
Partitioning Low-diameter Networks to Eliminate Inter-job Interference

Nikhil Jain∗, Abhinav Bhatele∗, Xiang Ni†, Todd Gamblin∗, Laxmikant V. Kale‡

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551 USA
†IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 USA

‡Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
E-mail: ∗{nikhil, bhatele, tgamblin}@llnl.gov, †xiang.ni@ibm.com, ‡kale@illinois.edu

Abstract—On most supercomputers, except some torus net-
work based systems, resource managers allocate nodes to jobs
without considering the sharing of network resources by different
jobs. Such network-oblivious resource allocations result in link
sharing among multiple jobs that can cause significant perfor-
mance variability and performance degradation for individual
jobs. In this paper, we explore low-diameter networks and
corresponding node allocation policies that can eliminate inter-
job interference. We propose a variation to n-dimensional mesh
networks called express mesh. An express mesh is denser than the
corresponding mesh network, has a low diameter independent of
the number of routers, and is easily partitionable. We compare
structural properties and performance of express mesh with
other popular low-diameter networks. We present practical node
allocation policies for express mesh and fat-tree networks that not
only eliminate inter-job interference and performance variability,
but also improve overall performance.

Keywords-network topology; partitionability; inter-job interfer-
ence; express mesh; simulation;

I. INTRODUCTION

Computational power of high performance computing (HPC)
systems has been increasing at a fast rate for several years. This
has led to network resources becoming a major performance
bottleneck when executing applications at extreme scales.
Low-diameter, high-radix networks such as fat-tree (FT) [1],
dragonfly (DF) [2], [3], and Slim Fly (SF) [4], are being
explored to cope with the scarcity of network resources.

Most resource managers allocate nodes to jobs using network-
oblivious schemes that maximize job throughout and system
utilization [5]. A major side-effect of such allocation schemes
is that while compute resources are dedicated to individual
jobs, network resources such as routers and links are shared
among multiple jobs. Further, non-minimal adaptive routing
in low-diameter network (LDN) topologies such as DF and
SF increases this sharing of resources and makes it harder to
allocate network resources exclusively to individual jobs.

Sharing of network resources among multiple jobs increases
network congestion and results in inter-job interference. Recent
studies have shown that inter-job interference causes significant
variation and degradation in observed performance of applica-
tions [6], [8]. Figure 1 presents one such example in which a
production application is run on a 5D torus based system (Mira)
and a dragonfly-based system (Edison) several times. On an
LDN such as DF in which network resources are shared (not

����

��

����

��

����

�� ��� ��� ��� ��� ���
��
��
��
��
��
���
�

��
��
�
��
��
��

�
��

�
��
��

�
��
��
�

��������������������������

�����������������
���������������

Figure 1: Run-to-run application performance variability in
current HPC systems [6], [7]

partitioned), up to 2× performance variability is observed. Per-
formance variability makes run-to-run comparisons of different
executions difficult and hampers the process of optimizing code
performance. In contrast, an easily partitionable torus network
provides consistent performance. In this paper, partitionability
refers to a property of the network that facilitates network-
aware allocation of nodes to jobs with a goal of minimizing
link sharing among jobs or partitions.

We address the problem of inter-job interference by attempt-
ing to answer the following: can a combination of network
topology (existing or new design) and node allocation policy
eliminate inter-job interference without losing the performance
achievable on shared low-diameter networks? To address this
challenge, we study the partitionability of three well-known
LDN topologies – DF, FT, and SF.

Mesh and torus networks result in lower performance as
compared to LDNs because of their large diameter. Even when
high-dimensional meshes and tori are used, the diameter in-
creases rapidly with node count, while the bisection bandwidth
does not increase as fast as that on LDNs such as DF and SF.
However, mesh and torus networks can be partitioned easily
to provide isolated allocations to each job. This results in
predictable performance on these systems as demonstrated by
the results on Mira in Figure 1. Driven by these observations,
we explore variations to mesh networks that can reduce network
diameter and improve performance, while retaining the ability
to provide interference-free node allocations to individual jobs.

The main contributions of this paper are:



• We present express mesh, a generalization of mesh-
based LDN topologies, and describe deadlock-free routing
policies for it.

• We compare structural properties and performance of
express mesh with other LDN topologies.

• We propose two new metrics to quantify the expected
interference for a given node allocation policy.

• We present node allocation policies that result in
interference-avoiding partitioning of express mesh and
fat-tree and demonstrate performance improvements of
7–71% using them.

II. EXPRESS MESH

N -dimensional mesh and torus networks have been used in
many supercomputers in recent years. However, due to their
node-count dependent large diameters, even high-dimensional
meshes and tori provide lower performance in comparison to
low-diameter networks. To address this limitation, we introduce
a variation to n-dimensional mesh networks, called express
mesh (EM), that has a low diameter independent of the number
of routers and high bisection bandwidth. In Section IV-B, we
show that despite its low-diameter, EM is easily partitionable.

A. Construction

Building an n-dimensional (n-D) mesh requires routers
with only 2 × n ports. However, several LDNs utilize cost-
effective, high-radix routers available today to improve their
performance. In EM, we use available ports on high-radix
routers to connect routers that are several hops away in an
n-D mesh. Our goal is to create a topology that limits the
maximum number of hops between any pair of routers to a low
value that is independent of the total number of routers. The
idea of adding connections (called express channels) to distant
routers for reducing diameter has been used previously to create
express cubes [?] and HyperX [9]. In EM, we generalize this
idea to enable design of large networks given a router radix.

