
Preliminary Performance Analysis of Multi-rail
Fat-tree Networks

Noah Wolfe∗, Misbah Mubarak†, Nikhil Jain‡, Jens Domke§, Abhinav Bhatele‡,
Christopher D. Carothers∗, Robert B. Ross†

∗Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois

‡Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California
§Institute of Computer Engineering, Technische Universität Dresden, Dresden, Germany

Abstract—Among the low-diameter, high-radix networks being
deployed in next-generation HPC systems, dual-rail fat-tree
networks are a promising approach. Adding additional injection
connections (rails) to one or more network planes allows multi-
rail fat-tree networks to alleviate communication bottlenecks.
These multi-rail networks necessitate new design considerations,
such as routing choices, job placements, and scalability of rails.
We extend our fat-tree network model in the CODES parallel
simulation framework to support multi-rail and multi-plane
configurations in addition to different types of static routing,
resulting in a powerful research vehicle for fat-tree network anal-
ysis. Our detailed packet-level simulations use communication
traces from real applications to make performance predictions
and to evaluate the impact of single- and multi-rail networks in
conjunction with schemes for injection rail selection and intra-
plane routing.

I. INTRODUCTION

With next-generation systems shifting toward low-diameter,
high-radix interconnection networks such as fat-tree and drag-
onfly, issues arise with respect to maximizing application
performance on these networks. One approach being applied to
some upcoming HPC systems, such as Summit [1], is the use
of dual-rail fat-tree networks. Summit’s new dual-rail fat-tree
network will provide an injection bandwidth of 25 GB/s and
deliver five times the compute performance of its predeces-
sors [1]. It is known that the system will have large, compute-
heavy nodes, but it is unclear how well the 25 GB/s bandwidth
of the network will match up with the compute performance
of 3,400 dense nodes. This raises additional issues that need
to be addressed such as, how can applications efficiently use
multiple rails in order to fully utilize the compute capacity.

In this work, we use the CODES simulation framework
and the optimistic event scheduling capability of ROSS to
conduct efficient yet detailed packet-level simulations [2]. We
use CODES to evaluate design choices for multi-rail fat-tree
networks by replaying communication traces of applications
available via the Design Forward program [3]. Inspired by
the Summit configuration, our CODES fat-tree network model
leverages new static routing and multi-rail configuration exten-
sions to emulate complete fat-tree systems with multiple injec-
tion links per compute node (multi-rail) connecting to multiple
network planes. CODES also has the ability to model multiple

jobs executing in parallel using different HPC job placement
schemes that represent potential full system workloads. In
order to mimic the large compute node performance, we map
multiple MPI processes to a node. We use our detailed packet-
level network model to evaluate the effectiveness of a dual-rail
dual-plane network in improving performance by comparing
with a corresponding single-rail single-plane network.

II. BACKGROUND

In this section, we describe the functionality provided by
the CODES and ROSS simulation frameworks and the com-
munication patterns of the applications used for the evaluation.

A. ROSS Discrete-event Simulator

Rensselaer Optimistic Simulation System (ROSS) provides
the parallel discrete-event simulation platform for the CODES
network and storage simulation framework [4]. ROSS supports
optimistic event scheduling which enables scalable simula-
tions. ROSS has demonstrated super-linear speedup and is ca-
pable of processing 500 billion events/s with over 250 million
logical processes (LPs) on 120k nodes of the Blue Gene/Q
system at Lawrence Livermore National Laboratory [5].

B. CODES Simulation Framework

CO-Design of multi-layer Exascale Storage and data-
intensive systems (CODES) provides a framework for explor-
ing the design space of HPC interconnects, storage systems
and workloads using ROSS. CODES supports high-fidelity
packet-level models of several HPC interconnect topologies
including dragonfly, slim fly, torus, and fat-tree networks [2],
[6], [7], [8]. CODES also supports a variety of network
workloads [2] including synthetic traffic injection and applica-
tion communication traces collected using the DUMPI tracing
tool [9]. In this paper, we focus on application communication
traces from the Design Forward program [3].

