Scrubjay: Deriving Knowledge from the Disarray of HPC

Alfredo Giménez*
Lawrence Livermore National
Laboratory
gimenez1@lInl.gov

Chad Wood'
Lawrence Livermore National
Laboratory
wood67@lInl.gov

Peer-Timo Bremer
Lawrence Livermore National
Laboratory
ptbremer@llnl.gov

Performance Data

Todd Gamblin Abhinav Bhatele
Lawrence Livermore National Lawrence Livermore National
Laboratory Laboratory
tgamblin@llnl.gov bhatele@llnl.gov

Kathleen Shoga Aniruddha Marathe
Lawrence Livermore National Lawrence Livermore National
Laboratory Laboratory

shogal@llnl.gov marathel@Ilnl.gov
Bernd Hamann Martin Schulz¥
University of California, Lawrence Livermore National
Davis Laboratory

hamann@cs.ucdavis.edu

schulzm@in.tum.de

ABSTRACT

Modern HPC centers comprise clusters, storage, networks, power
and cooling infrastructure, and more. Analyzing the efficiency
of these complex facilities is a daunting task. Increasingly, facil-
ities deploy sensors and monitoring tools, but with millions of
instrumented components, analyzing collected data manually is
intractable. Data from an HPC center comprises different formats,
granularities, and semantics, and handwritten scripts no longer
suffice to transform the data into a digestible form.

We present ScrubJay, an intuitive, scalable framework for auto-
matic analysis of disparate HPC data. ScrubJay decouples the task
of specifying data relationships from the task of analyzing data.
Domain experts can store reusable transformations that describe
relations between domains. ScrubJay also automates performance
analysis. Analysts provide a query over logical domains of inter-
est, and ScrubJay automatically derives needed steps to transform
raw measurements. ScrubJay makes large-scale analysis tractable,
reproducible, and provides insights into HPC facilities.

CCS CONCEPTS

« General and reference — Performance; - Information sys-
tems — Database query processing;

KEYWORDS

HPC Performance Analysis,Facility Monitoring,Performance Tools

*Also with University of California.
* Also with University of Oregon.
* Also with Technische Universitit Miinchen.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

SC17, November 12-17, 2017, Denver, CO,USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5114-0/17/11...$15.00
https://doi.org/10.1145/3126908.3126935

ACM Reference Format:

Alfredo Giménez, Todd Gamblin, Abhinav Bhatele, Chad Wood, Kathleen
Shoga, Aniruddha Marathe, Peer-Timo Bremer, Bernd Hamann, and Martin
Schulz. 2017. ScrubJay: Deriving Knowledge from the Disarray of HPC Per-
formance Data. In Proceedings of SC17. ACM, New York, NY, USA, 12 pages.
https://doi.org/lO.l145/3126908.3126935

1 INTRODUCTION

The performance of HPC applications is the product of more factors
than ever before. A parallel application’s runtime may vary greatly
due to contention for the network, contention for the parallel filesys-
tem, dynamic processor frequency scaling, data-dependent inputs,
and many other factors. Often, application-level problems, such as
the slow execution of a particular file or communication operation,
are caused by contention at a lower level of the stack. Moreover,
predicting how entire workloads will perform depends strongly on
understanding the interaction of all constituent applications.

As supercomputers grow larger, and as compute performance
increases relative to both network and filesystem performance,
facilities become increasingly interested in how to optimize their
systems for their workloads. Large machine procurement decisions
have long been based on the performance of targeted benchmark
workloads, but now facilities have begun to collect monitoring
data on running systems in production. At our HPC center, we
have begun to collect streaming data from network and filesystem
counters, job queue logs, node-level performance counters, and
application-level profiles. This results in tens of gigabytes per day,
and we expect that as we instrument more systems at our facility, we
may ingest multiple terabytes per day. To store and process this data,
we use a dedicated data cluster, the scalable, “NoSQL” Cassandra
database, and the Apache Spark data-parallel framework.

While our database can easily store the ingested data, and our
parallel processing tools are known to scale to large cluster sizes,
we have found that the main obstacle to large-scale facility analysis
data is the complexity of connecting, aggregating, and compar-
ing data from many heterogeneous sources. Nearly every HPC
monitoring tool collects data in a different format, with its own

https://doi.org/10.1145/3126908.3126935
https://doi.org/10.1145/3126908.3126935

SC17, November 12-17, 2017, Denver, CO,USA

A. Giménez et al.

< Hardware Software
£
] Computation Software Operating Resource
= Communication Storage Infrastructure Application

and Memory & pp Libraries System Scheduler
S .) Filesystem Rack . . Job / node
© | Memory/CPU | Link Traffic, ¥ Execution Execution Process / thread /
[a) e K . load, temperatures, status,
o Utilization, Dynamic routing . context, context, status, .
= Pending Power draw, A) . Active queue,
o Power draw status h . Progress Active libraries Active pages
[operations Cooling usage Job throughput
© | Instruction Packets sent, Job submission
© R / Reads / Writes, | Cluster Phase . /
QO | samples, received, . R .) API call traces, Page faults, completion,
= . Connections initialization / invocation, i
S Branch traces, Link dropouts R X X Modules loaded | Context switches | Resource
g established discovery Iteration step .
D | HW faults allocations

Figure 1: A non-exhaustive set of available HPC performance data sources (orange, blue), the kinds of data they produce

(green), and the data collected (white).

sampling frequency and units. Establishing a common basis be-
tween values from different tools is difficult. Consider a set of CPU
instruction samples, each annotated with latency and CPU id. We
may also collect periodic counts of read and write events to the
parallel filesystem. In order to determine whether IPC was affected
by the utilization of the parallel filesystem, we need to associate
specific instructions with filesystem events. In general, the raw
data tables ingested by the system do not naturally expose these
relationships. Existing solutions require us to encode them by hand
in domain-specific scripts, but this requires significant knowledge
and expertise from the analyst. Analysts may need to ask HPC
administrators for information to accurately calculate this data
correspondence. This is unscalable and error prone.

In this paper, we present ScrubJay, a general and scalable frame-
work for analyzing big heterogeneous HPC performance data. Scrub-
Jay is motivated by the increasing variety and volume of HPC per-
formance data, and the need for scalable, reproducible ways to
analyze it. ScrubJay separates the concerns of performance tool
experts, system administrators, and performance analysts. Admin-
istrators and experts define the structure and semantics of collected
data. They may also provide reusable transformation functions that
can be applied to associate and attribute data to one another. Per-
formance analysts can make queries on a logical taxonomy of fields,
and ScrubJay will automatically derive and apply the necessary
data processing operations, for an accurate and consistent result.
Our contributions are as follows:

o An extensible annotation framework to describe data sources
and the heterogeneous data they produce;
o alogical query engine that uses annotations to automatically
infer relationships between data from different sources;
e scalable, parallel algorithms for mapping, transforming, and
aggregating diversely typed distributed datasets;
e alanguage to describe data-parallel pipelines; and
e an implementation of the above concepts in ScrubJay.
In the remainder of this paper, we motivate our design for ScrubJay
and describe show it greatly simplifies the task of performance
analysis. ScrubJay automates the tedious aspects of performance
analysis and enables “big data” analytics for HPC performance data.

2 HPC PERFORMANCE DATA DISARRAY

HPC performance data takes various forms depending on the source
from which it is collected and the mechanism used to collect it.
Sources include hardware components (e.g. CPU cores, network
switches, racks) or software components (e.g. operating systems,
software libraries, application code). The mechanisms to collect
performance data include event counters, function tracing libraries,
and sensors for capturing state information.