The construction of EM begins with an n-D mesh as its
base, of dimensions k0×k1×· · ·×kn−1, where ki is the length
of dimension i. A router in the mesh with ID, rj , is assigned
unique coordinates: COORD(rj) = {l0, l1, · · · , ln−1}. Let RID
be the inverse function of COORD, i.e. given coordinates
cr of a router, RID(cr) returns the router ID rj such that
COORD(rj) = cr. The set of all routers that a router rj is
connected to in an n-D mesh is defined as:

mcon(rj) =

 ⋃
i∈[0,n)

RID({· · · , li + 1, · · · }) | li + 1 < ki,

⋃
i∈[0,n)

RID({· · · , li − 1, · · · }) | li − 1 ≥ 0


(1)

Eq. 1 states that each router is connected to its neighboring
routers (if they exist) in both directions along each of the mesh
dimensions. Next, we use additional ports to connect a router
with distant routers located at arithmetically increasing distance
along every mesh dimension. This requires selecting a second

parameter called gap that determines the layout of additional
connections. If the gap is g, within each dimension, we add
a link between a router, rj , and all routers whose distance in
that dimension from the immediate neighboring routers of rj
in the original mesh is a multiple of g. Note that we only add
links within each dimension and not between routers whose
coordinates differ in more than one dimension.

Formally, the set of all routers that a router j is connected
to in EM is defined as:

econ(rj) = {mcon(rj),⋃
i∈[0,n)

RID({· · · , li + 1 +m× g, · · · })

| li + 1 +m× g < ki ∧m ∈ [1, dki/ge],⋃
i∈[0,n)

RID({· · · , li − 1−m× g, · · · })

| li − 1−m× g ≥ 0 ∧m ∈ [1, dki/ge]}

(2)

In Eq. 2, connections from a router can be divided into
three groups: connections inherited from the original mesh,
connections added in the negative direction, and connections
added in the positive direction. Depending on the coordinates
of a router, different number of connections belong to each of
these groups. This connectivity guarantees that every router is
reachable in n× g hops from any other router.

Figures 2(a), (b) show examples of connectivity in EM
constructed using n = 1, g = 1, k0 = 8. For clarity, the first
figure shows the connections originating from only two routers.
For the first router in the 1D mesh (l0 = 0, shown in red),
six new connections are added in the positive direction since
∀m ∈ [1, 6], l0 + 1 + m is less than k0. In contrast, for the
router on the extreme right (l0 = 7), all new connections are
added in the negative direction. For all other routers, 5 new
connections are added, unevenly split between the positive and
negative direction depending on the routers’ coordinates.

When n = 1, g = 2 are used (Figures 2(c), (d)), each
router has four connections in EM. For example, router with
coordinate l0 = 4 (shown in green) inherits two connections
from the 1D mesh: left and right neighbors (l0 = 3 and l0 = 5),
and gets one additional connection to routers that are at gap
2 from its existing neighbors in each direction (l0 = 1 and
l0 = 7). It can be seen that the maximum distance between
any two routers is now two.

When n > 1, connections are added between routers within
each dimension independently, in the same fashion as in a
1D EM. Figures 2(e), (f) present two such examples in which
n = 2, k0 = 8, k1 = 6 and the gap is set to one and two,
respectively. When g = 1, we obtain a HyperX network with
all-to-all connectivity along every dimension.

Claim: The shortest path between a pair of routers in an n-D
g-gap EM is at most n× g hops.
Proof : Let us examine an arbitrary pair of source router,
rs = {s0, s1, · · · , sn−1} and destination router rd =
{d0, d1, · · · , dn−1}. The number of hops between these two
routers, H , is the sum of hops traversed in each of the n



(a) n = 1, g = 1 (connections from only two routers)

(c) n = 1, g = 2 (connections from only two routers)

(f) n = 2, g = 2 (connections from only two routers 
are highlighted)(d) n = 1, g = 2 (all connections)

 (b) n = 1, g = 1 (all connections)

(e) n = 2, g = 1 (connections from only two routers 
are highlighted)

Figure 2: Construction of one- and two-dimensional express meshes with gap, g = 1 and 2. Connections that are inherited from
n-dimensional mesh are shown as dashed straight lines; new connections added are shown as solid curved lines.

dimensions, i.e. H =
∑n−1

i=0 hi. For each dimension, i, we
can determine the smallest number of hops that needs to be
traversed as follows:
1) si = di : no traversal required, thus hi = 0 < g.
2) si = di + 1 or si = di − 1 : direct connection inherited
from the original mesh, thus hi = 1 ≤ g.
3) si + 1+m× g = di or si − 1−m× g = di for some m :
direct connection available in EM, thus hi = 1 ≤ g.
4) other cases : if there is no direct connection to go from si
to di, we can identify the closest router to si that has a direct
connection to di. Since di must have direct connections every
g routers, we should be able to find one within g − 1 hops
from si. These can be near-neighbor hops inherited from the
original mesh and then we make one additional hop from the
identified router to di. Hence, hi ≤ g.
Since hi ≤ g for any i, H =

∑n−1
i=0 hi ≤ n× g.

B. Node Count for Balanced Express Mesh

We now derive the formula for the number of nodes, p, that
can be connected per router in an EM in order to create a
balanced system. In a balanced system (also defined in [2],
[4]), all nodes can inject traffic at peak injection bandwidth
for an all-to-all pattern, in which all nodes simultaneously
communicate with all other nodes. The number of nodes per
router, also called concentration [4], is equal to the number of
ports reserved for injection of network traffic. For a network
with router radix, r, number of nodes per router, p, network
links per router, r′ = r − p, diameter d, and average number
of hops havg, these quantities are related as:

p ≈ r′

havg
≈ r

(havg + 1)
(3)

Eq. 3 holds because average number of hops also represents
average load on any link in the system. Thus, to sustain peak
injection bandwidth, only r

havg+1 ports can be used for injection

and r×havg

havg+1 ports are needed for communicating messages in
a balanced system. For many LDN topologies, average hops
is close to the network diameter, thus d can be used instead

of havg in Eq. 3. For example, on SF with d = 2, r/3 ports
should be used for injection [4], while on DF with d = 3, r/4
ports should be used for injection [2].