C. Application Traces

Communication traces from the Design Forward program
represent a variety of communication patterns and intensities,
and application scales. In the following, we provide details of
these applications and communication traces, which are the
workloads for the fat-tree simulations in Section VI.



AMG: The AMG benchmark is a parallel algebraic multi-
grid solver developed at LLNL [10]. AMG decomposes the
default unstructured domain into 3D chunks and solves a
linear system arising from it. It sends a significant number
of small messages and MPI operations account for 39.66% of
the runtime for the trace with 13,824 MPI processes.

Crystal Router: Crystal Router represents the many-to-
many communication pattern of the highly scalable Nek5000
spectral element code developed at ANL [11]. The MPI
processes in Crystal Router perform large data transfers in the
form of an n-dimensional hypercube. The trace for 1,000 MPI
processes shows an overall communication time of 68.5% of
the application’s runtime.

Geometric Multigrid: The Geometric Multigrid miniapp
implements a single production cycle of the linear solver
used in BoxLib [12]. Multigrid processes communicate along
the diagonals, resulting in many-to-many communication. The
trace used in this paper has 10,648 MPI processes with roughly
5% of its runtime spent in MPI communication.

In each case, the simulations replay the traces using the
communication time, not accounting for computation time.

III. FAT-TREE NETWORK MODEL

Full bisection fat-tree networks are suitable for the Sum-
mit supercomputer with its computationally dense CPU-GPU
nodes. This section first describes the full fat-tree network
model, followed by its pruned configuration, and finally we
describe the multi-rail topology.

A. Full Bisection Fat-tree Configuration

The fat-tree network topology is composed of typically two
or three switch levels [13]. For a given switch radix, k, each
switch has k/2 links to switches in upper levels and k/2 links
to switches or compute nodes in lower levels. The structure of
the 3-level fat-tree breaks down into k pods. Each pod contains
k/2 switches in the first and second levels, labeled L1 and
L2, respectively (Figure 1a). L1 and L2 switches within each
pod form a complete bipartite graph. Each L2 switch has k/2
connections down to compute nodes resulting in a total of
k × k/2× k/2 = k3/4 compute nodes.

(a) Full fat-tree (b) Pruned fat-tree

Fig. 1: Example configurations of (a) full and (b) pruned
3-level fat-trees using 8-port switches yielding 128 and 48
compute nodes respectively (darker colored lines between L1
and L0 indicate a bundle of two links).

B. Pruned Fat-tree Configuration (Summit Approximation)

Modeling a fat-tree network that matches the future Summit
system requires modifications to the full bisection fat-tree.
Currently, Mellanox commodity EDR switches are available
with up to k = 36 ports. Using 36-port switches and the stan-
dard 3-level fat-tree configuration [13] results in 36× (36/2)2

terminals, i.e., 11,664 compute nodes which is many more
than is necessary for the 3,400-node Summit system.

An alternative design option, the pruned fat-tree, starts with
the full 11,664-node 3-level fat-tree and then prunes/removes
excess pods within the network (example shown in Figure 1b).
Full connectivity between pods is maintained by adjusting L1
and L0 connections as needed. This process continues until
the desired node count for the Summit system is reached.
Using the presumed 36-port switch radix yields 11 pods, which
are enough to construct a 3,564 node pruned fat-tree able to
approximate the Summit system.

C. Multi-rail Topology (Summit Approximation)

Multi-rail networks are deployed to handle the increased
injection load of dense compute nodes, as used in Summit,
and support additional network planes. We assume that each
network plane has the same topology, and all rails and their
corresponding planes are independent of one another.

IV. FAT-TREE ROUTING ALGORITHMS

In this section, we describe our schemes used for traffic
injection rail selection and intra-plane message routing.

A. Routing within a Fat-tree Network

A key influencing factor for application performance on a
fat-tree topology is the routing algorithm, which determines
the physical path traversed by packets in the network. In
this paper, we focus on two routing approaches that we have
integrated into our fat-tree network model.