Typically, performance tools provide collection and analysis capa-
bilities for a restricted domain of sources within the HPC ecosystem.
Developer performance tools, such as HPCToolkit [1], VTune, and
MemAxes [10], typically describe the domain of the application and
on-node hardware, through instruction call-paths, aggregated call
trees and hardware metrics. Other tools focus on the domain of the
network and communication patterns, e.g. MPIP [26] and Ravel [13],
and provide analysis capabilities for message-passing traces with
complex dependencies. Orthogonal to both, facility-monitoring in-
frastructures provide valuable performance information at a high
level such as power and temperatures across entire clusters or racks.
While these data sources are connected behaviorally and often phys-
ically, discrepancies between their collected data representations
and the domains over which they are defined make it exceedingly
difficult to draw relations between their values.

Ideally, we should allow users to benefit from the capabilities of
these different heterogeneous tools and the information they pro-
vide at various different levels, rather than attempt to replace them.
Enabling their coexistence and cooperation requires providing com-
mon ground for storage, retrieval, and cross-integration. We have
paved this common ground in our analysis framework. We enable
scalable and distributed ingestion and storage of performance data
on our dedicated data cluster and consolidate heterogeneous data
sources using a common, generalized format. This common ground
enables the advanced query and data integration capabilities we
present in ScrubJay and thus expose new levels of analysis insight
for HPC performance across the entire facility.

2.1 Data Sources and Collection Mechanisms

To define the space of available HPC performance data sources, we
refine the broad categories of hardware and software components

ScrubJay: Deriving Knowledge from the Disarray of HPC Performance Data

Raw Data

Data Wrappers Data Semantics

ScrubJayRDD Meta Data
Distributed, Describe data
in-memory contents
representation May be reused

Provided by data owners
e.g. administrators, tool experts

Data Sources Data Sets
CPU csv

scheduler @ sa.
Nodes [l—@ Nosat

ScrubJay-provided or custom wrappers

Data collection tools
e.g. perf, sacct, LDMS

ScrubJay Query API

SC17, November 12-17, 2017, Denver, CO,USA

Data Derivations

Transformations Combinations
Transpose Derive Natural Interpolative
Column New Column Jom Join

Scrublay-provided + domain-specific derivations provided by system experts

Derivation Engine

Query: O ?

A set of data sources and
measurements of interest
of -

Heterogeneous
Data Sources

e.g. CPU Instructions +
Rack Temperatures

Reproducible .
Derivation Rules for Inferring
Information and

o Distributed))
Data Relationships

®® \iodeling/Analysis

: Unwrap/Save
@ Resultto...

Single entrypoint for performance analysts to request HPC performance data

Figure 2: ScrubJay system overview. ScrubJay exposes performance data from multiple heterogeneous sources (yellow) by
providing a framework to define how to parse different storage formats (data wrappers) and to describe the contents of data
(data semantics). System experts describe rules and methods (green) for inferring information from a dataset (transformations)
and inferring relationships between datasets (combinations). ScrubJay uses this information in a derivation engine to satisfy
high-level queries from performance analysts (blue). The results may be shared as reproducible data processing pipelines,
used in distributed modeling and analysis frameworks, or saved to different storage formats for analysis with other tools.

into subdomains. We also categorize data collection mechanisms as
either event information or state information. Event information
describes details about the occurrence of a single performance-
related event, and state information describes the status of some
resource at an instant in time. We represent a non-exhaustive set of
commonly available HPC performance data sources and collection
mechanisms within this taxonomy in Figure 1.

The top two headers represent the data source domains, and
the entries represent the data collection mechanisms. The behav-
iors of any combination of these sources may significantly impact
performance. For example, high network counter values may in-
dicate a congested network due to a sudden increase in nodes
contacting a parallel filesystem server. This increase may be due to
multiple applications entering their checkpoint phases simultane-
ously. However, diagnosing such interconnected behaviors would
require correlating data collected from network counters, filesys-
tem events, and application phases. We can draw relations between
these datasets from relations between their respective sources; in
this case, by determining which nodes an application is running on,
the filesystem servers it is connected to, and the network through
which it is connected to them. This information is available through
additional mechanisms: the job queue, the network routing tables
and the hardware setup of the I/O infrastructure. There, the col-
lected data serves not only as information to directly analyze, but
as information with which to draw indirect relations between data
sources. The latter also includes a host of static information, such
as, which nodes reside on which racks, or which power meters
measure which hardware components.

3 SYSTEM OVERVIEW

ScrubJay mitigates the disarray of HPC performance data by de-
coupling the collection, representation, and semantics of data. This
modular design enables a user to analyze data collected from any
number of heterogeneous tools and different data sources together.

ScrubJay converts each heterogeneous dataset into a common
in-memory representation using a set of specified functions called
data wrappers. These are either provided by ScrubJay or defined
by users familiar with a particular collection format. This com-
mon representation is distributable, and thus we are able to scale
both memory utilization and processing tasks for large datasets by
distributing them over several nodes.

Data is useless without meaning, however. Thus, ScrubJay also
provides a framework for defining the semantics of different data
recordings. Semantics define what different elements of the dataset
are; for example, whether some column in a table represents the
time in which a recording was collected or a temperature reading.
This information enables ScrubJay to determine explicit correspon-
dences between datasets—e.g. whether a “node” column in a dataset
describes the same value as a “NODEID” column in a different
dataset—and defines the available operations ScrubJay can perform
on some data—e.g. splitting a time span into several time stamps.

Data semantics provide a basis for derivation functions. Deriva-
tions define rules for inferring information from or computing
relationships between datasets. We categorize types of derivations
into transformations, which derive a new dataset from an existing
one, and combinations, which combine two datasets into a merged
result. Transformations include unit conversions and changes in
the data representation, and combinations map elements from one
dataset to elements of another.

With this information, we can create datasets that describe dis-
parate data sources in relation to each other by applying a sequence
of derivations on them. However, the set of possible derivation
sequences is combinatorially huge, even infinite in some cases, and
many of these sequences may not prove useful for analysis. There-
fore, instead of enumerating the space of possible derivations, we
developed a derivation engine to efficiently navigate this space and
find a derivation sequence that provides relevant information for
some specific analysis. The performance analyst specifies a set of
data sources and measurements of interest, and ScrubJay finds an

SC17, November 12-17, 2017, Denver, CO,USA

appropriate derivation sequence that yields a dataset exposing cor-
relations between those sources and measurements. For example,
if an analyst wants to determine whether an application’s CPU
instruction rates correlate with temperatures in the facility, s/he
requests CPU instructions and rack temperatures, and ScrubJay
returns a derivation sequence that yields a dataset containing a
relation between CPU instructions and rack temperatures.

The resulting derivation sequences may then be either (1) stored
without computing their results, such that different analysts may
utilize the same derivation sequences, (2) computed in distributed
memory and used for distributed modeling and analysis, or (3)
unwrapped into a storage format, such as a CSV file or SQL table,
for sharing or analyzing using other analysis tools. Figure 2 displays
a schematic of ScrubJay’s design.

ScrubJay’s design effectively separates concerns such that tool
experts define their custom storage formats, data owners and tool
experts describe the semantics of collected datasets, system experts
define how to derive information from existing data, and analysts
need only to request a set of data sources and measurements for
analysis. This design eliminates redundancy by storing the neces-
sary knowledge for parsing and processing datasets in a reusable
format and provides a baseline for reproducing the complex process-
ing operations involved in finding correlations between different
HPC performance data sources.

4 META ANNOTATION

ScrubJay’s annotation framework makes it possible for the appro-
priate users to specify the formats, meanings, and rules for infer-
ring information and relationships between heterogeneous datasets.
These annotations comprise the knowledge base of ScrubJay, and
once specified, they may be shared and reused. The three types of
information ScrubJay requires are:
(1) A data wrapper defining how to convert some format into
ScrubJay’s in-memory representation
(2) A set of data semantics describing the data contents
(3) A set of data derivations that describe how to derive infor-
mation from a dataset or a relation between two datasets
ScrubJay provides wrappers and derivations for most common
cases as well as an modular library for defining custom extensions.