Consider an n-D g-gap EM with Nr routers arranged as
k0×k1×· · ·×kn−1. In dimension i, most routers are connected
to two neighboring routers (as in a mesh) and ki−3

g other routers.
Thus, the concentration is

p ≈ 1

havg
×

n−1∑
i=0

(
2 +

ki − 3

g

)
(4)

For a symmetric EM in which all dimensions are of length k,
Eq. 4 reduces to p = n

havg

(
2 + k−3

g

)
.

When g = 1, the average hops is close to its diameter n× g.
Thus, for n = 2 and n = 3, nodes per router is r/3 and r/4,
respectively. However when g = 2, average hops for n = 2
and n = 3 are approximately 3 and 4, respectively. Thus, we
obtain p = r/4 for n = 2 and p = r/5 for n = 3.

C. Routing Schemes
In this section, we present static and adaptive routing

schemes for EM and discuss mechanisms that are used to
guarantee deadlock freedom in both cases. Let s be a node
attached to router rs with coordinates {s0, · · · , sn−1} that
wants to send messages to node d on destination router rd
with coordinates {d0, · · · , dn−1}. Messages originate at s and
are sent to the attached router rs if the destination node
d 6= s. From rs, using the schemes defined next, messages are
forwarded to rd and are eventually sent to d.

1) Static Routing: In this scheme, traffic is sent from source
to destination in dimension-order as is common in n-D meshes.
Let us choose an arbitrary order of dimensions to send all traffic
in the system: o0, o1, · · · , on−1. In dimension-order routing,
a message that originates at rs is first communicated along
dimension o0 to router rt whose all but o0th coordinate are
the same as rs. The o0th coordinate of rt is do0 – same as
the o0th coordinate of rd. Next, the message is sent along
dimension o1 to router rt′ such that all but o1th coordinate
of rt′ are same as rt. The o1th coordinate of rt′ is equal
to the o1th coordinate of rd. This process is then continued



A B C D

Wrong path if dest = DWrong path if dest = A

Correct path if dest = A Correct path if dest = D

S

Figure 3: Routing within a dimension: messages always travel
toward the destination, but do not use additional links to go
beyond the destination.

through dimensions o2, o3, · · · , on−1 until the message reaches
its destination router.

When a message has to be communicated from one router,
rt with coordinates {t0, · · · , ti, · · · , tn−1}, to another, rt′ with
coordinates {t0, · · · , t

′

i, · · · , tn−1}, whose coordinates differ
only in the ith dimension, the following rules are used:
1) if rt and rt′ are connected by a direct link in dimension i :
use the direct link to reach rt′ from rt. In Figure 3, examples
of this case are messages sent from S to B or C.
2) if ti < t

′

i : either forward the message to the router with ith
coordinate ti +1 using the direct link, or forward the message
to router rt′′ with the largest ith coordinate less than t

′

i and
with a direct connection to rt in the ith dimension. In this case,
a message is never sent to a router whose ith coordinate is
greater than t

′

i. An example for this case is shown in Figure 3
as messages sent from S to D.
3) if ti > t

′

i : either use the direct link to forward the message
to the router with ith coordinate ti−1, or forward the message
to router rt′′ with the smallest ith coordinate greater than t

′

i

and with a direct connection to rt in the ith dimension. In this
case, a message is never sent to a router whose ith coordinate
is less than t

′

i. Messages sent from S to A fall under this
category in Figure 3.

Dimension-order static routing is known to be deadlock-free
for n-D meshes since it prohibits formation of cycles across
dimensions as shown in Figure 4(a). Thus, for dimension-
order static routing to be deadlock-free in EM, we only need
to ensure that cycles cannot form within a dimension. In
EM, like in an n-D mesh, a message always flows away
from the source and toward the destination. While use of
the new express mesh connections can cause a message to
change direction, this is prevented by prohibiting messages
from traversing farther than their destination coordinate. Since
messages do not change direction and bi-directional links are
available for communication in opposite directions, cycles
cannot form within any dimension. Thus, dimension-order
static routing is deadlock-free in EM.

2) Adaptive Routing: In this scheme, instead of following
a pre-assigned order of dimensions for traversal, packets
(created by breaking down messages) are forwarded toward the
destination router in the dimension with least congested links.
Congestion on different links connected to a router is estimated
by keeping track of available tokens for all directly connected
routers. Each virtual channel is initially assigned a fixed total
token count (equal to the size of the virtual channel buffers).
Whenever a packet is forwarded on a link, the token count
for the associated virtual channel is decremented. The token

dimension oi

dimension oj (j > i)

(a) Dimension-order routing avoids cycles across 
dimensions by prohibiting certain turns

dimension oi

di
m

en
sio

n 
o j

(b) Adaptive routing can lead to cycles; 
resolved using dedicated escape channels

Prohibited turn Allowed turn

Figure 4: Deadlock freedom across dimensions: adaptive
routing relies on escape channels using dimension-order routing
to break deadlocks [10].

count is incremented when an ack or credit control message
is received for the virtual channel from the connected router.

For both static and adaptive routing schemes, when no tokens
are available for a virtual channel, new packets cannot be sent
on that channel. In adaptive routing, when a packet is to be
sent, token counts of all possible virtual channels that the
packet can be forwarded on are compared, and the channel
(and hence the corresponding link) with highest token count is
chosen for forwarding the packet.