1) Static Routing: A state-of-the-art routing algorithm for
InfiniBand-based fat-tree topologies is the flow-oblivious and
destination-based fat-tree routing [14]. We adapt the approach
of the fail-in-place simulation framework [15], allowing us to
make use of the optimized fat-tree routing available as part
of the InfiniBand (IB) subnet manager, called OpenSM. We
make use of the topology loader/generator and routing engine
in [15], and load the extracted forwarding tables (LFT) back
into our fat-tree model to accurately simulate the application
traffic routed via the static fat-tree routing algorithm.

2) Adaptive Routing: This routing scheme aims to balance
traffic on different links by making locally optimal decisions
for forwarding packets in a switch, similarly to the minimal
adaptive routing of the Connection Machine CM-5 [16]. For
each port (or virtual channel) on a switch, a token-count is
maintained to estimate the availability of a port. The initial
value of token-count is set to the full capacity of the virtual
channel buffer. The token-count is decremented when a packet
is sent on a port and incremented when a credit is received
from the receiver. When a packet arrives at a switch, we
identify all ports on which the packet can be forwarded



assuming shortest path routing. The port with the maximum
token-count is selected to enqueue the packet.

B. Multi-rail Injection

An additional scheduling layer directs packets by deciding
which rail to transmit the packet on. Once the packet is
injected, the intra-plane routing algorithm routes the packet to
its destination. The following policies have been implemented:

1) Random Injection: The random approach offers a uni-
form distribution of traffic over all network rails regardless of
traffic load and network congestion.

2) Adaptive Injection: The adaptive approach samples the
occupancy of ports connecting the NIC to different rails and
selects the one with the lowest number of packets.

V. VERIFICATION

The fat-tree network model used in this paper is an ex-
tension of previously validated work [17]. In this verification
study, we ensure that the multi-rail fat-tree configuration
observes expected full-bisection bandwidth under a synthetic
bisection workload. Using static routing and bisection-pairing
ensures that each pair of compute nodes has its own distinct
path in the fat-tree network to transfer messages.

0 100 200 300 400 500 600 700 800

Offered Injection Bandwidth [% link speed]

0

100

200

300

400

500

600

700

800

O
b
se

rv
e
d
 I
n
je

ct
io

n
 B

a
n
d
w

id
th

 [
%

 li
n
k 

sp
e
e
d
]

1 Rail

2 Rails

4 Rails

8 Rails

Fig. 2: Multi-rail verification using a synthetic bisection-
pairing workload. The axes show the offered and observed
injection bandwidth in percent of the link speed of EDR
InfiniBand (12.5 GB/s).

All nodes should have an observed throughput performance
equal to the injection load up until 100% link bandwidth, at
which point the single-rail network will be fully saturated.
At an injection rate beyond 100%, each additional rail in the
network should provide a corresponding increase in observed
bandwidth above the 100% injection load. These expectations
are verified in Figure 2, confirming expected multi-rail net-
work performance under ideal workload conditions.

VI. EVALUATION

We focus on characterizing general trends, as well as
quantifying network performance, for the dual-rail fat-tree
Summit network in comparison with a comparable single-rail
network for the three application traces.

A. Simulation Configuration

All simulations execute multiple traces running concurrently
on the 3,564-node pruned fat-tree system using one AMG,
one Crystal Router, and one Multigrid trace. The traces
have 13,824, 1,000, and 10,648 MPI processes, respectively,
and each compute node hosts eight MPI processes. All
switches are simulated with a 90 ns switch traversal delay and
one virtual channel with a buffer space of 64 KB per port.
Flow control is performed with the use of 8 -byte credits and
the network packet size is 4 KB. All links in the single-rail
network are set to the EDR bandwidth of 12.5 GB/s and in
the dual-rail network to FDR bandwidth of 7 GB/s.

The results (Figure 3) focus on observed bandwidth which
measures the rate at which each node is able to inject data
into the network. Each compute node calculates the observed
bandwidth by dividing the total amount of bytes transferred
by the total time spent transferring the data. The sub-figure
labeled “System Aggregate” represents the data aggregated
over all active compute nodes in the 3,564-node system. The
remaining application-specific sub-figures present data from
the same parallel multi-job run extracted with respect to the
corresponding application trace. The height of each bar repre-
sents the average bandwidth among all compute nodes, while
the upper and lower limits on each bar indicate the maximum
and minimum compute node bandwidths, respectively. Further,
each cluster of bars has hyphenated x-axis labels indicating
intra-plane routing and injection rail selection policies. For
example, a “Static-Adapt” label indicates the use of static
intra-plane routing with adaptive injection rail selection.

