
VIPACT: A Visualization Interface for Analyzing
Calling Context Trees

Huu Tan Nguyen∗, Lai Wei†, Abhinav Bhatele‡, Todd Gamblin‡, David Boehme‡,
Martin Schulz‡, Kwan-Liu Ma∗, Peer-Timo Bremer‡

∗Department of Computer Science, University of California, Davis, California 95616 USA
†Department of Computer Science, Rice University, Houston, Texas 77251 USA

‡Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551 USA
∗{htpnguyen, klma}@ucdavis.edu, †lai.wei@rice.edu, ‡{bhatele, tgamblin, boehme3, schulzm, ptbremer}@llnl.gov

Abstract—Profiling tools are indispensable for performance
optimization of parallel codes. They allow users to understand
where a code spends its time, and to focus optimization efforts
on the most time consuming regions. However, two sources of
complexity make them difficult to use on large-scale parallel
applications. First, the code complexity of parallel applications
is increasingly, and identifying the problematic regions in the
code is difficult. Traditional profilers show either a flat view
or a calling context tree view. Second, most tools average
performance data across processes, losing per-process behavior.
Diagnosing problems like load imbalance requires profiles from
many processes, and manually analyzing profiles from hundreds
or thousands of processes is infeasible. We introduce VIPACT,
a visualization tool to identify different behaviors in multiple
processes. VIPACT introduces “halo nodes” that concisely encode
the distributions of runtimes from all processes, and a hybrid tree
view that combines the advantages of calling context trees with
those of flat profiles. We combine these with approaches such as
ring charts, as well as the filtering and subselection of nodes, and
we apply these techniques to a production multi-physics code.

I. INTRODUCTION

Parallel simulation codes are expected to scale to ever larger
processor counts as supercomputers continue to grow, which
makes optimizing their performance increasingly challenging.
A variety of tools and techniques have been developed to
assist programmers in collecting and analyzing performance
data. A common technique is to create a flat profile [1],
which shows the aggregate runtime, invocation count, etc.,
associated with each function. This allows users to quickly
identify the most heavily exercised portions of a code and
to target optimization efforts. However, many functions, es-
pecially those in commonly used libraries, may be called
throughout the code with different parameters or global state,
and only some scenarios may exhibit performance problems.
Flat profiles hide this information. To mitigate this, Ammons
et al. [2] developed calling context tree (CCT) profiles, in
which data is collected with respect to each stack frame. CCTs
comprise the merged call-stacks from all functions invoked
during the course of program execution, with each frame in
the stack represented with a node in the tree, and with common
prefixes merged. Typically, each stack in the CCT is rooted
at main, and nodes are annotated with inclusive time (time
spent in a node and its descendants) and exclusive time (time

spent in only that node) [1], [3]. A CCT can differentiate a
function called in different ways from different regions, but
it also hides the effects of low cost functions called from
many places, when the overall runtime of the function is
high. Further, when performance data is aggregated across
processes, an aggregate CCT or an aggregate flat profile still
obscures problems occurring on a small subset of CCTs (one
CCT per process), yet directly visualizing thousands of trees
is infeasible.

While there exist a number of tools that present both
flat profiles and CCTs to help analyze large-scale simulation
codes [1] these tools typically show the flat profile and the
CCT as two independent views. This requires users to cross-
compare information such as global versus per call-stack
runtime manually which is tedious and error prone. Further,
most existing tools show a single aggregated tree or at most
a small number of trees. This makes the task of comparing
a large number of trees, which is important to find localized
performance problems, difficult. To address these problems,
we create VIPACT. VIPACT is a visualization tool that allows
users to quickly find performance variations in ensembles
of CCTs from many processes. This is a necessary step to
identify load imbalance. Similar to the global approach, we
map all CCTs onto a joint global tree to create a matching
tree topology. However, VIPACT maintains the relevant per-
process performance data separately which allows us to encode
the distribution of measurements across all trees on each
node. In addition, VIPACT provides a new hybrid view which
combines the advantages of a flat profile with that of a CCT
allowing users to understand both the context a function was
called in and its runtime cost.