Figure 4(b) shows that adaptive routing can lead to deadlocks
because cycles can form among different message flows. In
EM, we resolve such deadlocks using the escape channel
scheme proposed by Puente et al. [10]. In this scheme, in
addition to channels that use adaptive routing, every link also
contains an escape channel. Packets traveling in escape channels
follow dimension-order routing and thus do not deadlock. When
packets in adaptive channels cannot move forward but tokens
are available in escape channels, packets are temporarily moved
to escape channels and forwarded. Packets can be moved back
to adaptive channels at any point in their path if tokens are
available in adaptive channels. This ensures that the adaptive
routing can resolve deadlocks as they happen.

III. STRUCTURAL ANALYSIS AND PERFORMANCE
COMPARISON

We begin with a comparison of the structural properties of
EM with other networks and then use simulations to compare
performance of multi-job workloads. We refer the reader to
the following publications for details of other networks –
hypercube [11], fat-tree (FT) [1], torus [12], dragonfly (DF) [2],
[13], and Slim Fly (SF) [4]. In the analyses below, topology
parameters of all networks have been chosen to create balanced
systems. For EM, we focus on the instances with n = 3 (3D
EM) and g = 1, 2 because these parameters can be used to
deploy sufficiently large systems (>100K nodes).

A. Structural Analysis

The metrics compared below describe the structure of HPC
interconnection networks:

1) Diameter and Hops: Figure 5(a) shows that the diameter
of 3D EM with g = 1 (G1 EM) is always three and is equal
to the diameter of DF. This is less than the diameter of FT,
but worse than SF whose diameter is two. The diameter of



��

��

��

��

���

���

�� ��� ��� ���

�
��
�
��
��

���������������

��������������������

��������
��������

��������
���������

��������
���������������������

���������������������

��

��

��

��

���

�� ��� ��� ���

�
��
��
��
��

�
��
��

���������������

������������������������������������

��

���

���

���

����

����

����

�� ��� ��� ���

��
��
�
��
��

�
��
��
��

���������������

�����������������������

��

��

��

��

��

��

��

��

�� ��� ��� ���

�
��
��
��
��

�
��
��
��
�

���������������

���������������������

��

���

���

���

���

���

���

���

�� ��� ��� ���

�
��
��
��
��

�
��
��
�

���������������

����������������

��

���

����

����

����

����

����

�� ��� ��� ���

�
��
��
��
��

�
���
��

�
���

�
��
��
��
��
��

���������������

�����������������������

Figure 5: Structural analysis of express mesh and comparison with other networks.

3D EM with g = 2 (G2 EM) is twice as that of G1 EM, but
as Figure 5(b) shows, the average number of hops between
any two routers is much lower (four). Average hops for SF is
lowest (close to two), followed by G1 EM and DF. Note that
these average hops are computed assuming static shortest-path
routing. While the average hops for EM and FT do not change
when adaptive routing is used, it typically increases by 2× for
SF and DF.

2) Bisection Bandwidth: Figure 5(c) compares the bisection
bandwidth of various networks assuming each link has a
bandwidth of 10 GB/s. FT and hypercube provide the highest
bisection bandwidth for a given node count followed by G2
EM and SF. The bisection bandwidth of G1 EM and DF is
similar and is lowest among the high-radix networks.

3) Router and Link Attributes: Figures 5(d-f) present the
router and link requirements of various networks for different
node counts. For a fixed router radix, system sizes feasible
with G2 EM and DF are larger than G1 EM, FT, and SF.
For example, to build systems with >27K nodes, FT, G1 EM,
and SF require routers with >50 ports. In contrast, G2 EM
and DF can be used to build systems of >100K nodes using
routers with 44–48 ports.

Since getting reasonable estimates of dollar costs of routers
and links used in HPC systems is difficult, we use the data
in Figures 5(d-f) to compare the relative costs of different
networks. For a given node count, SF needs the minimum
number of routers but it needs higher router radix than other
networks. If we assume that the cost of routers increases linearly
with their radix, the total cost of routers for SF is expected to
be 30% less than all other topologies.

Router radix required for G1 EM and FT converges as the

number of nodes increases. Since G1 EM requires 20–30%
fewer routers, we expect the total cost of routers for G1 EM
to be 20–30% less than that on FT. While the router count
required for DF is typically higher than G1 EM, the router
radix required by DF is proportionally lower. Thus, we expect
the total cost of routers for DF and G1 EM to be similar.
Finally, since G2 EM requires a significantly lower router
radix than G1 EM but a higher router count than G1 EM, we
expect the total cost of routers for G2 EM to be higher than
G1 EM, but similar to FT.

Based on the link counts shown in Figure 5(f), the total cost
of links for SF is expected to be lowest, followed by G1 EM
and DF. Both FT and G2 EM require similar number of links,
with counts greater than the other three networks.

B. Performance Comparison

We compare the performance of different network topologies
using packet-level, discrete-event simulations of five represen-
tative communication patterns and multi-job workloads that
consist of these patterns. Two of the patterns (Unstructured
Mesh and Stencil) represent communication in unstructured and
structured grid applications. Pairs and Spread are representative
of long distance communication patterns in applications in
which processes communicate with one or many processes.
The last pattern (Sub-AlltoAll) is derived from applications
that perform multi-dimensional FFTs, which result in all-to-all
communication within sub-communicators.

For each topology, we construct balanced prototypes that
have approximately 10.7K nodes. Details of each system are
in Table I. Four processes per node are simulated on all the
prototype systems. For a fair comparison, the total number of
processes is fixed at 40,000 for all simulations.



