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ABSTRACT

Network congestion arising from simultaneous data transfers can
be a significant performance bottleneck for many applications, espe-
cially when network resources are shared by multiple concurrently
running jobs. Many studies have focused on the impact of network
congestion on either MPI performance or I/O performance but
the interaction between MPI and I/O traffic is rarely studied and
not well understood. In this paper, we analyze and characterize
the interference between MPI and I/O traffic on fat-tree networks,
highlighting the role of important factors such as message sizes,
communication intervals, and job sizes. We also investigate several
strategies for reducing MPI-I/O interference, and the benefits and
tradeoffs of each approach for different scenarios.
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1 INTRODUCTION

Many production high performance computing (HPC) workloads
involve significant data exchange among compute nodes as well as
between compute nodes and parallel file systems. Data movement
is necessitated because simulation data can rarely fit on a single
compute node, and due to file input/output requirements of com-
putational simulations, which also includes checkpointing for fault
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tolerance. Past research has shown that such data movement on
HPC systems is a source of significant performance degradation
for many applications [4, 23, 24].

Studies have also shown that off-node data movement is partic-
ularly susceptible to interference on systems where the network
infrastructure is shared by all running jobs [5, 25]. However, with
the exception of Mubarak et al. [17], these studies have focused
on network traffic generated by one of the two major sources of
off-node data movement: MPI or I/O. For the dragonfly topology [8],
Mubarak et al. showed that packets generated by MPI communica-
tion of one job can experience over 4000X increase in maximum
latency due to interference from I/O traffic of another job. This can
result in a notable performance degradation for the MPI job.

Currently, there remain several open questions regarding the
nature of interference between MPI and I/O traffic. For example, the
impact of the volume and frequency of MPI and I/O data movement
on the resulting interference is not understood. It is also unclear if a
high bisection bandwidth topology such as fat-tree [12] suffers from
such interference. A deep understanding of these aspects can guide
optimization efforts as well as configuration of I/O subsystems,
network infrastructure, and communication libraries.

In order to develop a better understanding of the aforementioned
topics, this paper characterizes the effects of interference between
MPT and I/O traffic on the performance of each of these traffic types.
Our characterization explores several factors that may impact the
interference, including message sizes, communication intervals, sys-
tem allocations, and task placement. We also evaluate the efficacy
of several optimization strategies in mitigating the performance
impact of MPI-I/O interference. We focus on the fat-tree topology
because of its wide-spread use in more than half of the top 500 su-
percomputers [16] and its low-diameter, high bisection bandwidth
properties. In order to avoid being limited by the constraints posed
by deployed systems, e.g. the placement of I/O servers, we use the
CODES simulation framework to conduct our study [18].

One recurring finding in this study is that MPI traffic is more ad-
versely affected than I/O traffic by interference. Network congestion
caused by high-intensity I/O workloads often renders the interfer-
ence due to MPI traffic inconsequential once an I/O-congestion
threshold has been reached. Our results indicate that I/O traffic
typically experience modest slowdown of up to 18% due to MPI
interference, with the extreme case exhibiting 1.9x slowdown. In
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contrast, MPI traffic is typically expected to observe 1.6x-3.2x slow-
down, but the slowdown can be as high as 7.6x in some cases.

We also find that careful job and I/O server placement strategies
can be highly effective in minimizing MPI-I/O interference on fat-
tree networks. Further, we show that I/O throttling can significantly
reduce the interference experienced by MPI traffic while incurring
less than 18% performance penalty for I/O traffic.

2 BACKGROUND AND RELATED WORK

In this section, we introduce topics relevant to this work, and discuss
prior work related to them.

2.1 1/O Traffic

Parallel file systems are integral to HPC machines as they provide
persistent storage which can be accessed from all compute nodes.
High performance parallel file systems, such as Lustre [3], have
reached capacities of up to 72 PB and 1 TB/s aggregate read through-
put [2]. Such storage infrastructures are used for several purposes,
e.g. storing input/output data of computational simulations, check-
pointing, and big data workflows [9, 10, 15, 21].

Lustre splits I/O requests into fixed-sized chunks in order to bet-
ter pipeline and parallelize requests. The chunk size is configurable
by the administrator and defaults to 4 MB in the latest version
of Lustre. Notable I/O optimization studies have shown how I/O
requests can cause congestion on the storage servers as well as on
the network, specifically on links that are directly connected to I/O
servers [14]. This congestion degrades the performance of I/O jobs,
and various techniques such as I/O prefetching, buffering, schedul-
ing, and throttling have been proposed to mitigate this degradation.
However, none of these studies have evaluated the effect of I/O
congestion, and that of mitigation techniques on non-I/O jobs that
share the network.

