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Abstract—High-performance computing (HPC) systems are
increasingly being used for data-intensive, or “Big Data”, work-
loads. However, since traditional HPC workloads are compute-
intensive, the HPC-Big Data convergence has created many
challenges with optimizing data movement and processing on
modern supercomputers. Our collaborative work addresses
these challenges using a three-pronged approach: (i) measuring
and modeling extreme-scale I/O workloads, (ii) designing a
low-latency, scalable, on-demand burst-buffer solution, and
(iii) optimizing graph algorithms for processing Big Data
workloads. We describe the three areas of our collaboration
and report on their respective developments.

1. Introduction

Extreme-scale supercomputing is converging with Big
Data in order to cope with the proliferation of exabyte-
and-beyond scale data. Large-scale data-intensive computing
brings new challenges and dimensions of complexity into
performance modeling and performance engineering [1].
This issue is significant for Big Data applications, where
data movement can easily dominate the overall application
performance.

Large-scale parallel I/O operations involve moving data
across many levels of the I/O subsystem hierarchy and every
layer introduces parameters/data transfer patterns that affect
the performance. Therefore, understanding the performance
factors of an I/O operation requires surveying the entire
breadth of the system and all variables connected with the
I/O subsystem.

I/O bottlenecks are possible due to contention for shared
network resources and, especially, contention for shared par-
allel file systems (PFS) [2], [3], [4]. In contrast to the rapid
growth in computational resource and network bandwidth,
PFS performance growth has been modest and continues to
widen the compute-I/O performance gap [5]. This creates a
trend of compute-bound applications becoming I/O-bound
at scale, and the effects of multi-user I/O contention and
bursty I/O patterns at the PFS level are becoming their main
bottlenecks [6], [7].

The handling of irregular data structures such as graphs,
especially those that change over time, presents a similar
problem, in that data movement becomes the dominant
part of the workload. Graphs are at the core of many
Big Data applications in the fields of Computer Science,
Biology, Chemistry, and Social Sciences. Hence, designing
algorithms and infrastructures to optimize data movement
for less-structured data within large-scale graph analytics
would support an entire class of essential workloads.

To address the aforementioned issues, we have been
conducting collaborative work between Tokyo Institute of
Technology (Tokyo Tech) and Lawrence Livermore National
Laboratory (LLNL) from the perspective of I/O model-
ing, I/O system software, and a data-intensive analytics
algorithm. The work done under this collaboration satisfies
these goals by analysing the performance of data-intensive
workloads on HPC systems and designing of optimized
infrastructure and algorithms for Big Data processing. We
are modeling the behaviour of data-intensive applications
at extreme-scale to capture the variability in I/O perfor-
mance due to resource failure and contention, particular
when joined with other types of workloads. For parallel
I/O-bound applications, we create a scalable, elastic burst-
buffer solution that provides on-demand acceleration of I/O-
intensive applications. And for accelerating data movement
in the processing of large-scale unstructured graphs, we
create a novel graph store that provides high spatial and
sequential locality and supports rapidly changing dynamic
graphs.

2. Measuring and Modeling I/O Performance

Parallel I/O operations traverse multiple components of
the system, therefore, holistic analysis of multiple level
of the system’s software and hardware stack is necessary
for exposing bottlenecks in data movement and storage.
I/O performance analysis of production workloads further
requires consideration of the operating environment and all
associated factors that can affect I/O throughput at runtime.



2.1. Workload Characterization and System-wide
Measurements

Measuring the performance of the data-intensive appli-
cations and their target systems is the first step towards
identifying the significant performance factors that must
be considered for these I/O workloads. Full-system metrics
collection projects such as TOKIO [8] and SIOX [9] and
works on full stack profiling such as [10] are driven by this
imperative. Projects like TOKIO and SIOX produce streams
of performance data points for applications and system
component, which requires aggregation and correlated to
arrive at useful insights. However, the challenges related
to such analysis are non-trivial when dealing with multiple
concurrent jobs running on a shared system [11].

We believe that system-wide analysis must be com-
plemented with fine-grained experiments that measure and
characterize the performance of data intensive workloads.
The knowledge from these experiments will help to explain
the performance variations seen in the analysis of system-
wide metrics for production workloads. The characterization
and analysis being done in our collaboration incorporates
HPC, Big Data, and deep learning workloads in order to
correctly understand and model the requirements of future
systems.