TABLE I: Configurations of prototypes using different networks

Router Nodes/ No. of Other
System radix router nodes information

Dragonfly 29 7 11,130 106 15-router groups
Fat-tree 44 22 10,648 3-level fat-tree
Slim Fly 44 15 10,830 722 routers
G1 EM 38 9 10,800 12× 10× 10 mesh
G2 EM 24 5 10,080 14× 12× 12 mesh

Simulations are performed using network models imple-
mented in CODES [14], driven by TraceR [15]. The com-
munication traces used as input for TraceR have been col-
lected by running MPI communication kernels using Adaptive
MPI [16]. Each simulation executes multiple iterations of
the communication patterns and predicts the execution time
for running each pattern. We compute the total amount of
communication generated by each communication pattern and
divide it by the predicted execution time to obtained the
predicted communication rate. Higher communication rates
signify better network performance.

��

���

���

���

���

����

����

���������� ������� ����� ������ �������

�
��
�
��
��
��
��
��
��
��

�
��
��
��

��������
��������

��������
���������������������

���������������������

Figure 6: Performance predictions using adaptive routing and
best of linear and random mapping.

1) Single Job Runs: Figure 6 presents the predicted communi-
cation rates when a single communication pattern is executed
on the entire system. Results are shown only for adaptive
routing because the predicted communication rates for adaptive
routing are significantly better than that for static routing on
all networks, except FT. On FT, performance of static routing
is similar to adaptive routing for some communication patterns
(e.g. Stencil), but worse for other patterns (e.g. Spread).

For Unstr Mesh and Spread, all networks exhibit similar
performance with DF and FT being marginally better than
SF and G1 EM. However, for Stencil and Pairs, FT has
a significantly higher communication rate. For Pairs, the
communication rate on G1 EM is 42% higher than DF and
SF, but is 26% lower than FT. In contrast, for Sub A2A, DF,
SF, and G1 EM provide 21% higher communication rates than
FT. For single job runs, the communication rates on G2 EM
are up to 30% worse than those on G1 EM.

2) Multi-job Runs: Next, we compare the performance
of different networks for scenarios in which multiple jobs

representing different communication patterns are executed
simultaneously. We focus only on large jobs, each running
on 5–40% of the total number of nodes. To generate a multi-
job workload, we randomly pick different job sizes till we
have enough jobs to occupy the entire system, and then
randomly assign different communication patterns to each job.
This process is repeated with different randomization seeds
to generate many workloads. The node allocation policy is
clustered – most of the nodes assigned to a job are topologically
close, but ∼10% may be arbitrarily scattered on the system.
We use a clustered allocation to approximate the behavior of
typical resource managers on production systems.

���

���

���

���

���

���

���

���

�������� �������� �������� ����� �����

�
��
�
��
��
��
��
��
��
��

�
��
��
��

����

����

����
����

����

���� ���� ����

����
��������

����
����

���� ����

Figure 7: Comparing performance on different networks using
30 different multi-job workloads. Values shown are minimum,
median, and maximum across different workloads.

The communication rate of a multi-job workload is computed
by aggregating the communication rate of individual jobs in
the workload. Figure 7 summarizes the results obtained for
simulating 30 randomly generated workloads. The median
predicted communication rate over all workloads is highest on
G1 EM, closely followed by G2 EM and SF. The minimum
communication rate on G1 and G2 EM is also significantly
better than other networks. SF results in highest communication
rate for some workloads, but it also leads to the worst
performance for some workloads. The performance of DF
and FT is generally lower, but the overall difference is at most
20%.

In order to understand the reasons for the obtained results,
we analyzed the link traffic statistics for each network. We
find that while FT has the lowest maximum load on any
link among all the networks, the average traffic on links that
are used is significantly higher than the overall average. This
indicates transient congestion and is the most likely cause of
lower performance of FT. On DF, we find that certain links
are always significantly more congested than other links, and
create persistent network hot-spots that degrade DF’s overall
performance. The traffic distributions on EM and SF were
found to exhibit less significant variations across links.

IV. PARTITIONABILITY

In the previous section, we saw that the predicted perfor-
mance of several LDNs differs by at most 20% for multi-



��

���

���

���

���

����

�� ��� ��� ��� ��� ����

�
��

�������

��������������������������������������

�������� �������� �������� ������������

��

���

���

���

���

����

�� �� �� �� �� ��� ��� ���

�
��

�������

����������������������������������������

��

���

���

���

���

����

�� ��� ��� ��� ��� ����

�
��

�������

���������������������������������������

��

���

���

���

���

����

�� �� �� �� �� ��� ��� ���

�
��

�������

�����������������������������������������

Figure 8: Moving average showing expected interference (all jobs in each workload run Spread at different node counts).

��

���

���

���

���

����

�� �� ��� ��� ��� ���

�
��

���������

��������������������������������������

�������� �������� �������� ������������

��

���

���

���

���

����

�� �� ��� ��� ��� ���

�
��

���������

����������������������������������������

��

���

���

���

���

����

�� �� ��� ��� ��� ���

�
��

���������

���������������������������������������

��

���

���

���

���

����

�� �� ��� ��� ��� ���

�
��

���������

����������������������������������������

Figure 9: Moving average showing expected interference (each workload consists of different communication patterns).

job workloads. Next, we compare the expected inter-job
interference on these networks for multi-job workloads and
examine techniques to partition different networks in order to
eliminate inter-job interference.