2.2 MPI Traffic

Inter-process communication is required for many large-scale appli-
cations to broadcast initial parameters, share updated data, combine
intermediate results, etc. Most HPC applications use the Message
Passing Interface (MPI) for communication and their performance
can be sensitive to communication latency. Optimized MPI libraries
attempt to ensure that sensitive communication tasks on the ap-
plication’s critical path are not delayed unnecessarily. However,
it is common to observe congestion due to MPI traffic within the
same application which can degrade performance [4, 24]. Several
surveys of representative MPI workloads have indicated that HPC
applications generate a wide range of message sizes from small (few
KBs) to large (few MBs) at a wide range of communication frequen-
cies [7, 13]. These characteristics of application communication
patterns impact the congestion caused by MPI traffic, and therefore,
should be considered when characterizing MPI performance.

2.3 Fat-tree Networks

Fat-tree is a tree-based network topology with constant aggregate
bandwidth across all levels of the tree [11]. Logically, it can be seen
as a complete k-ary tree with edges increasing in capacity as we
move up towards the root of the tree, thereby providing full bisec-
tion bandwidth. Most modern fat-tree networks are implemented as
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Figure 1: Fat-tree network with isolated I/O servers

extended generalized fat-trees [20], depicted in Figure 1, in which
several smaller components are used to represent the connectivity
at higher levels. These can be built from commodity hardware and
identical components such as fixed-radix routers.

Theoretically, fat-tree networks can provide congestion- and
interference-free routing for pair-wise communication across the
system since they provide full bisection bandwidth. However, the
routing algorithm and process communication must be coordinated
to prevent overlap of network paths between all active communica-
tion pairs. This is impractical and generally not applicable to pro-
duction workloads. In practice, congestion occurs on full-bisection
fat-tree networks that service production workloads [6].

2.4 Network Sharing and Interference

In most fat-tree systems, e.g. Tianhe-2, Stampede, and TSUBAME3,
the network infrastructure is used for both I/O and MPI traffic, i.e.
1/0 traffic between compute nodes and I/O servers must traverse the
same network links as MPI traffic. In most cases, this configuration
is more economical than providing each compute node with an
additional, independent connection to the storage system.

When the network is shared between I/0 and MPI, I/O conges-
tion can impact the performance of MPI traffic since congestion
reduces the effective network bandwidth. At the same time, con-
gestion caused by MPI traffic can also interfere with I/O traffic.
Mubarak et al. [17] confirmed and quantified the effect of MPI-I/O
interference on MPI performance in the presence of checkpointing
1/0 traffic on dragonfly networks. However, their study is specific
to dragonfly, and cannot be used to quantify the degradation expe-
rienced on fat-tree networks. Further, to the best of our knowledge,
no work has quantified the effect of MPI traffic on I/O performance.

It is typically assumed that I/O bottlenecks will only exist be-
tween the I/O servers and disk because (i) data movement on storage
devices is slower than on modern networks, and (ii) I/O traffic in-
volves n compute nodes accessing m I/O servers, where n >> m.
However, with the advent of novel storage architectures such as
burst buffers and in-memory file systems, current expectations
may not hold for future systems. A more detailed investigation of
inter-job interference is necessary in order to better understand its
implications for the throughput of future systems.

2.5 CODES Simulation Framework

CODES is a framework for studying HPC interconnects, storage sys-
tems, and applications using parallel discrete-event simulations [18].
CODES provides high-fidelity, packet-level network models for sev-
eral interconnect topologies such as fat-tree, torus and dragonfly.
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It also provides a variety of MPI and I/O traffic generators that can
drive these models. CODES has been used for several recent studies
related to communication on different network topologies. These
studies have provided validation results showing that CODES can
predict performance similar to real-world systems [7, 17, 19].

3 EXPERIMENTAL SETUP

MPI and I/O traffic from different jobs running on a system interact
over shared network links. Once messages are injected by nodes of
different jobs on the network, they are decomposed into network
packets that are structurally indistinguishable from one another.
Nevertheless, the degree of slowdown due to interference from an
opposing job varies and depends on the opposing job’s behavior,
which determines its traffic pattern and intensity. This is because
interference depends on the volume of packets at each point in
the network, and different jobs inject packets into the network
at different rates. The rate of packet injection for a given job is a
result of the sizes and frequencies of the messages being sent over
the network. Therefore, characterizing the interference between
different types of jobs (viz. MPI and I/O for our work) requires
understanding how the communication pattern of one type will
interact with that of another type.