II. RELATED WORK

The CCT is a hierarchical data structure used to store
the calling contexts of an application [2], [4]. For initial
explorations of a CCT, visualizations have been effective
in conveying the hierarchical structure and accompanying
information [4], [5], [6], [7]. The most common represen-
tation of a CCT is the node-link layout [8], in which each
function invocation is represented as a node and the caller-
callee relationship is represented as an edge. Traditionally,



performance data such as CPU runtime is encoded onto the
node using shape, color, and/or size of the node [8], [9].
For example, DeRose et al. use bar charts as nodes to show
load imbalance [10]. One important disadvantage of node-
link layout is the amount of screen space required to present
the CCT. However, if properly filtered we have found that
node-link diagrams are easy to understand and can effectively
convey the hierarchical structure of a CCT.

Another common method to show CCTs is using a radial
layout. Moret et al. introduce the Calling Context Ring Chart
(CCRC) [4], which uses the sunburst diagram [7] as the
visual metaphor, which is an intuitive and scalable method to
visualize and analyze data encoded at the nodes of a CCT.
Each ring is partitioned into segments, where the number
of segments is determined by the number of nodes at that
particular level of the tree. The area of the segment is set by
a metric. However, we found that the hierarchical structure of
a CCT is not well represented using CCRC.

Another common visual encoding for trees and hierarchical
data in general is Treemap which has been used as a space-
filling encoding of CCTs [8]. Treemap is one of the more
scalable methods to display hierarchical data. However, be-
cause only leaf nodes are directly visible, Treemap is not very
effective in analyzing the hierarchical structure of the tree [4].

Various tools exist to present CCTs. For example, HPC-
Toolkit [3] is an open source suite of tools for measuring and
presenting performance data. hpcviewer, which is a part
of HPCToolkit, allows users to analyze both flat profiles and
CCTs. However, both views are independent of each other,
requiring users to manually draw connections between them.
Further, HPCToolkit presents a CCT as an expandable tree,
which can take significant effort to browse. Trevis [11] is a
tool that shows CCTs using both node-link layout and CCRCs.
However, Trevis does not support flat profiles, which may
hinder the analysis of some applications. In addition, although
Trevis allows users to compare multiple trees, it does so by
using a dissimilarity matrix and pairwise comparison, which
is ineffective for large-scale applications where hundreds of
trees need to be compared. To address issues with these
existing tools, we have developed VIPACT, which is capable of
showing hundreds of CCTs in a combined view and integrating
information from the flat profile in a novel hybrid view.

III. APPROACH

VIPACT introduces two new concepts for users to quickly
find performance variability among CCTs and to identify
where the most opportunities for improvements lie. The first
is the notion of a halo node, which maps the distribution
of performance metrics across per-process CCTs to intuitive
glyphs. Second is the Halo-DAG view, which integrates the
flat profile into the tree to identify the runtime costs of heavily
used functions. In addition, VIPACT includes commonly used
tree operations like subtree selection, filtering, and means to
browse individual call trees. Combined, these simplify the
complexity of multi-process profiles of complex codes.

VIPACT is a web-based application implemented in
Javascript and D3 to visualize the data via a browser. We
use ColorBrewer [12], a tool for selecting color schemes for
color maps. For the backend, a Node.js [13] server is used to
perform calculations and sending data.

A. Halo Node

One of the most difficult performance bottlenecks to spot
and correct are load imbalances in which a small number of
processes may block all others from progressing. One of the
best indicators of such problems is performance variability
among processes in CCTs. In many applications, each process
is ideally expected to perform very similar or even identical
computations. Significant variations among processes may
indicate, for example, load imbalance, network interference,
or excessive system noise.

Fig. 1. Halo Node. (a) Two halos with different distributions. The left halo
has an even color distribution, indicating work was not evenly distributed.
The right halo has the mean as peak, this is typical when work was evenly
distributed. (b) The three color scales for the inner, central, and outer halos.