4.1 Data Wrappers

Internally, ScrubJay datasets are represented in a distributed in-
memory data structure. This data structure is a type of resilient
distributed dataset (RDD) as provided by Apache Spark and hence-
forth called a ScrubJayRDD. As such, it may be distributed over any
number of nodes operating as Spark slaves, and any operations on
it are lazily executed, meaning they are enqueued but not run until
their results are explicitly requested.

ScrubJayRDDs consist of variable-length tuples with named ele-
ments of varied types. For example, a ScrubJayRDD row containing
timestamped temperature readings from nodes may look like:
("timestamp" -> "Mon Mar 27 16:43:27 PDT 2017",

"node_id" -> 5,
"node_temp" -> 67.4)

As such, ScrubJay readily handles sparse data with heteroge-

neous values. This schema is general enough to handle all forms

A. Giménez et al.

of data we have come across, and most with few modifications.
Although compressed and hierarchically formatted data must be
expanded and denormalized to fit this schema, we readily trade off
memory for generality because we can easily distribute the data
over a large available memory space.

The data wrapper is responsible for parsing data stored in some
format and reading its contents into a ScrubJayRDD. ScrubJay pro-
vides a set of default wrappers for commonly used formats, such
as Comma-Separated Value (CSV) files and NoSQL database tables.
For custom formats, tool experts specify a function that takes any
number of arguments and produces a ScrubJayRDD. Once wrapped,
users define a set of semantics for the resulting data.

4.2 Data Semantics

While there are infinitely many ways to describe data, ScrubJay’s
semantics serve purely to provide a common language with which
to define the derivation operations. Derivations may require com-
paring, aggregating, interpolating/extrapolating, or converting data.
The methods for doing so vary based on the units and dimensions
of the data. For example, 10 degrees Celsius is less than 20 degrees
Celsius, but a node ID of 10 is not “less than” a node ID of 20. We
also cannot compare recordings across different dimensions; a node
ID of 10 does not compare to a temperature reading of 20. Further-
more, we can relate recordings from two datasets that describe the
same domains; e.g. dataset A contains hardware faults for a CPU,
and dataset B contains the instruction rate for the same CPU, so we
can draw a relation between the faults in A and rates in B. However,
if two data recordings describe the same value, such as the same
temperature, we cannot infer that the recordings are related. We
therefore define a semantic representation for different elements in
a ScrubJayRDD based on their high-level types, their dimension,
and whether they describe a domain or a value.

We store semantics as simple keyword tuples and map the names
of elements in a ScrubJayRDD to these tuples. The semantics for
the previous ScrubJayRDD example may look like:

("timestamp" ->
("relation type" -> "domain",
"dimension" -> "time",
"units" -> "datetime"),
"node_id" ->
("relation type" -> "domain",
"dimension" -> "compute nodes",
"units" -> "identifier")
"node_temp" ->
("relation_type" -> "value",
"dimension" -> "temperature",
"units" -> "degrees Celsius"))

The names of tuple values are keys, and their values consist of a
relation type, dimension, and units. ScrubJay uses a semantic dictio-
nary to look up the keywords stored here and enables appropriate
operations on different data elements based on their definitions.
Users specifying semantics may either use existing keywords or
define new entries in this semantic dictionary.

Relation Type The relation type defines whether a data element
describes a domain or a value. A domain is a descriptor for the
resource being measured, e.g. a CPU core, a rack, or an application,

ScrubJay: Deriving Knowledge from the Disarray of HPC Performance Data

in addition to the time or location it was measured. A value is
the actual measurement, e.g. instruction rate or temperature. Note
that the elapsed time of an application execution also constitutes a
measurement, and therefore a value, thus elements may share the
same dimension but not the same relation type.

Dimension We use the general definition of dimension: an aspect
or attribute of something. This may include physical dimensions,
such as space/time, and conceptual, such as the identity of a CPU.

The dimension also defines the space in which an element may be

defined. Dimensions may be either continuous or discrete depending
on whether values along them may be halved indefinitely, and they
may be either ordered or unordered depending on whether values
may be compared along them. Temperature is both continuous
and ordered, event counts are discrete and ordered, and identifiers
are discrete and unordered. ScrubJay looks up these properties of
specified dimensions in its semantic dictionary and determines
the appropriate operations for manipulating data elements. For
example, we can interpolate time by averaging neighboring values,
but we cannot take an average of two node identifiers.
Units Finally, we specify the units in which a measurement was
recorded. This includes physical units such as degrees Celsius, de-
grees Fahrenheit, seconds, or minutes, and definitions of subspaces,
such as time spans and time stamps. In order to support derived
units, ScrubJay also recognizes compositions of different units, such
as instructions per second, or lists of identifiers.

ScrubJay internally uses an advanced type system to operate on
different units. Using the provided units for a data element, ScrubJay
constructs a high-level object with the appropriate functionality.
For example, seconds may be readily converted to minutes, and
time spans may be expanded into a sequence of time stamps. As
such, data manipulation operations are constrained by a set of valid
operations defined for the data.

Semantic Dictionary Problems arise for both units and dimen-
sions in cases where multiple different semantic keywords mean
the same thing (synonyms) and where the same semantic key-
words mean different things (homonyms). To mitigate the issue,
we introduce a dictionary of available semantic keywords in which
no synonyms or homonyms may exist. This dictionary defines the
available units recognized by ScrubJay and the dimensions on which
they may lie. For example, we may define “t_seconds” for units of
time and “d_seconds” for angular measurement. Users may use
ScrubJay’s default semantic dictionary and/or define new entries;
ScrubJay validates any loaded datasets against the active dictionary.

4.3 Data Derivations

These semantics provide the necessary information to determine
what kinds of derivations may be performed on a dataset and how
to perform them. Derivations are functions which take one or two
semantically annotated datasets as input and produce a new dataset,
with new semantics, as output. These functions either produce a
modified dataset from an existing one, or draw relations between
datasets. We define the former as transformations and the latter as
combinations.

Transformations Transformations serve the purpose of either in-
ferring some new information from provided information or chang-
ing the representation of information in a dataset. Deriving new

SC17, November 12-17, 2017, Denver, CO,USA

information involves calculating a new data element composed of
one or more existing elements; e.g. dividing instruction counts by
elapsed times to obtain instruction rates. Transformation functions
are only valid for a provided dataset if the dataset contains the
required set of semantics. In the previous example, in order to de-
rive instruction rates, we require a dataset containing instruction
counts and elapsed times. Transformations that change data repre-
sentation modify the semantics of some dataset, e.g. by converting
units or denormalizing an element into its constituent parts. In all
cases, however, we cannot validly modify the dimensions of the do-
main elements of a dataset—a measurement defined over time may
never not be defined over time. We may instead discover additional
domain dimensions over which a dataset is defined, by inferring
relations to other datasets using combinations.

Combinations Two data elements form a relation if both elements
describe the same domain entity, such as a CPU, an application,
a point in time, or some combination of these. Combination func-
tions take two datasets and infer a relation between their elements,
yielding a dataset with rows containing elements from both in-
put datasets. They are essentially generalized JOIN operations that
make use of data semantics, rather than user input, to determine
correspondences between two datasets and combine their elements.

We may draw a relation between values of one dataset and
values of another if both share a common domain; therefore, a
combination is possible if (and only if) the two input datasets share
a domain dimension. Furthermore, all common domain dimensions
between two datasets must match to yield a relation—two CPU
measurements taken at the same time but on different CPUs do not
form a valid relation.