3.1 Machine Configuration

As stated earlier, we use CODES-based network simulations to con-
duct our experiments, and generate synthetic traffic patterns that
capture the salient features of typical I/O and MPI workloads in
HPC. Unlike on real systems, network simulations allow for more
fine-grained monitoring of the network traffic without inadver-
tently perturbing the application’s behavior or performance. Our
simulated system consists of 1,296 nodes that are interconnected
by a three-level, InfiniBand-like fat-tree network with 12.5 GB/s
links. Each node is connected to one of 72 36-port level-1 (or leaf)
switches. Of the 1,296 nodes, 72 function as I/O servers and 1,224
function as compute nodes. This partitioning is similar to the Cab
cluster at Lawrence Livermore National Laboratory [1]. Unless oth-
erwise specified, all I/O servers in our system are grouped and
connected to one of four leaf switches. These four leaf switches
are split between the two halves of the network, similar to the
system depicted in Figure 1. By default, the I/O and MPI job are
each assigned 612 randomly selected nodes. In summary, each of
1,296 nodes of the simulated system has one of the following three
roles in our environment:

o MPI client: a compute node that generates MPI traffic

e I/O client: a compute node that generates I/O traffic

e I/O server: a service node that receives I/O traffic from I/O
clients. This can either be an LNET router [3] or an actual I/O
server with attached storage.

3.2 Simulation Workload

We use synthetic communication patterns for the I/O and MPI job.
The chosen patterns are designed to capture the characteristics of
production HPC workloads. Since our aim is to develop a broader
understanding of inter-job interference, we believe that results from
well-chosen synthetic patterns are more generalizable than those
from specific applications [7, 19]. The workload in this study uses
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samples of small, medium, and large message sizes with moderate
and high traffic intensities. This allows us to see trends in how
different sizes and intensities respond to interference.

MPI job: The MPI job consists of one process per node. MPI pro-
cesses are paired randomly, and each process sends a fixed amount
of data to its partner at a fixed average interval, which is computed
as the time between the completion of the previous message and
the sending of the next message. The message sizes and intervals
used in each experiment are chosen to reflect a cross-section of
the MPI traffic patterns found in applications running on HPC sys-
tems [7, 9]. MPI message sizes range from 4 KB to 4 MB, and the
intervals range from 1 ys to 100 ms across the various experiments
in our study.

I/0 job: Using the Lustre I/O-forwarding pattern, each I/O client
randomly selects an initial I/O server for its first request. Subsequent
requests from that client are sent in a round-robin manner to other
I/0 servers. Unless otherwise stated, each I/O client writes ~4 GB
(1000 4 MB requests) for experiments reporting I/O performance.
We use a negligible interval between I/O requests for cases that
represent checkpoint-style I/O traffic, where each client writes all
of its data in an unbroken stream of requests. In other cases, we use
non-negligible request intervals to represent jobs where I/O data
is written in pieces, e.g. periodic visualization data output during
a scientific simulation. Previous studies have demonstrated this
range of I/O patterns on HPC systems [10, 15, 21].

3.3 Methodology

The communication performance of a job is represented in its trans-
fer latency, i.e., the time taken to complete sending an MPI message
or I/O request. Interference between MPI and I/O traffic is quanti-
fied by comparing the transfer latency for a job when it uses the
system exclusively to the transfer latency for the same job when
it shares the system with another job. We refer to the exclusive
system case as the baseline run and the shared system case as the
interference run.

The transfer latency for every MPI message and I/O request is
recorded during each simulation. For consistency, the duration of
each run is long enough to collect approximately 1000 data points
per node for the chosen job, i.e. I/O or MPL Initially, 50 warm-up
messages/requests are sent from each client before the communica-
tion times are recorded. The message/request intervals are varied
randomly within a +5% bound to account for system noise and vari-
ations in communication time across the clients. Hence all intervals
reported in this paper represent the average delay between con-
secutive messages/requests, and the delay varies uniformly around
the arithmetic mean with a maximum variation of +5%.

In order to characterize the interference, we evaluate the effects
of three MPI message sizes at different message intervals interact-
ing with three I/O request sizes at different request intervals. We
also alter the number of MPI and I/O clients to investigate how the
interference is impacted by the size of the job. These characteri-
zation results are presented in Section 4. Thereafter, we evaluate
the efficacy of three different performance optimization strategies
that could mitigate MPI-I/O interference: changing job placement,
changing I/O server placement, and I/O throttling. The results of
these evaluations are presented in Section 5.
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Table 1: Message/request sizes and their respective intervals
evaluated in our main survey.
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Figure 2: An example chart showing the format and describ-
ing the main elements of charts used in this paper.