A. Quantifying Expected Inter-job Interference

When a multi-job workload is executing on a system, the
amount of inter-job interference depends on several factors –
the communication patterns of individual jobs, routing, and
placement of jobs. We propose two metrics that are indicators
of the interference and performance variability that individual
jobs can expect when executing on a system: maximum % links
shared (MLS) and total % links shared (TLS). MLS is defined
as the maximum over all jobs of the percentage of total number
of links used by a job that are shared with other jobs (Eq. 5).
This metric is an indicator of the interference encountered by
the most impacted job in the workload. TLS is defined as
the percentage of total number of links used by the workload
that are shared among different jobs (Eq. 6). This metric is
an indicator of the total interference caused by a workload.
Consider a workload w that consists of jobs j0, j1, · · · , jm−1.
Each job has nodes allocated to it using a predefined node
allocation policy. Let li be the set of links used by messages
associated with job ji in the workload. We define:

MLS (w) = max
i∈[0,m)

card
({

li ∩
{
∪k∈[0,m),i6=k lk

}})
card(li)

× 100

(5)

TLS (w) =
card

({
∪i,k∈[0,m),i6=k li ∩ lk

})
card

({
∪i∈[0,m) li

}) × 100 (6)

where card is the cardinality of a set. A network topology and
associated node allocation policy that guarantee no inter-job
interference should lead to an MLS and TLS of zero.

Figure 8 compares MLS and TLS for workloads that consist
of all jobs running different instantiations of the Spread pattern
at different node counts. Since communicating processes are

selected randomly in Spread, given a sufficient number of
workloads, we expect moving averages of MLS and TLS
for the ensemble to give an approximation of the expected
interference on a network. The node allocation policy used
in these simulations is the clustered policy (Section III-B).
We present results for G1 EM only since the partitionability
characteristics of G1 and G2 EMs are similar.

Figures 8(a), (b) show that for all networks, some job
in the workload shares a significant fraction of the links
it uses with other jobs, and is highly likely to observe
performance variability. The moving averages for both metrics
stabilize with just 10 samples, which indicates that these values
represent reasonable expectations for an arbitrary workload.
Total interference statistics (Figures 8(c) ,(d)) follow similar
trends as MLS.

Figures 9(a-d) show running averages for MLS and TLS
when the workloads consist of different communication patterns.
With adaptive routing, we observe that link sharing among
jobs is high, especially for DF and SF. These results indicate
that high performance variability is expected for all networks
when clustered node allocation is used. This motivated us
to explore alternative node allocation schemes that can help
reduce inter-job interference.

B. Custom Node Allocation Policies
We now study each of the four networks to design custom

node allocation policies that eliminate inter-job interference.

1) Dragonfly and Slim Fly: In DF and SF, non-minimal
adaptive routing is necessary for good performance. This results
in network links being shared among jobs if network traffic has
to be sent outside a group (in DF) or sub-group (SF). Hence,
as shown in Figure 11, the only policy that can eliminate
inter-job interference requires limiting the maximum job size
to node counts smaller than the size of a group or sub-group.
In these cases, traffic generated by a job only uses links within
its group and hence, does not share links with other jobs.



Top level connections are not shown

Pod 1 Pod 2 Pod 3 Pod 4 Pod 5 Pod 6 Pod 7 Pod 8

Job A Job B Job C Job D Job E Job F

Figure 10: Partitioning a fat-tree: if each job is allocated either 1) all nodes connected to one or more switches in a single pod,
or 2) all nodes connected to all switches in one or more pods, inter-job interference can be eliminated.

Slim Fly (SG - sub-group)

G3 G1

G4

G2

Dragonfly (G - group)

SG1 SG2 SG3 SG4

Figure 11: Partitioning dragonfly and Slim Fly: only if each
individual job is contained within distinct groups and sub-
groups respectively, inter-job interference can be avoided.

In a DF, jobs that are allocated multiple groups can also
avoid performance variation but this requires use of static
routing. Hence, allocating multiple groups to a job is not
viable if we want to achieve high performance. Overall, for
both DF and SF, the restriction of a job being limited to the
size of a group significantly reduces the prospects of such a
node allocation policy being used in production systems.

2) Fat-tree: In FT, leaf and intermediate switches are arranged
in sub-groups called pods. The number of switches per pod
is typically r/2, where r is the radix of a leaf switch. Leaf
and intermediate switches that belong to a pod form a bipartite
all-to-all graph. If a job is assigned all the nodes of a pod
(Figure 10, Job A), it only uses links that connect leaf and
intermediate switches within the pod. Hence, an allocation
policy that always assigns an entire pod to an individual job
avoids inter-job interference.

When a job, say X, is assigned nodes that span multiple
pods (Jobs C, D, and E in Figure 10), in addition to using the
links within those pods, traffic from job X may flow on links
that connect the intermediate switches in these pods to core
switches. If job X is assigned all the nodes on all switches
of multiple pods (e.g. Job C), the only traffic that can flow
through links connected to the intermediate switches of these
pods is the traffic generated by job X. Moreover, on the core
switches, the traffic generated by job X only contends for links
and ports that are connected to the intermediate switches of the
pods allocated to job X. Thus, if jobs are assigned all nodes
of all switches of multiple pods, they do not interfere with
other jobs. However, if a job is only assigned nodes of some
switches in multiple pods (Jobs D and E), it may contend for
resources with other jobs assigned to the same pod.

Within a pod, at the leaf level, if a job is assigned all the
nodes connected to one or more switches, the ports and links
connected to these switches are only used by the job and thus
do not interfere with others (e.g. Job B in Figure 10). But, if a
job is assigned only some nodes in one or more switches (Job
F), it may interfere with other jobs. Finally, assignment of a
job to nodes connected to a single leaf switch also does not
cause any resource contention.