Under these rules, combinations must compare all common do-
main elements between pairs of rows from both datasets to deter-
mine a correspondence between them. This comparison function
is defined by the semantics of the domain elements: unordered
elements like CPU ID must match exactly to form a relation, while
ordered elements like time may be compared with a distance metric.
In the latter case, we may interpolate or extrapolate the elements
from one row to match the domain elements of another. The re-
sulting correspondence between rows of one dataset and rows
of another may overlap, resulting in one-to-one, one-to-many, or
many-to-one correspondences.In the last two cases, we must ag-
gregate multiple elements with the same semantics. We define the
aggregation operation again using these semantics. For example, if
we have two temperature readings that occurred within one second
of each other, and both map to the same second in time, we average
their results. In another case, if two application instructions map to
the same second in time, we may pick the instruction closest to that
second. By constraining the operations available to the semantics
of the data involved, we ensure that the combination yields valid
relations between its provided datasets.

Semantic annotation represents the largest hurdle in user adoption
of ScrubJay. For this reason, we have designed ScrubJay to require
a minimal amount of user-provided data semantics. We provide
defaults and make many previously defined semantics available.
In the worst-case scenario, a user would need to specify custom
semantics for all elements in a dataset. We argue that doing so is
still worthwhile, as ScrubJay would then provide all the necessary

SC17, November 12-17, 2017, Denver, CO,USA

infrastructure to perform distributed data processing operations
consistently and scalably. It is also potentially less tedious than
defining custom data processing scripts, especially if the semantics
can be later reused.

5 QUERY SATISFACTION

The fact that we can gain new information by performing deriva-
tions, along with the fact that we can run derivations on already-
derived data, leads to a combinatorial growth of available informa-
tion. In some cases, we may even infinitely perform derivations.
However, the information gained may contain several redundancies,
and much of it may never be requested for analysis. We therefore de-
signed ScrubJay to determine sequences of derivations on-demand,
based on the kinds of performance data requested by a user. We de-
veloped an algorithm that efficiently navigates this immense search
space to find solutions to queries at interactive rates.

5.1 Queries

Performance analysts request data by submitting a ScrubJay query.
Unlike traditional query languages consisting of table names, columns
and additional clauses, ScrubJay queries consist only of a set of data
sources and measurements of interest!. In our semantic language,
they specify the dimensions of the domains and the dimensions
(and optionally units) of the values of interest. ScrubJay then de-
termines whether a sequence of derivations exists that produces a
dataset containing a relation between the domain dimensions and
value dimensions specified. For example, a user may request CPU
active frequencies and rack temperatures in order to determine
whether frequency scaling contributes to heat generation in the
facility. Here, the domain dimensions are CPUs and racks, and the
value dimensions are active frequencies and temperatures. Scrub-
Jay finds sequences of derivations that, when executed, produce a
ScrubJayRDD where each tuple contains information about CPUs,
their frequencies, their associated racks, and relevant temperature
readings. These tuples often contain additional domain information
associated with the queried dimensions. A row of the solution to
this example query will likely also contain the time associated with
the frequency and temperature recordings, the node in which the
CPU resides, and the rack containing that node.

5.2 Derivation Engine

We formalize the problem of finding these derivation sequences
as a variant of the Constraint Satisfaction Problem (CSP) and em-
ploy constraint programming techniques to solve it in what we
deem the derivation engine?. A CSP involves finding an assign-
ment of variables that satisfy a set of constraints. Here, we are
finding a sequence of derivations on datasets that result in a dataset
that satisfies our query. For example, to satisfy a query for power
consumption and jobs, we may transform job queue datasets into
a representation describing all active jobs during the times that
power measurements were collected and combine that result with

! We recognize the need for filtering and aggregation semantics provided by traditional
relational database tools. Rather than reinvent such semantics in our query system,
we provide an interoperability layer to enable this functionality.

2The name "derivation engine" is a reference to the "inference engine" proposed in early
artificial intelligence research. Rather than infer facts using rules, ScrubJay derives
datasets using their semantics and derivation functions.

A. Giménez et al.

the power measurement dataset. Thus, our variables consist of both
derivations and datasets, and we vary from traditional CSPs be-
cause the length of these sequences (and therefore the number of
variables) is unspecified.

We can apply traditional CSP solvers to this problem over finite
sequence lengths but doing so naively is not an option. A single
derivation operation may take minutes or longer to compute for
large datasets, and many such derivations would have to be re-
peatedly computed for different sequences. We mitigate this by
(1) performing derivations on the data semantics only, rather than
on the dataset itself, (2) pruning the search space and prioritizing
short derivation sequences, and (3) using memoization to cache
previously computed derivation results.

A derivation function defines the semantics required to perform
the derivation as well as the semantics of the resulting dataset. Thus,
instead of running the actual derivation, we first check whether
a dataset is valid, and if so, we compute the derived semantics
only. The semantics are internally represented in a hash map, so
derivations need only make a constant-time lookup to check validity.
Computing the derived semantics may vary with respect to an
individual derivation, but we can reasonably expect it to require
constant or near-constant time; in all tested cases, the derivation
simply provides an additional semantic entry, or combines the
semantics of two datasets. Thus, we are able to cheaply calculate
the resulting semantics of each derivation step.

Algorithm 1 Derivation Search

function COMBINESET(D : List(di..dn))
if N = 2 then
return COMBINEPAIR(d1, d2)
end if
rest « CoMBINESET(List(dz2..dn))
return COMBINEPAIR(d1, rest)
end function
function QUERY(D : List(d;y..dn), Q : List((s1,v1)..(spm, vm)))
DF —deD|sedA(s,0)eQ
while Df # D do
r < ComBINESET(DT)
if r is a solution then
return r
end if
DF « DF + d for some d € D - DF
end while
return no solution
end function

We prune and organize the solution search by performing a
backward-chaining search with additional logic. We first find the
smallest set of existing datasets containing any of the domain di-
mensions listed in the query. If any single dataset contains all of
them, it must satisfy the query, and we thus return it as a solution. If
one or more queried domain dimensions are not found, no solution
exists, because derivations cannot infer new domain dimensions. If
the domain dimensions are split across multiple datasets, we search
for sequences of derivations that combine them. In this search, we
prioritize shorter derivation sequences, first testing whether we

ScrubJay: Deriving Knowledge from the Disarray of HPC Performance Data

can combine the smallest set of datasets containing the requested
domain dimensions, then adding the remaining datasets one at a
time. The pseudocode in Algorithm 1 illustrates this process, with
a list of existing datasets D and a query Q containing a domain
dimension s; and a value dimension v; for each entry. The omitted
function CombinePair performs a straightforward test to deter-
mine whether two datasets may be combined through a sequence
of transformations and a single combination.

This derivation search algorithm has two main advantages. First,
we generally prefer to obtain the highest precision data available,
and interpolation and aggregation involved in each derivation
step may decrease precision. This search pattern ensures we will
return the shortest available derivation sequence solution. Sec-
ond, we can take advantage of the search pattern to avoid redun-
dant computation. We use a memoization strategy to cache the re-
sults of CombinePair and CombineSet at runtime. At each iteration,
CombineSet receives a superset of the arguments that it previously
received, so most of its recursive calls will have already been com-
puted. These optimizations enable ScrubJay’s derivation engine to
return solutions to queries at interactive rates.

5.3 Data-Parallel Derivations

We also require scalable methods to perform the actual deriva-
tion sequences themselves. We accomplish this by implementing
derivations as data-parallel Spark algorithms. The Spark framework
provides implicit data-parallelism for functional-programming op-
erations performed on resilient distributed datasets. Most deriva-
tions by nature lend themselves readily to functional programming
techniques, such as map, aggregate, and reduce operations, so we
reasonably enforce ScrubJay derivation functions to operate within
them. In doing so, we are able to ensure the ability of derivations
to scale to datasets that are potentially large and distributed.