4 CHARACTERIZATION OF INTERFERENCE

In order to characterize the interference between MPI and I/O
traffic, we should not only capture the extent of the interference,
but should also understand how the distinctive features of the
traffic patterns result in different interference patterns. This section
presents the resulting trends when different MPI and I/O traffic
patterns interfere with each other. The traffic patterns, depicted in
Table 1, are defined by the message/request size and its interval.
We discuss the performance trends of I/O and MPI jobs individually
in different sections since the features are unique to the two types
of jobs. The final two subsections evaluate the impact of job sizes
on inter-job interference and discuss the reasons for the differences
in the performance trends, respectively.

Figure 2 illustrates an example of how the results will be pre-
sented in this section. This example figure shows the performance
of two I/O traffic patterns in the presence of three MPI interference
patterns. MPT’s performance is not shown in this figure; it will
be reported in a similar manner in separate charts. The baseline
bars show the I/O request time when there is no MPI interference.
Variation in I/O request time due to MPI interference is depicted
by a change in the following attributes of a colored bar relative to
its corresponding baseline bar:

o the height of the average mark, the circular dot
e the height of the median mark, the horizontal line
o the height and the length of the bar

4.1 Performance of the I/0 Job

Figure 3 shows the I/O performance when different I/O request
sizes interact with different MPI message sizes. Maximum and
minimum values are omitted in this figure to ensure clarity. Each
row of charts shows the performance for a different I/O request size;
request size increases from top to bottom. Within a row, results due
to increasingly larger interfering (MPI) message sizes are shown as
we move from left to right.
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Chart A shows no significant changes in the position of the dots
and bars within any cluster, indicating that the performance of 4KB
I/0O requests is not affected by 4 KB MPI background interference.
However, when the size of the interfering messages increases to
4 MB, as shown in Chart C, the latency of 4 KB requests increases
significantly. This demonstrates that the latency of small I/O re-
quests is sensitive to high-intensity MPI interference. The 4 KB
I/0 request experiences the greatest average slowdown of all I/O
request sizes, with the most significant slowdown occurring when
4 MB MPI messages are sent at 100 us intervals, highlighted by the
rightmost column of chart C. The average request time increases
from 3.07 s to 5.9 ps due to MPI interference, a 1.9% slowdown.

In Charts D-I, there is a significant increase in the I/O times for
the rightmost three clusters. As this increase also occurs for the
black baseline bars, which show the runtimes when there is no
interference, the increase is not due to the presence of MPI traffic.
Rather, the increase happens when the I/O interval is reduced (as we
move from left to right within a chart) and I/O packets are injected
into the network at a higher rate. This results in I/O-congestion
causing the increase in I/O request time. We will refer to the I/O
interval around which this rapid increase in request time happens as
the I/O-congestion threshold. The 4 KB I/O traffic scenarios (Charts A-
C) do not cross their I/O-congestion threshold for the I/O intervals
we tested. We find that the I/O-congestion threshold is between 500-
100 ps for 512 KB requests and between 5-1 ms for 4 MB requests.

When the interfering MPI message size is 512 KB (Charts B, E,
H) and 4 MB (Charts C, F, I), an increase in the MPI traffic intensity
causes a corresponding increase in the I/O request times before
the I/O-congestion threshold is reached. For 4 MB I/O versus 4 MB
MPI (chart I), this trend is depicted within each cluster of bars by a
gradual increase in the positions of colored bars for I/O intervals of
50 ms, 10 ms, and 5 ms. Once we cross the I/O-congestion threshold
at 1 ms I/O intervals, the interfering MPI traffic does not show a
significant impact on I/O performance.

Figure 4 presents a more detailed view of the case in which 4 MB
I/O requests interact with 4 MB MPI messages. The inclusion of
additional intervals shows that the impact of interference caused
by MPI gradually declines as the I/O interval approaches the I/O-
congestion threshold. At the 2ms I/O interval, there is minimal
increase in the average and 75th percentile time within the cluster.
Nevertheless, after the I/O-congestion threshold is reached, even the
baseline is higher than the interference runs prior to the threshold.
The detailed trends seen here can be used to represent the behavior
of different I/O request sizes as Figure 3 suggests that different I/O
request sizes exhibit a similar pattern around their I/O-congestion
threshold. Overall, we conclude that if the time per I/O request
is more important than the volume of requests for an I/O job, it
is better to send less frequent requests despite the higher relative
impact of interference from MPIL.