To help users identify potential problems, we map all trees
produced from an execution onto a single tree and encode
the corresponding data via glyphs for each node. This allows
us to scale our visualization to support large-scale parallel
applications. Because the trees are generated from the same
application, they can easily map onto a global tree structure
as done by various tools [3] to create a global CCT. To
show variation in runtime of each tree node, we render the
nodes as halos. Figure 1 shows two halos along with their
respective histograms and the color scale. The histogram is
centered at the mean runtime of each node, a value we compute
during the aggregation process. The left and right areas of
the histogram represent runtimes that are shorter and faster
than the mean respectively. In particular, we map the lower
third of the histogram to the innermost halo, the middle third,



indicating runtimes close to the mean, to the middle halo and
the remaining top third to the outermost halo to emphasize
slow processes.

B. Directed Acyclic Graph Integration

Flat profiles allow users to see the total runtime cost
associated with each function, across all invocations. This is
important for identifying functions that are called from many
different sites and consume significant runtime in aggregate.
Math functions such as sqrt and exp often fall into this
category. A traditional CCT can hide these functions, as
their cumulative runtime may be spread across many different
calling contexts (call stacks). Nonetheless, depending on the
scenario, a CCT may be the best way to view these functions,
especially if only certain call stacks make many or long-
running calls to particular functions. To identify potentially
problematic functions and their calling contexts, we integrate
a Directed Acyclic Graph (DAG) into the node-link view with
halo nodes and produce a new representation, which we call
the Halo-DAG tree. For each function in the flat profile, we
find the corresponding node in the node-link view. If the node
is already displayed, we consider its information represented
in the view and proceed. If it is not a part of the currently
displayed CCT, we find all lowest visible ancestors and create
an edge between them and a node at the bottom of the display
representing the flat profile information of the function of
interest. Figure 2(a) shows a call tree with the integrated DAG.
Figure 2(b) shows a close-up of one of the functions in the
DAG view. By showing two color schemes, users can see how
much runtime that function has relative to other functions and
relative to the overall runtime. The links coming out of the
function in the DAG view also serve to identify the different
contexts from which the function was called.

Fig. 2. (a) The node-link diagram with the integrated DAG view. The flat
nodes (shown in solid color) are connected to the tree using blue colored
links. (b) A close up of a function in the DAG. The center color shows the
amount of runtime of that function relative to other functions. The outline
shows the percent of function runtime against the overall runtime. (c) The
two color scales for the runtime and percentage.

C. Tree Operations

Since a large majority of the nodes contain little or no
information of interest, we include both filtering and subtree

selection to help reduce the complexity of the tree. Node
filtering is used to remove nodes that are below a threshold.
This reduces the complexity of the tree and allows users to
focus on important parts of the tree. Subtree selection allows
users to drill down into the tree and gain additional insight
regarding the data without visual cluttering. To help focus the
user’s attention, our tool uses hot-paths to highlight subtrees
where the inclusive runtime is above a threshold value [1].
Together, these operations allow users to focus on sections of
interest and drill down into the tree to see more detail.

IV. CASE STUDY

In order to show the effectiveness of our tool, we perform a
case study on Miranda, a radiation hydrodynamics simulation
code developed at Lawrence Livermore National Laboratory
(LLNL) [14]. We run Miranda on Cab (an Intel Xeon In-
finiBand cluster at LLNL) using 256 MPI processes and use
HPCToolkit version 5.4.2 to collect the performance data. We
extract the global flat profile and per-thread CCTs from the
database generated by hpcprof-mpi and feed them into our
tool, VIPACT.

For the purpose of this study, we filter the flat profile to
obtain the top 0.5% functions with the most runtime. By doing
this, we get functions that contribute more than 0.6% to the
overall runtime. We also filter the CCT to show only tree
nodes with more than 1% inclusive runtime. This allows us to
reduce the number of nodes rendered and to simplify analysis.
Since Miranda is a highly-optimized, production application,
we expect most nodes to be blue. Figure 3(a) shows the
Halo-DAG tree and confirms our hypothesis. However, the
visual cues provided by the halo nodes allow us to identify
four sections of the tree with high variability in runtimes.
When looking at the nodes’ histograms, we notice that more
than 60% of processes spend a significant amount of time in
pmpi_bcast_ as indicated by Figure 3(b). This suggests
that there was a load imbalance or network interference issue
which led to many processors being stuck in the broadcast.