However, there is one particular case where functional oper-
ations fall short of our needs. Frequently, we require determin-
ing correspondences between elements that do not match exactly.
For example, two different performance measurements may occur
within a small window of time, in which case we wish to draw a
near-relation between them. Naively, this scenario would require
computing all pairwise distances between two datasets, which is
unscalable. In a non-distributed scenario, we could sort all ele-
ments and iterate over each dataset sequentially; however, because
our data is potentially massive and distributed randomly over any
number of nodes, sorting and sequential processing are not viable
options. We therefore introduce a novel data-parallel algorithm for
relating two datasets based on an ordered distance metric.

We constrain the problem slightly—we calculate correspondences
between all elements within a specified window W of each other.
This constraint allows us to frame the problem using functional
programming semantics. We divide each dataset into bins of size
2W, then again into the same size bins, but offset by exactly W.
This binning scheme guarantees that every element within W of
some element resides in one of the same bins. We then filter out
elements further than W and aggregate all bins with respect to each
element, yielding the desired result.

Because the resulting correspondences are not exact, we interpo-
late to determine a matching value for each combined element. We

SC17, November 12-17, 2017, Denver, CO,USA

thus deem our algorithm the interpolation join. This addition en-
ables ScrubJay to accurately combine data over continuous, ordered
domains in a scalable way.

5.4 Using Derivation Results

The derivation engine finds sequences of derivations that will yield
a result satisfying a query, but does not actually perform the deriva-
tion itself. This feature is by design—by decoupling the specification
of a data processing pipeline from the actual data processing, we are
able to introduce an advanced framework for reproducing, refining,
distributing, and collecting derivation results.

Reproducible Derivation Sequences

In the current state of affairs, if an analyst wishes to reproduce
analysis results, their best hope is to acquire the same data pro-
cessing scripts used in the initial analysis to ensure consistency.
Such scripts are nearly never included in publication or even in
public repositories, and there is no guarantee that they will provide
equivalent (or any) functionality for different datasets. In addition,
the recent rise of performance variability and heterogeneous data
is increasingly impeding efforts to reproduce analysis results, and
the scientific community is responding with a surge in demand for
reproducibility efforts.

In ScrubJay, we present a solution to this growing problem. We
provide a reproducible and compact representation in which users
can store specific derivation sequences for distribution and reuse.
This representation includes all information necessary to execute
an identical processing pipeline and additionally is human-readable
and may be edited directly. This latter feature enables advanced
users to tweak derivation sequences for custom purposes, the result
of which may be readily shared for less advanced users to reuse.

ScrubJay’s derivation sequence representation is simple: we seri-
alize the sequence of derivation operations, including data loading
and wrapping operations, into JSON . We also do not require addi-
tional input from developers of derivation functions, we gather all
required information through code reflection.

To our knowledge, ScrubJay introduces the first general repro-
ducible data processing framework. We believe future efforts to
enable reproducible analysis may greatly benefit from our system.
Computing and Collecting Derivation Results

The time required to perform a derivation sequence depends on
the requested sizes of the datasets, the kinds of derivations and data
operations involved, and the overhead of wrapping the data from
heterogeneous sources. In addition, some derivation sequences may
yield results too large to fit into the memory of a single system,
or users may wish to use those results in different analysis tools.
Data scientists may prefer to use our distributed in-memory format
directly, using the many machine learning libraries already available
for RDD datasets. As a result, computing and storing results from
derivation sequences poses additional challenges.

We mitigate the problem of collecting results by introducing
an analog to data wrappers, data unwrappers. These may convert
a ScrubJayRDD into a common format, such as a CSV, a custom
format, or dump results into distributed/parallel storage systems.
In case a user wishes to use the in-memory format directly, we also
provide a handle to access it as a Spark data structure.

SC17, November 12-17, 2017, Denver, CO,USA

Natural Join, 10 nodes, 32 cores/node

A. Giménez et al.

Natural Join, Strong Scaling, 32 cores/node, 40M rows

Time (Seconds)
w & 0 o ~N o

N

1.8e+07 22e+07 26e+07 3.0e+07 3.4e+07

Number of Rows

2.0e+06 6.0e+06 1.0e+07 1.4e+07 3.8e+07

Interpolation Join, 10 nodes, 32 cores/node

Time (Seconds)

B

N

=

©

@

1 2 3 4 5 6 7 8 s 10
Number of Nodes

Interpolation Join, Strong Scaling, 32 cores/node, 16M rows

o 100~

Time (Seconds
3

Time (Seconds)
2ODINDENDABDS
3833885333388

RN
BN
S35

2.0e+06 6.0e+06 1.0e+07 1.4e+07 1.8e+07 2.2e+07

Number of Rows

2.6e+07 3.0e+07 3.4e+07 3.8e+07

Number of Nodes

Figure 3: Performance scaling of the two most expensive derivation functions in ScrubJay, Natural Join and Interpolation Join.
(Left) 2M to 40M rows on all 10 nodes. (Right) Fixed problem sizes, 1 to 10 nodes (strong scaling).

With this storage capability, we also develop an optimization
strategy for computing expensive derivation sequences. Using a sim-
ilar strategy to our memoization of derivation tests in the derivation
engine, we cache intermediate results of derivation sequences and
provide unique identifiers to reuse them. As a result, two derivation
sequences that perform the same expensive derivation operation
need to do so only once. This cache is maintained in non-volatile
storage, and thus over time, derivation sequences prune away more
and more redundant computations. This strategy may also incur
large storage overheads, so we allow it as an opt-in option, and
evict stale entries in a least recently used (LRU) strategy.

6 PERFORMANCE

ScrubJay’s data-parallel design allows it to scale to large quantities
of data distributed over many nodes. Determining derivation se-
quences is relatively inexpensive since we operate only on the data
semantics and use a polynomial time algorithm to do so. Different
derivation sequences have widely different performance character-
istics, however.

Spark operations are typically bounded by shuffle operations,
where data must be shuffled between all compute nodes to com-
pare their values. Transformations typically do not incur shuffle
operations and are thus relatively inexpensive to perform. Com-
binations, however, necessarily impose a shuffle when comparing
values between datasets. We therefore evaluate the performance of
ScrubJay by presenting scaling studies of two different combination
methods, Natural Join and Interpolation Join, the most expensive
derivations available.

The results are shown in Figure 3. All experiments were per-
formed on a cluster with 10 available compute nodes, 32 cores and
64gb memory per node (Intel Xeon CPU E52667 v3 @ 3.20GHz).

We see that for a fixed number of nodes, processing time increases
linearly with respect to the number of input rows. The strong scal-
ing study shows that despite the shuffle bottleneck, ScrubJay is
able to achieve performance gains by scaling up the data cluster.
These results give us confidence that ScrubJay will scale to the
growing quantities of performance data when distributed over a
wide data-parallel cluster.

7 CASE STUDIES

We used ScrubJay to analyze correlations between a variety of
disparate HPC data sources utilized during two seperate dedicated-
access time (DAT) sessions on the production cluster Cab. Both
DATs involved multiple heterogeneous workloads, with different
applications, problem sizes, and node allocations.

7.1 Data Collection and Semantics

In the first DAT, we collected data from a variety of facility-level
monitoring infrastructures, notably:

o Job Queue Logs (SLURM resource allocator)

e Rack Temperature, Humidity, Power (OSIsoft PI)

e Node/Rack Layout (provided by system administrators)

The first two data sources are continuously monitored and recorded

in relational databases. As such, we created a common data wrapper
to extract column names from their schemas and convert their rows
to named tuples. We defined semantics for the job queue columns
based on the resource scheduler documentation, and worked di-
rectly with facility administrators to define semantics for the power
and temperature data collected by a proprietary interface. The
node/rack layout data is static information defining which nodes
reside on which racks. We obtained this information directly from
another facility administrator and encoded it in a tabular format.