4.2 Performance of the MPI Job

The performance results for MPI traffic in the presence of I/O in-
terference are shown in Figure 5. Similar to Figure 3, each row of
charts shows the performance for a different MPI message size;
within a row, results due to increasingly larger interfering (I/O)
request sizes are shown. The horizontal arrangement of dots within
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Figure 3: Performance of three I/O request sizes being interfered by three MPI message sizes (see Figure 2 for feature descrip-
tion). A difference in the height of the features of the colored bars (interference runs) relative to the features of the black
bar (baseline run) in the same group indicates a performance variation due to interference. Small-sized I/O requests are most
impacted by high-intensity MPI traffic. I/O self-congestion obfuscates the impact of MPI traffic for several other cases.
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each cluster and the absence of visible bars in Chart A indicate that
there is relatively no MPI performance variation for 4 KB messages
in presence of 4 KB I/O requests irrespective of their intervals. How-
ever, as the size of I/O requests increases in Charts B and C, MPI
slowdown is observed with a maximum slowdown of 7.6X due to
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Figure 4: A detailed look at the performance of 4 MB I/0 requests with interfering (MPI) message size of 4 MB.

4 MB 1/0 requests.

The effect of MPI self-congestion is visible in the changing height
of the baseline bars across clusters in Charts D-I, i.e., for MPI mes-
sage sizes 512 KB and 4 MB. However, unlike the I/O case, MPI slow-
down due to self-congestion does not prevent inter-job interference
from further inducing notable MPI slowdown. This suggests that

regardless of the intensity of MPI messaging, it is still vulnerable
to further slowdown due to I/O traffic.

Chart C shows that the overall height of each cluster decreases
as the MPI interval is reduced as we move from left to right in
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Figure 5: Performance of three MPI message sizes being interfered by three I/O request sizes:

very small, latency for MPI messages is impacted significantly by interfering I/0 traffic.
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Figure 6: A detailed look at the performance of 4 MB MPI messages with interfering (I/O) request size of 4 MB.

that chart. This, surprisingly, indicates that reducing the interval
between MPI messages reduces the average slowdown due to in-
terference. This phenomenon is visible in all charts where the I/O
interference size is 512KB (charts B, E, H) or 4 MB (charts C, F,
I). Higher I/O injection rates and larger I/O request sizes cause
more network congestion and result in more I/O packets stalled
and waiting in the buffers of network switches. Thus when MPI
messages are queued infrequently, they often end up waiting be-
hind long queues of I/O packets. We hypothesize that reduction in
MPI messaging interval results in MPI packets preempting some
of the I/O packets, which in turn slows down injection rate for
I/0 traffic. With less I/O packets in the system, MPI packets spend

less time queued in the network and are transferred faster, which
results in overall better MPI performance.

To get a more detailed view of MPI performance characteris-
tics, we study the scenario in which 4 MB MPI messages are trans-
ferred alongside 4 MB 1/O requests in Figure 6. As described in the
previous paragraph, reducing the MPI interval improves the MPI
performance during high-intensity interference. When the I/O in-
terference interval is 100 ps, the average message time for 4 ms MPI
interval is 1.34 ms while the average message time for 100 ys MPI
interval is 0.85 ms. All MPI intervals larger than 4 ms experience a
maximum slowdown above 300% of the baseline times when the
I/O interval is 100 ps.
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Overall, the results so far can be summarized as follows:

o Small interfering requests/messages (4 KB of MPI or I/O) have
minimal impact on MPI or I/O performance.

For I/O performance, the impact of interference is moderate
if the I/O interval is larger than the I/O-congestion threshold.
Below the threshold, interference has negligible effect.

For MPI performance, interference causes variations even
when there is a moderate amount of interfering I/O traffic.
The most significant impact is observed when the I/O traffic
has passed its I/O-congestion threshold.

Overall, the impact of interference is higher for MPI than I/O.

4.3 Varying Job Sizes

The results presented so far are for the system configuration in
which the compute nodes are evenly split between jobs with I/O
and MPI clients. This configuration is useful for making a fair
comparison between how each traffic type reacts to interference
from the other traffic type. However, nodes are usually unevenly
divided among I/O and MPI jobs. Hence, we present results for
a set of experiments in which we alter the job sizes in order to
understand how a job’s scale affects the interference it experiences.
Three node allocation sizes are tested: small, medium, and large
using 25%, 50%, and 75% of all compute nodes for the analyzed
job, respectively. All compute nodes in the system are occupied by
either an I/O client or an MPI client and a reduction in the size of
one job means an increase in the size of the other job.