Next, we look at the contributions of functions in the
flat profile shown in the Halo-DAG tree. We find that
_int_malloc, a memory allocation function, contributes
2.5% to the overall runtime with most branches of the tree
invoking this function. Figure 3(a) shows the function with
its links highlighted. Since _int_malloc is a system call
with only 2.5% of the overall runtime, there is no need to
optimize this function. However, the number of links coming
from _int_malloc indicate that there were many calls to
this function. Further investigation could determine whether
the number of calls to _int_malloc can be reduced.

V. SUMMARY AND FUTURE WORK

In summary, we introduce VIPACT, a tool to analyze per-
formance data in calling context trees of parallel applications.
VIPACT introduces the concepts of halo node and integrated
tree/DAG view. For future work, we plan to extend the Halo-
DAG tree to allow users to select subsets of trees for analysis.
This will allow users to focus on processes that are slow. We



Fig. 3. Halo-DAG tree of Miranda. (a) There are four branches of interest based on the red halos. The histogram indicates that the branch with pmpi_bcast_
has 60% of processes that are slower than the mean. At the bottom, the function _int_malloc was used in almost every branch of the tree and contributed
to 2.5% of overall runtime. (b) Highlight the branch of pmpi_bcast_.

also plan to extend the view to show the amount of runtime
each branch of the tree contributes to the function’s runtime.

VI. ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
704659).

REFERENCES

[1] L. Adhianto, J. Mellor-Crummey, and N. R. Tallent, “Effectively pre-
senting call path profiles of application performance,” in 2010 39th
International Conference on Parallel Processing Workshops. IEEE,
2010, pp. 179–188.

[2] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance
counters with flow and context sensitive profiling,” ACM Sigplan No-
tices, vol. 32, no. 5, pp. 85–96, 1997.

[3] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[4] P. Moret, W. Binder, A. Villazón, D. Ansaloni, and A. Heydarnoori,
“Visualizing and exploring profiles with calling context ring charts,”
Software: Practice and Experience, vol. 40, no. 9, pp. 825–847, 2010.

[5] I. Herman, G. Melançon, and M. S. Marshall, “Graph visualization and
navigation in information visualization: A survey,” IEEE Transactions
on visualization and computer graphics, vol. 6, no. 1, pp. 24–43, 2000.

[6] S. T. Teoh and M. Kwan-Liu, “Rings: A technique for visualizing large
hierarchies,” in International Symposium on Graph Drawing. Springer,
2002, pp. 268–275.

[7] J. Yang, M. O. Ward, and E. A. Rundensteiner, “Interring: An interactive
tool for visually navigating and manipulating hierarchical structures,” in
Information Visualization, 2002. INFOVIS 2002. IEEE Symposium On.
IEEE, 2002, pp. 77–84.

[8] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
B. Hamann, and P.-T. Bremer, “State of the art of performance visual-
ization,” EuroVis 2014, 2014.

[9] B. Mohr and F. Wolf, “Kojak–a tool set for automatic performance
analysis of parallel programs,” in European Conference on Parallel
Processing. Springer, 2003, pp. 1301–1304.

[10] L. DeRose, B. Homer, and D. Johnson, “Detecting application load
imbalance on high end massively parallel systems,” in European Con-
ference on Parallel Processing. Springer, 2007, pp. 150–159.

[11] A. Adamoli and M. Hauswirth, “Trevis: A context tree visualization
& analysis framework and its use for classifying performance failure
reports,” in Proceedings of the 5th international symposium on Software
visualization. ACM, 2010, pp. 73–82.

[12] M. Harrower and C. A. Brewer, “Colorbrewer. org: an online tool for
selecting colour schemes for maps,” The Cartographic Journal, 2013.

[13] S. Tilkov and S. Vinoski, “Node. js: Using javascript to build high-
performance network programs,” IEEE Internet Computing, vol. 14,
no. 6, p. 80, 2010.

[14] W. Cabot, A. Cook, and C. Crabb, “Large-scale simulations with
miranda on bluegene/l.”