ScrubJay: Deriving Knowledge from the Disarray of HPC Performance Data

AMG

Rack 17

Heat
W D
o o

N

-
o

Sibulthsieiais,

Time

SC17, November 12-17, 2017, Denver, CO,USA

M BotHeat
B MidHeat
W TopHeat

Figure 4: After deriving a dataset incorporating facility heat production on different racks with application names for different
jobs, we were able to discern which applications were correlated with the greatest heat generation period. Here we plot the
heat profiles during this period, for the bottom (blue), middle (orange), and top (green) of rack 17, over time.

Figure 5: The resulting derivation sequence from querying
job application names and rack heat from 3 datasets first
DAT, including original (orange), transformed (blue), and
combined (green) datasets.

In the second DAT, we additionally collected high-fidelity per-
formance data from the node, motherboard, and CPU cores:

o Intelligent Platform Management Interface (IPMI) mother-
board status information

e Lightweight Distributed Metric Service (LDMS) node coun-
ters and status information

e PAPI CPU counters

e CPU specifications

IPMI and PAPI recorded performance data directly into tabular
files, and we employed a distributed ingestion framework to contin-
uously collect LDMS data into a distributed NoSQL database store.
In order to derive cpu-specific performance information, we also
collected CPU specifications directly from the available linux device
file /proc/cpuinfo. We defined data semantics again through close
collaboration with system administrators and using information
available in documentation.

We incorporated all data wrappers into ScrubJay and stored
data semantics in our distributed database with shared access. As
a result, we were able to reuse the semantics of the data from the
first DAT seamlessly in the second, and this information continues
to be readily available in ScrubJay’s knowledge base.

In addition to these semantics, ScubJay provides a general set
of transformation functions to modify data representations. These
transformations essentially perform a transpose on a single element
of a dataset, by denormalizing a row containing a list of elements
into multiple rows with a single element. This general transfor-
mation serves the purpose of creating a dataset with comparable
elements to another dataset and thus enables combinations be-
tween them. We provide a continuous analog that transforms a
row containing a span of data into several rows containing dis-
crete instances within that span, for example converting a time
range into a set of time stamps within that range. We henceforth
call these transformations for discrete lists and continuous spans
explode discrete and explode continuous.

7.2 Application Impact on Rack Heat
Generation

While rack temperature information is continuously collected on
Cab, little is known about specific applications’ contributions to
the generation of heat in the facility. Temperature information is
also available for subsystems within the node, such as the CPU
or memory controller, but quantifying the contribution of heat at
the level of the facility requires measuring the cumulative effects
from all subsystems interacting together in a physical space. Heat

SC17, November 12-17, 2017, Denver, CO,USA

Aprime95A

<
>

A4 v A

Run: 1 2 3 1 2 3

Active CPU Frequency (MHz)

NOONONN N
N N @ @ ©
e o ©o o =3
& © &6 o 5}

|

| '2016-06.
10713:32:18, 9o, 0700" 10713:37,5,. 000-070g:

T

'2016-05

'2015.05
~10T13:2g.
B »01.000*07
00'

Time

5M

4M

Instructions Per ms

3M

'2016-, '2016- '2016-
"06-10713:28.; 000-070, 061071335, 14, 000-0709 "06-10713:37.,, 000070

Time

A. Giménez et al.

App: mg.C prime95
¢ 4 ¢ 4 \
Run: 1 2 3 1 12 3
300k PO —— UNC_M_CAS_COUNT.RD
UNC_M_CAS_COUNT.WR
250k
0
£
5 200K
a
Py
S
£ 150k
3
<
S 100k
Q
[
o
50k
0
'2016-0¢ 2016-¢), '2016-¢ | '2016-9
~10T13; 5g. 6-10713.3;. 06-10713. 35, 6-10713.4;.
8:01.000-070,: 2:18.000.079: T >7:22.000-0705: 2:31.000-07q,
Time
R —— DIMM_Thrm_Mrgn_1
~ d DIMM_Thrm_Mrgn_2
-30 % = DIMM_Thrm_Mrgn_3
= DIMM_Thrm_Mrgn_4
c
£ | i —— P1_Th
= A—— _Therm_Margin
o | ! —— P2_Therm_Margin
MU
= A S P1_DTS_Therm_Mgn
£ ‘ ——— P2_DTS_Therm_Mgn
53
£
£
|

2016 “06-10713, 2, 01 a

10713 :32: OT13 :37: 107’13 :42:
700" 1800 700" 2200 700" 31.000-07¢,

Time

Figure 6: Plots of derived values describing CPU (left) and node (right) performance during the execution of the memory-
intensive workload mg.C followed by the compute-intensive workload prime95.

generation in the facility in turn has consequential effects on the
power throttling of cooling units, heat dissipated to neighboring
subsystems, and generation of heat-related errors or malfunctions.

Using the collected facility data, we defined a derivation to quan-
tify heat generation on racks. The facility monitoring infrastructure
provides 6 temperature sensors on each rack of Cab, localized to
the top, middle, and bottom of both the hot and cold aisles. Instan-
taneous temperature measurements are recorded from all sensors
every two minutes continuously. Our heat derivation function takes
hot and cold aisle temperature readings at one instant in time and
calculates their difference as an approximation of instantaneous
heat generated. Thus, we obtain a measure for heat at the top,
middle, and bottom of the rack.

With this information in place, we simply requested the value
“application names” associated with the domain “jobs” and the value
“heat” associated with the domain “racks”. ScrubJay returned the
derivation sequence shown in figure 5.

The derivation sequence first transforms the job queue log data
with explode discrete and explode continuous, yielding a dataset de-
scribing the application executing on every node at every instant
in time. This result is then combined with the node layout dataset,
matching elements with the same node identifiers and thus describ-
ing the rack that the application was executing on. Independently,
our defined heat derivation function extracts heat information from
the rack temperature dataset. Finally, the previous two derived
datasets are joined interpolatively, matching application execution
instances with heat measurements that occurred closely in time
and interpolating values that are not exactly matched.

We collected the results and unwrapped them into a tabular file
for analysis. We sorted the results with respect to heat and quickly
identified an outlier. The most heat was being generated on rack 17
while executing the adaptive mesh refinement application AMG on
60 of its respective nodes. We plotted the collective heat generated
on the top, middle, and bottom locations of rack 17 over time to
visualize the heat profile during this time in figure 4. Here we are
able to characterize the thermal signature of not only AMG but all
applications. AMG demonstrates a fairly regularly increasing heat
curve, while other applications rise and fall over time, presumably
as they enter different application phases.

7.3 CPU Frequency Throttling Impact on Node
Power Consumption

For the second DAT, we increased the quantity and complexity
of data sources by an order of magnitude. Whereas temperature
readings are collected on a two-minute interval, we additionally
collected CPU, motherboard, and node performance data on one-
to three-second invervals. The discrepancy between measurement
granularities and the sheer volume of data generated over multi-
ple hours make manual analysis of this information particularly
difficult. Furthermore, in the previous case we utilized static infor-
mation about the node and rack layouts, and here we take it a step
further to include static CPU specifications to enable derivation of
CPU-specific performance characteristics.

We ran two types of workloads during this DAT: a compute-
intensive application prime95 and a memory-intensive arithmetic

ScrubJay: Deriving Knowledge from the Disarray of HPC Performance Data

PAPI Data

nodeid X cpuid X
APERF count X MPERF count X
CPU counters (several)

CPU Specifications

nodeid X cpuid X
base
IPMI (Motherboard) Data
nodeid X socket X
Node counters (several)

frequency

Figure 7: The resulting derivation sequence from querying
CPU active frequency and several counter rates for CPU and
node events, from data collected during the second DAT.

application mg.C. We also enabled on-demand CPU throttling through-

out the duration of the workloads. Because of their contrasting
instruction mixes, we hypothesized that they would incur vastly
different CPU throttling characteristics, and we sought to deter-
mine what impacts this would have on the temperatures and power
draw of different subsystems on the node.