Based on the I/O performance trends presented in Section 4.1,
checkpoint-style I/O traffic, with request sizes in MBs and intervals
close to zero, is not affected by MPI interference as its interval is
below the I/O-congestion threshold. We therefore choose to focus
on other I/O scenarios that are noticeably affected by the presence
of MPI traffic in these results: I/O request size of 4 MB and intervals
between 2 ms and 128 ms. The MPI performance evaluation is done
for MPI messages between 4 KB and 1 MB with a 500 ys interval in
the presence of worst-case I/O traffic, i.e. checkpoint-style traffic.

4.3.1 1/0O Jobs. The I/O request times are presented in Figure 7A
and the resulting interference trends are shown in Figure 7B. The
baseline times reported in Figure 7A for 2 ms-interval requests
show that times for I/O requests in medium and large jobs are
approximately 1.8x and 3X higher than the time for the small I/O
job, respectively. Increasing the job’s size results in more I/O re-
quests being sent to the 72 I/O servers, thereby increasing the
self-congestion and mean time per request. Because of the increase
in I/O congestion as the job size increases, medium and large jobs
are less affected by interference than the small job, as shown in
Figure 7B. Among small jobs, scenarios with infrequent requests
are most sensitive to interference. Overall, highest relative increase
of 18% in I/O request time due to MPI traffic is observed for the
scenario with small I/O job and 128 ms intervals.

4.3.2  MPI Jobs. The performance trends in Figure 8 indicate
that MPI messages are affected significantly by I/O traffic for all
message sizes and allocations. Among allocations, for all message
sizes, relatively lower interference is seen for the large MPI jobs
than for the small and medium jobs. The lower number of I/O clients
when the MPI job is large means that there are less I/O packets
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Figure 8: Impact of job sizes on MPI performance. Remain-
ing nodes are running an I/0 job.

being injected into the network and that the paths of I/O packets
are less likely to overlap with those of MPI traffic. Even with a large
MPI job, the slowdown due to I/O interference ranges between
1.6-3.2x of the baseline performance. Figure 8 also shows that MPI
jobs with small message sizes are affected the most by I/O.

4.4 Discussion

Section 4.1 demonstrated that 4 MB I/O request traffic reaches its
I/O-congestion threshold at 2 ms intervals for the medium job. How-
ever, Figure 7 indicates that 4 MB 1/O traffic pattern has passed its
I/O congestion threshold at 2 ms for the large job while the small job
has not reached its threshold for the same interval. In other words,
larger jobs will reach their congestion thresholds more quickly (i.e.
at higher intervals) than smaller jobs for a given request size.
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In analyzing the differences between the I/O and MPI inter-
ference trends, it must be re-stated that there is a key difference
between the traffic patterns of the two jobs: each MPI client has
a single, unique destination while all I/O clients write data to the
same set of few I/O servers in a round-robin manner. In our envi-
ronment, there is a 1:1 mapping from MPI client to its pair and a
612:72 mapping from I/O clients to I/O servers for a medium job.
Thus, the MPI traffic is dispersed more evenly across the network
while I/O traffic is focused at switches servicing I/O servers, caus-
ing congestion where the paths from different I/O clients converge.
This disparity is the reason for the following phenomena:

o The average baseline time of a given I/O request size is higher
than the average baseline for an MPI message of the same size
and moderate interval.

e MPI congestion is not as extreme as I/O congestion, which is
primarily responsible for the severe I/O performance degrada-
tion below the I/O-congestion threshold.

The interference impact of each traffic type can also be attributed
to the difference in traffic patterns. I/O congestion not only affects
I/0 traffic, but also delays MPI packets that traverse the paths on
which I/O packets are concentrated. Since I/O packets spend longer
time on the network, there is a higher probability that they will
block MPI packets. The MPI congestion is not as extreme, but we
see that it has the potential to slowdown I/O requests when the MPI
traffic is relatively heavy. This was reported in Figure 3C with small
I/O request sizes versus large MPI message sizes and in Figure 7B
with small I/O job size versus the large MPI job size; the latter being
a common situation on HPC systems.

Both I/O and MPI results show that with interference, runtimes
have very high maximum values and vary over large ranges with
mean values significantly higher than their respective medians. Fig-
ures 4 and 6 illustrate examples of these runs. This trait is indicative
of a heavy tail distribution and can be a concern for quality-of-
service (QoS) and synchronization.