B. Performance Results

We sought out to determine the ability of the dual-rail
network to match or even exceed network performance of
a similar single-rail configuration. The dual-rail configuration
has twice the number of switches and links with the slower
FDR link speed of 7 GB/s. The single-rail configuration has
half as many switches and links with the faster EDR link speed
of 12.5 GB/s. Figure 3 presents the observed bandwidth perfor-
mance of the single-rail and dual-rail network configurations
under all combinations of intra-plane routing and injection rail
selection policies.

Overall, the observed bandwidth performance is almost
identical for both configurations. A small difference in perfor-
mance between the two networks can be seen depending on the
application trace and dual-rail injection policy. For example,
Crystal Router achieves better performance with single-rail
for all rail selection and routing schemes with up to 25%
improvement over dual-rail. Multigrid observes equal or better
performance on the dual-rail configuration with up to 17%
improvement compared to single-rail.

Finally, AMG sees split preference to single-rail and dual-
rail depending on the dual-rail injection policy. Adaptive rail
injection achieves up to 26% lower bandwidth on the dual-
rail network while random injection allows for up to 4%
improved bandwidth. The behavior results from the localized
port selection which is oblivious to the network congestion.



Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
0

1

2

3

4

5

6

7

O
bs

er
ve

d 
ba

nd
w

id
th

 (G
B

/s
)

Single-Rail 12.5 GB/s
Dual-Rail 7 GB/s

(a) System Aggregate
Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand

0

1

2

3

4

5

6

7

O
bs

er
ve

d 
ba

nd
w

id
th

 (G
B

/s
)

Single-Rail 12.5 GB/s
Dual-Rail 7 GB/s

(b) AMG

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
0

1

2

3

4

5

6

7

O
bs

er
ve

d 
ba

nd
w

id
th

 (G
B/

s)

Single-Rail 12.5 GB/s
Dual-Rail 7 GB/s

(c) Crystal Router

Adapt-Adapt Adapt-Rand Static-Adapt Static-Rand
0

1

2

3

4

5

6

7

O
bs

er
ve

d 
ba

nd
w

id
th

 (G
B/

s)

Single-Rail 12.5 GB/s
Dual-Rail 7 GB/s

(d) Multigrid

Fig. 3: Network performance comparison of a single-
rail 12.5 GB/s network and a dual-rail 7 GB/s network.

Hence, when injection bandwidth for an application trace falls
below link bandwidth, which is the pattern in the bursty AMG
and Multigrid workloads, output buffers on the compute nodes
are emptied by the time new packets are generated. In this
case, packets are repeatedly issued on the first rail and can
lead to a slight network load imbalance and congestion within
the network which compounds over time. In contrast, random
rail injection is impervious to injection loads and balances
communication among available rails at all times, resulting
in less congestion and slightly higher bandwidth performance
under bursty communication patterns.

VII. CONCLUSION

Understanding HPC interconnects and performance factors
influencing them is vital to the best utilization of future HPC
systems. In this paper, we extended the CODES fat-tree model
to support multi-rail and multi-plane configurations, and stud-
ied the performance of a dual-rail fat-tree network modeling
the proposed Summit supercomputer. We presented simulation
results comparing dual-rail vs. single-rail performance.

Our comparison study shows that observed network band-
width performance is highly dependent on the communication
pattern. While the Crystal Router workload performs best
on the single-rail network, Multigrid workload observes up
to 17% performance improvement on the dual-rail, and AMG
performs similarly on both network configurations. We have
found that applications, such as Multigrid, which have bursty
communication workloads that inject large quantities of small
messages into the network at high rates, see benefit from the
additional network rail.

ACKNOWLEDGMENT

This work is supported by the U.S. Department of Energy, Of-
fice of Science, Office of Advanced Scientific Computer Research
(ASCR) under contract DE-AC02-06CH11357. This work was per-
formed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344 (LLNL-CONF-713054).