In contrast to the previous facility-level measurements, much of
the available CPU and node data sources record cumulative counts
of particular events, e.g. instructions, memory accesses, rather than
instantaneous values. Furthermore, these counter values reset at
some arbitrary interval, making their absolute values irrelevant by
themselves. We therefore developed a derivation to calculate the
rate of change of counter values with respect to a window of time,
effectively measuring the instantaneous frequency of events.

Accurate and precise measurements of active CPU frequency
are not directly available from CPU data collection mechanisms
however. Instead, each CPU provides a counter that increments
at the base processor frequency (MPERF) and another that does
so at the active frequency (APERF). Therefore, we must derive the
active frequency at a point in time by calculating the rate of change
of each counter and multiplying their ratio by the base frequency
specified for that particular CPU. Our aforementioned derivation
effectively calculates the rate of change for counter values, thus we
developed one additional derivation to calculate active frequency
for a dataset containing rates of change for APERF and MPERF and
the base frequency of their associated CPU. The latter data element,
while not immediately available from the counters recorded in PAPI,
is available in the static CPU specification dataset. Thus, we rely on
ScrubJay to infer a relation to this dataset in order to derive active
frequency.

SC17, November 12-17, 2017, Denver, CO,USA

With these new derivations in place, we queried the value “active
CPU frequency” for the domain “CPU” along with counter values
from both the CPU and the motherboard, including memory read
and write rates, power draw from different processor sockets, and
temperature and thermal margins for CPUs and memory banks.
The resulting derivation graph is shown in Figure 7.

We plotted several of the resulting derived data elements in fig-
ure 6 for a specified set of application executions. During this time,
6 workloads were executed, 3 instances of mg.C and 3 of prime95,
in that order. The left plots show derived CPU-level performance
data; active CPU frequency and instructions per millisecond, while
the right shows derived node-level data; memory reads/writes per
millisecond, and thermal margins of different processor sockets and
memory controllers. We observe that mg.C operated at full CPU
frequency and lower instruction rate, while prime95 incurred high
instruction rates and experienced aggressive CPU throttling.

8 RELATED WORK

Performance databases ScrubJay is not the first tool to perform
analysis on performance data in a database. Huck et al’s PerfEx-
plorer and PerfDMF [11, 12, 23], store data from TAU [25] and
other parallel performance systems in a relational database, and
they allow the user to perform queries on a predetermined, typed
schema. Mucci’s PerfMiner [24], Gallo et al’s machine learning
experiments [6], and PerfTrack [14], and PerfExpert [5] are similar
in that they use relational databases with strict schemata. ScrubJay
stores unstructured but annotated performance data. It can ingest
arbitrary data without the need to first transform it to a particular
schema. ScrubJay can also query over both raw data fields and
completely derived, on-demand transformations of raw fields. To
our knowledge, this capability of ScrubJay is completely unique
among performance mining systems. General log analysis tools like
Splunk[?] and Graylog are the closest analog to ScrubJay’s aggre-
gations, joins, and projections, but these tools do not automate the
generation of transformations like ScrubJay.

Parallel performance analysis Other tools have performed par-
allel analysis of performance data. Gamblin’s AMPL [9], Libra [7],
and CAPEK [8] tools performed parallel, in-situ sampling, wavelet,
and cluster analysis on performance data, respectively. AutomaDeD
and Prodometer [4, 16-20, 22] perform scalable, in-situ outlier de-
tection to discover bugs at runtime. The Vampir Next-Generation
(VNG) [15] tool uses parallel processing to analyze and visualize
very large MPI trace volumes. None of these tools, however, imple-
ment parallel join semantics to automatically transform annotated,
schemaless performance data. ScrubJay’s on-demand transforma-
tion capability is unque among performance tools. Prior work on
MemAxes [10] and Boxfish [21] allow for projecting performacne
data across domains, but they do not provide a fully general system
for query derivation; users of these tools must manually explore
the projection space.

Monitoring infrastructure Finally, ScrubJay is not a measure-
ment framework; it is a scalable, offline analysis tool. It relies on
tools such as LDMS [2], HPCToolkit [1], TAU [25], and Caliper [3]
to provide performance data to ingest, and it relies on scalable data-
base and analysis systems (such as Cassandra and Spark) for data
measurement and analysis infrastructure.

SC17, November 12-17, 2017, Denver, CO,USA

9 CONCLUSION

Our system effectively enables us to characterize derived perfor-
mance information and relationships between different domains in
the HPC ecosystem. ScrubJay now contains the relevant knowledge
base to perform these derivations automatically, allowing us to
perform this analysis over historical and incoming data in a consis-
tent and reproducible way. This work, used in collaboration with
HPC facility engineers, currently fuels next-generation efforts in
designing resource-aware job schedulers and determining optimal
hardware configurations for specific workloads.

We are extending our uses of ScrubJay to analyze applications
and hardware at finer granularities, by quantifying relationships
between individual kernels, loops, and lines of code with specific
CPU cores, threads, and caches. We also see enormous potential in
using Scrub]ay to relate application behaviors to utilization across
the network, an area of increased nondeterministic behavior due
to interference.

While we have developed ScrubJay and built its backend data
cluster with data scalability in mind, we still see potential for im-
provement. We can cache intermediate derivation results in Scrub-
Jay, but too large a cache could deplete our available storage. We
envision having a storage cache hierarchy in the future, where
old entries may be compressed and stored in separate long-term
storage devices.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-735962).

REFERENCES

[1] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin,

John Mellor-Crummey, and Nathan R Tallent. 2010. HPCToolkit: Tools for Perfor-

mance Analysis of Optimized Parallel Programs. Concurrency and Computation:

Practice and Experience 22, 6 (2010), 685-701.

Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy Enos, Joshi

Fullop, Ann Gentile, Steve Monk, Nichamon Naksinehaboon, Jeff Ogden, Mahesh

Rajan, Michael Showerman, Joel Stevenson, Narate Taerat, and Tom Tucker.

2014. The Lightweight Distributed Metric Service: A Scalable Infrastructure for

Continuous Monitoring of Large Scale Computing Systems and Applications. In

Supercomputing.

[3] David Bohme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo
Giménez, Matthew LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
Performance Introspection for HPC Software Stacks. In Supercomputing 2016
(5C’16). Salt Lake City, UT. LLNL-CONF-699263.

[4] Greg Bronevetsky, Ignacio Laguna, Saurabh Bagchi, Bronis R. de Supinski,

Dong H. Ahn, and Martin Schulz. 2010. AutomaDeD: Automata-Based Debugging

for Dissimilar Parallel Tasks. In Proceedings of the 40th Annual IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks (DSN 2010). Chicago,

IL.

Martin Burtscher, Byoung-Do Kim, Jeff Diamond, John McCalpin, Lars Koesterke,

and James Browne. 2010. PerfExpert: An Easy-to-Use Performance Diagnosis

Tool for HPC Applications. In Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and Analysis

(SC ’10). IEEE Computer Society, Washington, DC, USA, 1-11. https://doi.org/10.

1109/SC.2010.41

S. M. Gallo, J. P. White, R. L. DeLeon, T. R. Furlani, H. Ngo, A. K. Patra, M. D.

Jones, J. T. Palmer, N. Simakov, J. M. Sperhac, M. Innus, T. Yearke, and R. Rathsam.

2015. Analysis of XDMoD/SUPReMM Data Using Machine Learning Techniques.

In 2015 IEEE International Conference on Cluster Computing. 642-649. https:

//doi.org/10.1109/CLUSTER.2015.114

Todd Gamblin, Bronis R. de Supinski, Martin Schulz, Robert J. Fowler, and

Daniel A. Reed. 2008. Scalable Load-Balance Measurement for SPMD Codes. In

Supercomputing 2008 (SC’08). Austin, Texas, 46-57.

s

(5

=

=
&

[7

[

[8

[o

[10

—_
o

[12

[13

(14]

[15

(16

(17]

=
&

[19

[20

[
—

[22

[23

[24

[25]

[26]

A. Giménez et al.

Todd Gamblin, Bronis R. de Supinski, Martin Schulz, Robert J. Fowler, and
Daniel A. Reed. 2010. Clustering Performance Data Efficiently at Massive Scale.
In International Conference on Supercomputing. Tsukuba, Japan.