5 MITIGATION STRATEGIES

So far, we have presented results on the impact of I/O-MPI inter-
ference on the performance of MPI and I/O jobs. Next, we explore
techniques that can potentially mitigate the effect of such interfer-
ence for the most impacted scenarios. In particular, we explore three
interference mitigation strategies: (i) modifying the placement of
jobs to nodes, (ii) relocating the I/O servers, and (iii) throttling I/O
traffic. We use the following representative configurations to report
the results obtained in this section: for impact on I/O performance,
we use 4 MB I/O requests sent at 128 ms intervals with interference
from 4 MB MPI messages sent at intervals of 500 us; for MPI perfor-
mance, we simulate sending 4 KB messages at 500 ps intervals with
interference from checkpoint-style I/O, i.e. 4 MB requests with a
negligible interval between requests.

5.1 Job Placement

Past work has shown that placement of jobs (i.e. the allocation pol-
icy for assigning nodes to jobs) impacts congestion and interference
observed on a system, and thus can affect job performance. This is
because the placement determines the nodes that inject/consume
data in the network, which along with the routing scheme impacts
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Figure 9: Impact of job placement on performance.

how the job’s traffic is spread across the network links. All results
presented in Section 4 used a topology-oblivious job placement in
which application tasks are randomly mapped to compute nodes
across the network as is done on most production systems. We
now show the impact of a switch-level placement scheme on the
I/O-MPI interference. In this scheme (called Random-switch), in-
stead of randomly assigning nodes to jobs, nodes are allocated at
the granularity of switches i.e. all nodes connected to a switch are
assigned to the same job, either the I/O job or the MPI job. The tasks
within a job are mapped sequentially to the nodes on the randomly
assigned switches.

5.1.1 Performance Results. Figure 9A and Figure 9B show I/O
and MPI performance, respectively, for executions with and with-
out I/O-MPI interference for the Random-node and Random-switch
job placement schemes. With the Random-switch placement, we
see that the I/O and MPI times for the baseline and interference
runs are similar, indicating that there is minimal slowdown due to
interference for this type of mapping. In contrast, for the Random-
node placement, the average I/O request time increases by 11.8%
and the standard deviation increases from 8% to 19% when I/O-MPI
interference is present. MPI messages experience an average slow-
down of 800% with the Random-node placement, and the maximum
message time increases by two orders of magnitude.

The Random-switch scheme leads to performance improvements
because all links connected to switches with I/O servers and clients
carry only I/O traffic; the same assertion holds for switches with
MPI clients. Therefore, MPI-I/O interference on links between level-
1 and level-2 switches is avoided. Further, when using the popular
FTREE routing algorithm, dedicated ports of level-3 switches are
responsible for forwarding traffic for a given level-1 switch. Thus,
the links connecting to the level-3 switches that are used to relay
1/0O traffic do not carry MPI traffic since MPI clients do not share
level-1 switches with I/O servers in this configuration.

5.2 I/0 Server Placement

During our analysis of I/O performance and I/O-congestion thresh-
old, we observed that aggregating I/O servers on some switches
resulted in heavy usage of a few down links connected to different
level-2 switches in the network. This created congestion through-
out the system and impacted performance significantly. Thus, our
second mitigation strategy explores the efficacy of the following
1/O server placement schemes:
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Figure 10: Impact of I/O server placement on performance.

o isolated-target: In this scheme, dedicated switches are used
to host I/O servers. This I/O server placement scheme has been
used for all other experiments in this work as this is typically
used in production HPC systems. For our simulated system,
four leaf switches — two from each half of the network — are
dedicated to I/O servers.

e spread-target: In this scheme, I/O servers are assigned in a
round-robin fashion to all leaf switches. For our system, one
1/0 server is assigned to each of the 72 leaf switches. Each I/O
server is connected to port 18 of a switch, therefore, the I/O
servers are spread across the network.

e random-target: I/O servers are randomly distributed across
the system with no restrictions.

Regardless of the I/O server placement scheme, I/O clients always
send data to I/O servers in a round-robin manner as is commonly
done in production systems. We have not varied I/O server selection
scheme to ensure that our results are consistent and allow for a fair
comparison.

5.2.1 Performance Results. Figure 10 shows the impact of MPI-
I/O interference on performance when the I/O server placement
is varied. We find that the spread-target placement of I/O nodes
is best at mitigating interference for both types of jobs. Further,
the isolated-target and random-target server placements result in
similar slowdown for both jobs.