In summary, a node allocation policy with following restric-
tions can eliminate inter-job interference in FT:
i) job is assigned nodes connected to a single leaf switch, or
ii) job is assigned all nodes connected to one or more switches
that belong to a single pod, or
iii) job is assigned nodes across multiple pods, but all other
nodes in those pods are assigned to jobs that satisfy conditions
listed in i) or ii), or
iv) job is assigned all nodes connected to all switches in one
or more pods.

In comparison to DF and SF, interference-free node al-
location policy for FT has fewer restrictions and allows for
execution of jobs of various sizes. A practical implementation
of this policy can be done by restricting large jobs to request
node counts that are multiple of the number of nodes in a pod,
and by restricting smaller jobs within pods.

3) Express mesh: Since EM is constructed by adding extra
links to an n-D mesh along all dimensions, node allocation
policies that have been used on production systems such as
IBM Blue Gene [17], [12] and Cray XE/XK machines to create
interference-free partitions can be directly applied to EM.

A node allocation policy that assigns convex shapes to each
job can eliminate inter-job interference in EM, as in the case of
meshes and tori. This is because when messages travel from a
source to destination router both of which are within the convex
shape allocated to a job, the traversal is always toward the
destination in all dimensions. Within a dimension, the routing
scheme described in Section II-C prohibits any changes in
the direction of traversal. Hence, all the intermediate routers
used for communication are also inside the convex shape, and
dedicated to the job.

To obtain convex shapes for allocating jobs, the following
two allocation policies have been successfully deployed on
torus-based systems in the past and can be used for EM:

i) Building Blocks: In this scheme, a fixed-sized building block



(a) Building blocks (b) Variable-sized blocks

Figure 12: Partitioning express mesh: convex shape allocations
eliminate inter-job interference (each color represents a job
allocation; different shades used to show individual routers).

of routers is defined, e.g. of size 4 × 4 × 4 or 8 × 8 × 1.
Every job allocation request is required to be a multiple of the
total number of nodes in the fixed-size building block. Larger
allocations are formed by combining building blocks located
close to each other. Figure 12(a) shows an example of this type
of allocation in which a 8× 8× 8 EM is divided among jobs
of various sizes using 2× 2× 2 building blocks. Note that EM
does not contain wrap-around links (unlike Blue Gene systems)
and thus does not require extra links to enable partitioning.
ii) Variable-sized Blocks: This scheme relies on the resource
manager dynamically computing sizes of cuboidal grids that
can fit jobs of various sizes as they arrive, based on the current
state of the system. Among the current torus-based systems,
Blue Waters at NCSA deploys this scheme for reducing
inter-job interference. Unlike the building blocks scheme, job
allocation requests do not have size restrictions in this scheme.
Figure 12(b) shows an example of this kind of allocation.

C. Impact of Partitioning

To analyze the impact of custom node allocation schemes
described above, we create three sets of workloads. Each
workload set further consists of six workloads. The six
workloads within a set are chosen such that the first job is kept
same in all of them, both in terms of its size and communication
pattern. The sizes and patterns of the remaining jobs in the
workloads are randomly chosen to fill up the rest of the system.
Sub A2A, Stencil, and Spread are chosen as the constant first
job in set 1, 2, and 3, respectively. We only consider medium-
to large-sized jobs, with at least 5% of total nodes.

When custom node allocation policies are used for these
workloads on EM and FT, we find that maximum % links
shared (MLS) and total % links shared (TLS) are both zero.
This suggests that custom node allocation policies should
alleviate performance variability on EM and FT.

Figure 13 (top) presents the predicted communication rate
for the jobs kept constant within each workload set. Labels FT∗

and EM∗ represent results for custom node allocation, while
the remaining labels use clustered node allocation. 3D EM with
g = 1 is used as a representative of EM topology. The figure
shows that when custom node allocation is used, performance
variability caused by inter-job interference is eliminated and

���

���

���

���

���

���

�� �� �� ��� �� ��� �� �� �� ��� �� ��� �� �� �� ��� �� ���
���������������� ���������������� ���������������

�
��
�
��
��
��
��
��
��
��

�
��
��
��

���

���

���

���

����

�� �� �� ��� �� ���

�
��
�
��
��
��
��
��
��
��

�
��
��
��

����

����
����

����

���� ����

���� ���� ����

����

����
��������

����
����

����

���� ����

Figure 13: Impact of partitioning: FT∗ and EM∗ represent
simulations in which interference-free node allocation schemes
are used. Minimum, average, and maximum values for the job
kept constant across different workloads within a set are shown
(top). Values shown are aggregated communication rates across
30 different workloads used in Figure 7 (bottom).

consistent communication rate is predicted for the job kept
constant on EM and FT.

Figure 13 (bottom) shows that use of custom node allocation
does not impact the predicted communication rate negatively.
In fact, for FT∗, use of custom node allocation improves
performance significantly. Overall, when we compare the
median communication rate for all workloads, we find a 71%
improvement in the communication rate on FT∗ because of the
use of interference-free partitioning. On EM∗ also, the median
communicate rate increases by 7%. These results suggest that
customized node allocation not only eliminates performance
variability, it also results in performance improvement.

V. RELATED WORK

Several topologies have been proposed and implemented for
HPC networks – hypercube [11], express cube [?], fat-tree [1],
torus [17], [12], dragonfly [2], [13], HyperX [9], Slim Fly [4],
and others. The key aim in many of these network designs is
to minimize network diameter by exploiting high-radix routers.
Our focus is on constructing networks that are partitionable.
The construction of EM is most similar to express cube but
aims at creating low-diameter mesh-based networks. For gap
= 1, EM reduces to HyperX topology, whose use is limited



by the maximum system size it can support if router radix is
fixed. In addition to the publications mentioned above, several
studies have used simulations to study and compare different
network topologies [15], [18], [19], [20]. Our work uses tools
and methodologies proposed in some of these publications.