2.2. Modeling Realistic Operating Environments

Modeling the I/O performance is necessary for design-
ing scalable data-intensive application and responsive I/O
subsystems [1]. Recent I/O modeling frameworks, such as
CODES [12], have matured to include detailed models of
subcomponents such as local disks and packet-level accurate
networks. While existing I/O models have been useful for
performance prediction and capacity planning, e.g. [13],
their studies are typically based on the premise that HPC
systems are static and/or that system resources are dedicated
to the studied workload. Failure analysis research have
confirmed otherwise; HPC systems are dynamic in the sense
of the progression of failing components [14], and these
systems are shared by multiple users and multiple jobs.

To accurately model the I/O performance of a system
in production requires the inclusion of all of the afore-
mentioned items: (i) the significant performance factors for
the system and the workload, (ii) models for the failure
rates and patterns, and (iii) the nature and effect of re-
source contention in the I/O subsystem. We are currently
building a comprehensive model in CODES that incorporate
all of these items, as shown in Figure 1, leveraging the
validated network and storage models that are distributed
with CODES. Simultaneously, we are collecting real-world
system failure statistics and interference patterns that will be
used to train our model. Our resulting model will capture
the instability and performance variability of production
systems. Among other things, we will use this model to
explain the performance of parallel-I/O and data-intensive
workloads in production as well as to design architectures
for future workloads.
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Figure 1. System Model that Incorporates Network, Storage, and Failure

3. Software-Level Burst Buffer on HPC Sys-
tems

One significant bottleneck for Big Data applications is
the parallel file system (PFS) since the growth in com-
putational performance continues to exceed the improve-
ments in PFS performance [5]. Moreover, congestions due
to PFS sharing further degrades the I/O performance of data-
intensive applications [2], [3], [4].

To solve this problem, we extend the burst buffer tech-
nology [15], and propose a highly scalable I/O acceleration
system called HuronFS (Hierarchical, user-level and on-
demand filesystem) to accelerate parallel I/O performance.
HuronFS is an extension of our previous work CloudBB
(Cloud-based Burst Buffer) [16] on cloud. HuronFS builds
a two-level storage hierarchy by using compute nodes to
provide on-demand caching and buffering space (level-1
storage) in front of existing parallel file systems (level-
2 storage). We also propose a novel fault-tolerant multi-
metadata-server architecture, thereby enabling HuronFS to
handle burst I/O workloads efficiently at scale.

We implement HuronFS by using CCI (Common Com-
munication Interface) [17], a high-performance communi-
cation framework, allowing HuronFS to fully utilize the
high-performance network architectures such as InfiniBand.
HuronFS is built on top of the FUSE [18] filesystem,
achieving portable usability since existing applications can
benefit from improved I/O performance without any code
modification.

3.1. Architecture

PFS need to ensure a high level consistency since mul-
tiple processes create, write, update, and read concurrently
to shared files. Some PFSs use a Master-Worker model
consisting of a metadata server to managing the consistency
of files on the PFS’s data store nodes; while other PFS
such as object store use a Key-Value model where objects
(such as chunks, files, directories, etc.) are referenced by
unique hashes. In the Master-Worker model, the metadata
server can easily become a bottleneck at large-scale, and in
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Figure 2. The overview of HuronFS

TABLE 1. EXPERIMENT ENVIRONMENT FOR HURONFS

Network Mellanox Infiniband 4X FDR 56 Gb/sec
CPU Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz

Memory 251 GiB

the Key-Value model, the control and configuration can be
challenging.

To achieve scalability as well as controllability, In
CloudBB and HuronFS we propose a hybrid architecture of
a Master-Worker and a Key-Value model [16], i.e., Multi-
Master-Worker. Figure 2 shows the architecture of the hy-
brid model. The model consists of multiple sub-HuronFS
(SHFSs), and SHFS consists of a single Master Node (MN)
and multiple IOnodes (IONs). In our model, multiple MNs
manage file metadata in a distributed manner so that a single
MN does not become a bottleneck.

An MN is in charge of managing file metadata and
controlling all the IONs belonging to the same SHFS.
In order to reduce the potential for bottlenecks, I/O re-
quests from CNs are distributed across different SHFSs
by using a hash function. When a CN issues an I/O
request, the CN computes a hash value from the file
path of the requesting file (file_path). For example,
given a set of SHFSs (SHFS0, SHFS1, . . . , SHFSM−1)
and file_path, SHFSi is selected by the CN such that
i = hash_function(file_path) mod M . M is the
total number of SHFSs. By using this architecture, we are
able to hide ION from users, enabling us to dynamically
change the number of IONs according to the workload.

