks,” ACM Trans. Archit. Code
Optim., vol. 10, no. 4, pp. 36:1–36:25, Dec. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2555289.2555293

[39] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding hot-spots
on two-level direct networks,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’11. New York, NY, USA: ACM, 2011, pp. 76:1–
76:11.

[40] A. Bhatele, “Automating Topology Aware Mapping for Supercom-
puters,” Ph.D. dissertation, Dept. of Computer Science, University of
Illinois, August 2010, http://hdl.handle.net/2142/16578.

[41] T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in Proceedings of the international
conference on Supercomputing, ser. ICS ’11. New York, NY, USA:
ACM, 2011, pp. 75–84.

[42] “MiniGhost finite difference mini-application.” http://www.
nersc.gov/users/computational-systems/cori/nersc-8-procurement/
trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minighost/.

[43] M. Collaboration, “MIMD Lattice Computation (MILC) Collaboration
Home Page,” http://www.physics.indiana.edu/∼sg/milc.html.

[44] “The weather research & forecasting model website,” http://wrf-model.
org.

[45] A. Gupta and V. Kumar, “Scalability of parallel algorithms for matrix
multiplication,” Parallel Processing, 1993. ICPP 1993. International
Conference on, vol. 3, pp. 115–123, Aug. 1993.

[46] N. Jain, E. Bohm, E. Mikida, S. Mandal, M. Kim, P. Jindal, Q. Li,
S. Ismail-Beigi, G. Martyna, and L. Kale, “Openatom: Scalable ab-
initio molecular dynamics with diverse capabilities,” in International
Supercomputing Conference, ser. ISC HPC ’16 (to appear), 2016.

[47] M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, T. J. C. Ward, and
R. S. Germain, “Scalable framework for 3D FFTs on the Blue Gene/L
supercomputer: Implementation and early performance measurements,”
IBM Journal of Research and Development, vol. 49, no. 2/3, 2005.

[48] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter, and
E. A. Williams, “Filamentation and forward brillouin scatter of entire
smoothed and aberrated laser beams,” Physics of Plasmas, vol. 7, no. 5,
p. 2023, 2000.

[49] J. Carrier, L. Greengard, and V. Rokhlin, “A fast adaptive multipole
algorithm for particle simulations,” SIAM J. Sci. Stat. Comput., vol. 9,
Jul. 1988.

[50] J.-S. Yeom, A. Bhatele, K. R. Bisset, E. Bohm, A. Gupta, L. V.
Kale, M. Marathe, D. S. Nikolopoulos, M. Schulz, and L. Wesolowski,
“Overcoming the scalability challenges of epidemic simulations on blue
waters,” in Proceedings of the IEEE International Parallel & Distributed
Processing Symposium, ser. IPDPS ’14. IEEE Computer Society, May
2014.

[51] A. J. Kunen, T. S. Bailey, and P. N. Brown, “KRIPKE - a massively
parallel transport mini-app,” Lawrence Livermore National Laboratory
(LLNL), Livermore, CA, Tech. Rep., 2015.

[52] F. Gygi, E. W. Draeger, M. Schulz, B. R. de Supinski, J. A. Gunnels,
V. Austel, J. C. Sexton, F. Franchetti, S. Kral, C. W. Ueberhuber,
and J. Lorenz, “Large-scale electronic structure calculations of
high-z metals on the bluegene/l platform,” in Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing, ser. SC
’06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1188455.1188502

[53] Y. Ajima, S. Sumimoto, and T. Shimizu, “Tofu: A 6d mesh/torus
interconnect for exascale computers,” Computer, vol. 42, pp. 36–40,
2009.

[54] Cray Inc., “Cray XE6 Specifications,” http://www.cray.com/Assets/PDF/
products/xe/CrayXE6Brochure.pdf, 2010.

[55] S. Kumar, A. Mamidala, D. Faraj, B. Smith, M. Blocksome, B. Cer-
nohous, D. Miller, J. Parker, J. Ratterman, P. Heidelberger, D. Chen,
and B. Steinmacher-Burow, “PAMI: A parallel active message interface
for the BlueGene/Q supercomputer,” in Proceedings of 26th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
Shanghai, China, May 2012.

[56] Cray T3D System Architecture Overview, Cray Research, Inc., March
1993.

[57] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The
PERCS High-Performance Interconnect,” in 2010 IEEE 18th Annual
Symposium on High Performance Interconnects (HOTI), August 2010,
pp. 75–82.

[58] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray cascade: A
scalable hpc system based on a dragonfly network,” in High Performance
Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for, Nov 2012.

[59] “AURORA, Argonne National Laboratory,” http://aurora.alcf.anl.gov/.
[60] B. Prisacari, G. Rodriguez, P. Heidelberger, D. Chen, C. Minkenberg,

and T. Hoefler, “Efficient task placement and routing of nearest
neighbor exchanges in dragonfly networks,” in Proceedings of the 23rd
International Symposium on High-performance Parallel and Distributed
Computing, ser. HPDC ’14. ACM, 2014, pp. 129–140. [Online].
Available: http://doi.acm.org/10.1145/2600212.2600225

[61] C. Leiserson, “Fat-trees: Universal Networks for Hardware-Efficient
Supercomputing,” IEEE Transactions on Computers, vol. 34, no. 10,
October 1985.

[62] “Lonestar supercomputer at TACC,” https://www.tacc.utexas.edu/
systems/lonestar.

[63] “Stampede supercomputer at TACC,” https://www.tacc.utexas.edu/
stampede/.

[64] “SUMMIT, Oak Ridge National Laboratory,” https://www.olcf.ornl.gov/
summit/.

[65] “Sierra, Lawrence Livermore National Laboratory,” https://asc.llnl.gov/
coral-info.

https://asc.llnl.gov/CORAL-benchmarks
https://asc.llnl.gov/CORAL-benchmarks
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
http://dx.doi.org/10.1109/ICPP.2008.83
http://dx.doi.org/10.1109/ICPP.2008.83
http://dl.acm.org/citation.cfm?id=2388996.2389090
http://doi.acm.org/10.1145/1402946.1402967
http://dx.doi.org/10.1002/cpe.1527
http://dx.doi.org/10.1002/cpe.1527
http://doi.acm.org/10.1145/2555289.2555293
http://hdl.handle.net/2142/16578
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minighost/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minighost/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/minighost/
http://www.physics.indiana.edu/~sg/milc.html
http://wrf-model.org
http://wrf-model.org
http://doi.acm.org/10.1145/1188455.1188502
http://www.cray.com/Assets/PDF/products/xe/CrayXE6Brochure.pdf
http://www.cray.com/Assets/PDF/products/xe/CrayXE6Brochure.pdf
http://aurora.alcf.anl.gov/
http://doi.acm.org/10.1145/2600212.2600225
https://www.tacc.utexas.edu/systems/lonestar
https://www.tacc.utexas.edu/systems/lonestar
https://www.tacc.utexas.edu/stampede/
https://www.tacc.utexas.edu/stampede/
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
https://asc.llnl.gov/coral-info
https://asc.llnl.gov/coral-info

	Introduction and Motivation
	Augmentations to CODES and TraceR
	CODES
	TraceR

	Evaluation Methodology
	Prototype System Design

	Single Job Simulations
	Communication-only Simulations
	Grid-based Proxy Applications
	Proxy Applications with Collectives

	Capability Workload Simulations
	Capacity Workload Simulations
	Aggregating Performance Metrics
	Discussion and Future Work
	References