Todd Gamblin, Robert J. Fowler, and Daniel A. Reed. 2008. Scalable Methods for
Monitoring and Detecting Behavioral Classes in Scientific Codes. In Proceedings
of the 22nd International Parallel and Distributed Processing Symposium (IPDPS
2008). Miami, FL, 1-12.

Alfredo Giménez, Todd Gamblin, Barry Rountree, Abhinav Bhatele, Ilir Jusufi,
Peer-Timo Bremer, and Bernd Hamann. 2014. Dissecting On-Node Memory
Access Performance: A Semantic Approach. In Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’14). IEEE Computer Society. LLNL-CONF-658626.

Kevin A. Huck, Oscar Hernandez, Van Bui, Sunita Chandrasekaran, Barbara
Chapman, Allen D. Malony, Lois Curfman McInnes, and Boyana Norris. 2008.
Capturing Performance Knowledge for Automated Analysis. In Proceedings of the
2008 ACM/IEEE Conference on Supercomputing (SC "08). IEEE Press, Piscataway,
NJ, USA, Article 49, 10 pages. http://dl.acm.org/citation.cfm?id=1413370.1413420
Kevin A. Huck and Allen D. Malony. 2005. PerfExplorer: A Performance Data
Mining Framework For Large-Scale Parallel Computing. In Proceedings of the
2005 ACM/IEEE conference on Supercomputing (SC "05). IEEE Computer Society.
Katherine E. Isaacs, Peer-Timo Bremer, Ilir Jusufi, Todd Gamblin, Abhinav Bhatele,
Martin Schulz, and Bernd Hamann. 2014. Combing the Communication Hairball:
Visualizing Parallel Execution Traces using Logical Time. IEEE Transactions on
Visualization and Computer Graphics (Dec. 2014). LLNL-JRNL-657418.

K. L. Karavanic, J. May, K. Mohror, B. Miller, K. Huck, R. Knapp, and B. Pugh.
2005. Integrating Database Technology with Comparison-based Parallel Perfor-
mance Diagnosis: The PerfTrack Performance Experiment Management Tool. In
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference. 39-39.
https://doi.org/10.1109/SC.2005.36

Andreas Kniipfer, Holger Brunst, and Wolfgang E. Nagel. 2005. High Performance
Event Trace Visualization. In Euro Workshop on Parallel, Distributed and Network-
Based Processing (PDP 2005).

Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Saurabh Bagchi, and Todd
Gamblin. 2012. Probabilistic Diagnosis of Performance Faults in Large Scale Paral-
lel Applications. In International Conference on Parallel Architectures and Compila-
tion Techniques (PACT’12). Minneapolis, MN. http://www.cs.unc.edu/~tgamblin/
pubs/2012/laguna-automaded- diagnosis-pact12.pdf LLNL-PROC-548642.
Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Saurabh Bagchi, and Todd
Gamblin. 2014. Diagnosis of Performance Faults in Large Scale MPI Applications
via Probabilistic Progress-Dependence Inference. IEEE Transactions on Parallel
and Distributed Systems (TPDS) (May 22 2014). LLNL-JRNL-643939.

Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Todd Gamblin, Gregory L.
Lee, Martin Schulz, Saurabh Bagchi, Milind Kulkarni, Bowen Zhou, Zhezhe Chen,
and Feng Qin. 2015. Debugging High-Performance Computing Applications at
Massive Scales. Commun. ACM (September 2015). LLNL-JRNL-652400.

Ignacio Laguna, Todd Gamblin, Bronis R. de Supinski, Saurabh Bagchi, Greg
Bronevetsky, Dong H. Ahn, Martin Schulz, and Barry Rountree. 2011. Large
Scale Debugging of Parallel Tasks with AutomaDeD. In Supercomputing 2011
(SC’11). Seattle, WA. https://engineering.purdue.edu/dcsl/publications/papers/
2011/debugging_ded_supercom11.pdf LLNL-CONF-486911.

Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz, Bronis R. de
Supinski, Kathryn Mohror, and Howard Pritchard. 2016. Evaluating and Extend-
ing User-Level Fault Tolerance in MPL. International Journal of High Performance
Computing Applications (IJHPCA) (January 11 2016). LLNL-JRNL-663434.
Aaditya G. Landge, Joshua A. Levine, Katherine E. Isaacs, Abhinav Bhatele,
Todd Gamblin, Martin Schulz, Steve H. Langer, Peer-Timo Bremer, and Valerio
Pascucci. 2012. Visualizing Network Traffic to Understand the Performance of
Massively Parallel Simulations. In IEEE Symposium on Information Visualization
(INFOVIS’12). Seattle, WA. LLNL-CONF-543359.

Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi, Martin Schulz,
and Todd Gamblin. 2014. Accurate Application Progress Analysis for Large-
Scale Parallel Debugging. In Programming Langauge Design and Implementation
(PLDI’'14). Edinburgh, UK. LLNL-CONF-646258.

Shirley Moore, David Cronk, Felix Wolf, Avi Purkayastha, Patricia Teller, Robert
Araiza, Maria Gabriela Aguilera, and Jamie Nava. 2005. Performance profiling
and analysis of dod applications using papi and tau. In Users Group Conference,
2005. IEEE, 394-399.

Philip Mucci, Daniel Ahlin, Johan Danielsson, Per Ekman, and Lars Malinowski.
2005. PerfMiner: Cluster-wide collection, storage and presentation of application
level hardware performance data. Euro-Par 2005 Parallel Processing (2005), 612—
612.

S. Shende and A. D. Malony. 2006. The TAU Parallel Performance System. Interna-
tional Journal of High Performance Computing Applications 20, 2 (2006), 287-311.
https://doi.org/10.1177/1094342006064482

Jeffrey Vetter and Chris Chambreau. 2005. mpiP: Lightweight, Scalable MPI
Profiling. (2005). http://www.lInl.gov/CASC/mpip

https://doi.org/10.1109/SC.2010.41
https://doi.org/10.1109/SC.2010.41
https://doi.org/10.1109/CLUSTER.2015.114
https://doi.org/10.1109/CLUSTER.2015.114
http://dl.acm.org/citation.cfm?id=1413370.1413420
https://doi.org/10.1109/SC.2005.36
http://www.cs.unc.edu/~tgamblin/pubs/2012/laguna-automaded-diagnosis-pact12.pdf
http://www.cs.unc.edu/~tgamblin/pubs/2012/laguna-automaded-diagnosis-pact12.pdf
https://engineering.purdue.edu/dcsl/publications/papers/2011/debugging_ded_supercom11.pdf
https://engineering.purdue.edu/dcsl/publications/papers/2011/debugging_ded_supercom11.pdf
https://doi.org/10.1177/1094342006064482
http://www.llnl.gov/CASC/mpip

	Abstract
	1 Introduction
	2 HPC Performance Data Disarray
	2.1 Data Sources and Collection Mechanisms

	3 System Overview
	4 Meta Annotation
	4.1 Data Wrappers
	4.2 Data Semantics
	4.3 Data Derivations

	5 Query Satisfaction
	5.1 Queries
	5.2 Derivation Engine
	5.3 Data-Parallel Derivations
	5.4 Using Derivation Results

	6 Performance
	7 Case Studies
	7.1 Data Collection and Semantics
	7.2 Application Impact on Rack Heat Generation
	7.3 CPU Frequency Throttling Impact on Node Power Consumption

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