Effect of inter-job interference has been analyzed in several
recent publications [6], [7], [8]. The ability of torus-based
machines such as Blue Gene systems [17], [12] to provide
interference-free execution is well known. This work builds
upon the concepts used in these machines to eliminate inter-job
interference on EM. We also use ideas from Puente et al. [10]
to design deadlock-free routing schemes for EM.

VI. CONCLUSION

Network-oblivious resource allocation and non-minimal
routing on LDN topologies used in HPC systems increase
inter-job interference that causes performance variability and
negatively impacts the overall performance of the system. Thus,
techniques that can eliminate inter-job interference and improve
overall performance will be important for efficient utilization
of next-generation HPC systems.

In this paper, we showed that express mesh and fat-tree are
two LDN topologies that can address the challenge of inter-
job interference. Express mesh can guarantee performance
predictability by utilizing node allocation policies deployed
in systems such as Blue Gene and XE/XK. For fat-tree, we
presented a new node allocation policy to provide interference-
free partitions. We also showed that these topologies match
the performance of other LDN topologies such as dragonfly
and Slim Fly. Further, the procurement cost of express mesh
is expected to be lower than fat-tree, similar to dragonfly, and
higher than Slim Fly.

This work also showed that node allocation policies that
eliminate inter-job interference can result in higher overall
performance. We observed a 7% performance increase for multi-
job workloads on express mesh by using a Blue Gene style
node allocation policy. On fat-tree, we showed that interference-
free node allocation policy can result in performance gains
of up to 71%. We hope that these findings will help network
architects and developers of resource managers in improving
throughput of current and future HPC systems.

ACKNOWLEDGMENT

This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-706801).

REFERENCES

[1] C. Leiserson, “Fat-trees: Universal Networks for Hardware-Efficient
Supercomputing,” IEEE Transactions on Computers, vol. 34, no. 10,
October 1985.

[2] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” SIGARCH Comput. Archit. News, vol. 36,
pp. 77–88, June 2008.

[3] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The
PERCS High-Performance Interconnect,” in 18th Annual Symposium on
High Performance Interconnects (HOTI), August 2010, pp. 75–82.

[4] M. Besta and T. Hoefler, “Slim Fly: A cost effective low-diameter
network topology,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’14. IEEE Press, 2014, pp. 348–359.

[5] M. A. Jette, A. B. Yoo, and M. Grondona, “SLURM: Simple linux utility
for resource management,” in In Lecture Notes in Computer Science:
Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP)
2003. Springer-Verlag, 2002, pp. 44–60.

[6] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: performance degradation due to nearby jobs,” in
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’13. IEEE Computer Society,
Nov. 2013, LLNL-CONF-635776.

[7] S. A. Smith, D. K. Lowenthal, A. Bhatele, J. J. Thiagarajan, P.-T. Bremer,
and Y. Livnat, “Analyzing inter-job interference in dragonfly networks,”
2017, under review.

[8] X. Yang, J. Jenkins, M. Mubarak, R. Ross, and Z. Lan, “Watch out for
the bully! Job interference study on dragonfly networks,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2016.

[9] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: Topology, routing, and packaging of efficient large-scale
networks,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ser. SC ’09. New York,
NY, USA: ACM, 2009.

[10] V. Puente, R. Beivide, J. Gregorio, J. Prellezo, J. Duato, and C. Izu,
“Adaptive bubble router: a design to improve performance in torus
networks,” in Parallel Processing, 1999. Proceedings. 1999 International
Conference on, 1999, pp. 58–67.

[11] J. P. Hayes, T. N. Mudge, and Q. F. Stout, “Architecture of a hypercube
supercomputer,” in ICPP, 1986, pp. 653–660.

[12] D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara, S. Kumar,
V. Salapura, D. Satterfield, B. Steinmacher-Burow, and J. Parker, “The
IBM Blue Gene/Q interconnection network and message unit,” in High
Performance Computing, Networking, Storage and Analysis (SC), 2011
International Conference for, 2011, pp. 1–10.

[13] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray Cascade: A
scalable HPC system based on a dragonfly network,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012.

[14] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Enabling
parallel simulation of large-scale HPC network systems,” IEEE Trans.
Parallel Distrib. Syst., 2016.

[15] N. Jain, A. Bhatele, S. T. White, T. Gamblin, and L. V. Kale, “Evaluating
HPC networks via simulation of parallel workloads,” in Proceedings of the
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’16. IEEE Computer Society,
Nov. 2016, LLNL-CONF-690662.

[16] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé, “Performance Evaluation
of Adaptive MPI,” in Proceedings of ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming 2006, March 2006.

[17] M.Blumrich, D.Chen, P.Coteus, A.Gara, M.Giampapa, P.Heidelberger,
S.Singh, B.Steinmacher-Burow, T.Takken, and P.Vranas, “Design and
Analysis of the Blue Gene/L Torus Interconnection Network,” IBM
Research Report, December 2003.

[18] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter,
“Versatile, scalable, and accurate simulation of distributed applications
and platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, Jun. 2014.

[19] K. Underwood, M. Levenhagen, and A. Rodrigues, “Simulating Red
Storm: Challenges and successes in building a system simulation,” in
IEEE International Parallel and Distributed Processing Symposium
(IPDPS ’07), 2007.

[20] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale, “Avoiding hot-spots on
two-level direct networks,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’11. ACM, Nov. 2011, LLNL-CONF-491454.