REFERENCES

[1] Oak Ridge National Laboratory, “Summit, Oak Ridge’s next High
Performance Supercomputer,” https://www.olcf.ornl.gov/summit/.

[2] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Enabling
Parallel Simulation of Large-Scale HPC Network Systems,” in IEEE
Transactions on Parallel and Distributed Systems. IEEE, 2016.

[3] Department of Energy, “Design Forward - Exascale Initiative,”
(Accessed on: Dec. 31, 2014). [Online]. Available: http://www.
exascaleinitiative.org/design-forward

[4] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: A high-performance,
low-memory, modular Time Warp system,” J. of Parallel and Distributed
Comput., vol. 62, no. 11, pp. 1648–1669, Nov. 2002.

[5] P. D. Barnes, C. D. Carothers, D. R. Jefferson, and J. M. LaPre, “Warp
speed: executing time warp on 1,966,080 cores,” in Proc. of the 2013
ACM SIGSIM Conf. on Principles of Advanced Discrete Simulation
(PADS), May 2013, pp. 327–336.

[6] N. Wolfe, C. D. Carothers, M. Mubarak, R. Ross, and P. Carns,
“Modeling a million-node slim fly network using parallel discrete-event
simulation,” in Proceedings of the 2016 annual ACM Conference on
SIGSIM Principles of Advanced Discrete Simulation. ACM, 2016, pp.
189–199.

[7] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “A case study
in using massively parallel simulation for extreme-scale torus network
codesign,” in Proc. of the 2nd ACM SIGSIM/PADS Conf. on Principles
of Advanced Discrete Simulation, 2014, pp. 27–38.

[8] ——, “Using massively parallel simulation for MPI collective communi-
cation modeling in extreme-scale networks,” in Proc. of the 2014 Winter
Simulation Conf., 2014, pp. 3107–3118.

[9] Sandia National Labs, “SST DUMPI trace library,” (Accessed on: Apr.
3, 2015). [Online]. Available: http://sst.sandia.gov/using dumpi.html

[10] Co-design at Lawrence Livermore National Laboratory, “Algebraic
Multigrid Solver (AMG),” (Accessed on: Apr. 19, 2015). [Online].
Available: https://codesign.llnl.gov/amg2013.php

[11] J. Shin, M. W. Hall, J. Chame, C. Chen, P. F. Fischer, and P. D. Hovland,
“Speeding up nek5000 with autotuning and specialization,” in Proceed-
ings of the 24th ACM International Conference for Supercomputing.
ACM, 2010, pp. 253–262.

[12] Department of Energy, “AMR Box Lib.” [Online]. Available: https:
//ccse.lbl.gov/BoxLib/

[13] F. Petrini and M. Vanneschi, “k-ary n-trees: high performance networks
for massively parallel architectures,” in Proceedings of the 11th Inter-
national Parallel Processing Symposium, Apr. 1997, pp. 87–93.

[14] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Optimized
InfiniBand fat-tree routing for shift all-to-all communication patterns,”
Concurr. Comput. : Pract. Exper., vol. 22, no. 2, pp. 217–231, Feb.
2010. [Online]. Available: http://dx.doi.org/10.1002/cpe.v22:2

[15] J. Domke, T. Hoefler, and S. Matsuoka, “Fail-in-place Network
Design: Interaction Between Topology, Routing Algorithm and
Failures,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 597–608. [Online].
Available: http://dx.doi.org/10.1109/SC.2014.54

[16] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N.
Ganmukhi, J. V. Hill, D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S.
Wells, M. C. Wong, S.-W. Yang, and R. Zak, “The network architecture
of the Connection Machine CM-5,” in SPAA ’92: Proceedings of the
4th annual ACM Symposium on Parallel Algorithms and Architectures.
New York, NY, USA: ACM, 1992, pp. 272–285.

[17] N. Jain, A. Bhatele, S. White, T. Gamblin, and L. V. Kale, “Evaluating
hpc networks via simulation of parallel workloads,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’16. Piscataway, NJ, USA: IEEE Press,
2016, pp. 14:1–14:12.