As stated earlier, a visualization of I/O traffic over the network for
the isolated-target scheme showed heavily used links throughout
the system. The random-target scheme does not improve the situa-
tion as the I/O traffic still heavily uses few down links connected to
different level-2 switches. However, when the I/O servers are con-
nected to the 18th port of every level-1 switch in the spread-target
scheme, we observe that only four of the 72 level-2 switches (one
in each pod) are used for sending down I/O traffic to I/O servers.
By parsing the routing tables of all switches, we found that the
traffic destined to the servers connected to the 18th port of every
leaf switch is routed via the 18th level-2 switch in the pod of the
destination server. As a result, the I/O traffic is confined to a subset
of the network and thus does not interfere with the MPI traffic. This
insight can guide the placement of LNET routers and burst buffers
to leverage the I/O traffic isolation due to the routing algorithm.
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Figure 11: Impact of I/O request throttling on performance.

5.3 Throttling I/0 Traffic

1/0 throttling has been presented as a solution to reducing I/O con-
gestion and preventing low-priority I/O workloads from monop-
olizing the system’s I/O bandwidth [14, 22]. Throttling I/O traffic
refers to the process of regulating the rate at which I/O requests
are sent or processed. The characterization of I/O performance in
Section 4.1 showed how I/O congestion can be more detrimental to
I/O performance than interference caused by MPI traffic. Further,
the interference caused by I/O congestion can lead to over 8x slow-
down in latency of MPI messages. Reduction in I/O congestion can
therefore also reduce the degradation in MPI performance without
significantly affecting I/O performance.

We investigate the effect of I/O throttling on the performance
of both I/O and MPI jobs in this section. The random-node job
placement and isolated-target I/O server placement are used for
these results. Each I/O client writes 4.3 GB of total data, which is
broken up into 4 MB units and sent to I/O servers in a round-robin
manner. This operation is analogous to writing checkpoint data to
disk, and hence the total checkpointing time is more important than
the time to send individual 4 MB requests. I/O throttling is achieved
by varying the time between initiating consecutive I/O requests.
We refer to this gap as the throttle window. The throttle window
represents the duration between the start times of two consecutive
requests. Note that this is different from request interval, which
is used to represent the duration between the completion time of
a request and the start time of the next request. The MPI traffic
consists of 4 KB messages being sent at 500 s intervals. Results are
shown in Figure 11.

The baseline I/O performance is the time taken for all I/O clients
to finish their data writes without any I/O throttling and with the
MPI job running in the background. We find that the I/O completion
time remains unchanged for all throttle windows below 2 ms while
MPI performance begins to improve when the I/O throttle window
is >1.5ms. At 2ms, the throttling window becomes longer than
the mean I/O request time by approximately 250 ys. With 3 ms
throttling, the checkpointing time increases by only 18% while the
average MPI latency improves by over 200%. The 3 ms window
results in an average I/O request time of 1.3 ms and an effective I/O
interval of 1.7 ms, which is around the I/O-congestion threshold
for 4 MB requests.
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These results indicate that I/O throttling can potentially be used
to reduce MPI-1/O interference if a relatively small loss in I/O perfor-
mance is acceptable. Additionally, the I/O-congestion threshold may
be an effective guide for choosing appropriate throttling windows.

6 CONCLUSION

Resource contention over the network can be a major issue for jobs
whose performance depends on efficient inter-process communica-
tion and/or I/O operations. Our characterization of the interference
between I/O and MPI traffic on the fat-tree network proves that I/O
traffic is less sensitive to interference than MPI traffic. Nevertheless,
our results show that intensive MPI jobs can slow the performance
of certain I/O traffic by up to 1.9, while the largest slowdown for
MPI traffic is 7.6X. Small I/O jobs with a more typical I/O traffic pat-
tern reported a 18% slowdown. This is important because modern
HPC systems typically run a larger percentage of MPI jobs than
I/O jobs.

For I/O traffic, we identified the presence of I/O-congestion
threshold in various scenarios. We found that this threshold varies
based on the size of the request and the scale of the I/O jobs, and
it was discovered to be an important cause of slowdowns for both
I/0O and MPI performance.

In order to mitigate the impact of I/O-MPI interference, we pre-
sented and evaluated three different strategies: job placement, I/O
server placement, and I/O throttling. We found that each of these
strategies can reduce interference and improve performance, espe-
cially for MPI jobs. The placement strategies demonstrate how the
architecture and routing of fat-tree networks can be exploited to
isolate I/O traffic on a shared network.
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