3.2. Evaluation

We evaluate the sequential I/O and metadata perfor-
mance of HuronFS on a local cluster with InfiniBand net-
work using two different communication layers: the CCI
framework and the IPoIB protocol. The specification of the
system is shown in Table 1. During the experiments, We use
one single Master, a single I/O node, and up to four clients.
For our experiments, we use the IOR [19] benchmarker
running eight processes per node.

Figure 3a shows the read and write performance from
single client. As we can see, we can achieve approximately
1 GiB/s from one client by using CCI, on the other hand, by
using IPoIB, we can only get around 400 MiB/s. Figure 3b
shows the read and write performance when we vary the
number of clients using the single I/O node. As we can see,
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Figure 3. Throughput of HuronFS Using Different Communication Layers
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Figure 4. HuronFS Metadata Operation Performance

by increasing the number of clients, the performance scales
linearly. By using 4 compute nodes, we can achieve up to
3 GiB/s with CCI and around 1 GiB/s with IPoIB.

We also measure the metadata performance by mea-
suring the latency of getattr, a command that gets the
attribute of a file. Figure 4 shows the latency of metadata
operation on HuronFS using different communication layers.
The latencies of getattr are approximately 400 us and
800 us with CCI and IPoIB, respectively. With CCI, we can
achieve 100% performance improvement over IPoIB.

4. Locality-aware Large-scale Dynamic Graph
Data Store

In many graph applications, the structure of the graph
changes dynamically over time and may require real time
analysis. However, most prior work for processing large
graphs on HPC platforms has not focused on dynamic



graphs, rather static only. To address this issue, we have been
developing data structures and the infrastructure necessary to
support dynamic graph analysis at large scale on distributed
HPC platforms, including next generation supercomputers
which have locally attached NVRAM (non-volatile random-
access memory).

4.1. DegAwareRHH

We have developed DegAwareRHH [20], a novel high-
performance large-scale dynamic graph data store that lever-
ages a linear probing and open addressing compact hash
table that exhibits high spatial and sequential locality. De-
gAwareRHH is degree aware, and uses separated compact
data structures for low-degree vertices to reduce their storage
and search overheads especially on NVRAM. In addition,
we extend DegAwareRHH for distributed-memory using an
asynchronous visitor queue abstraction [21], [22] aiming for
localizing remote communication in the area where graph
update occurred.

4.2. Performance Evaluations on Dynamic Graph
Processing Workloads

We use the Catalyst cluster at LLNL; each node has 12-
core Intel(R) Xeon(R) processors (2 sockets) and 128 GB
of DRAM.

4.2.1. Dynamic Graph Construction. Figure 5 shows the
graph construction (unique edge insertions and deletions)
performance of DegAwareRHH and STINGER [23], a state-
of-art dynamic graph processing framework, for perfor-
mance comparison. We use a synthetic graph that has 1B
edges and 5% additional edge deletes. As can be seen,
DegAwareRHH outperforms STINGER by 212.2 times.

4.2.2. Dynamic Graph Coloring. Next, we evaluate the
performance of a dynamic graph analytics algorithm on
DegAwareRHH. We run the edge-centric massive-scale dy-
namic graph-colouring algorithm developed by Sallinen et
al. [24].

We use PowerGraph [25] for performance comparison.
We run their static version of graph colouring implementa-
tion, whose execution time does not including graph con-
struction time.

The execution time of the graph colouring algorithm on
SK2005 [26] graph are shown in Figure 6. Surprising, Pow-
erGraph performance degrades as the number of compute
nodes increases. In contrast, DegAwareRHH scales well and
outperforms PowerGraph by 9.7x at 64 compute nodes.

5. Summary

Our efforts in measuring and modeling extreme-scale
I/O workloads target realistic operating environment, con-
sidering both component failures as well as interference
from non-I/O workloads over shared resources. For op-
timizing data-intensive workloads, we have developments
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Figure 5. Dynamic Graph Construction Performance (in-core, single-node).
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of HuronFS: a scalable, low-latency user-space burst-buffer
solution for HPC systems; and DegAwareRHH: a large scale
dynamic graph store for accelarating graph processing in Big
Data applications.
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