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Abstract—Interconnection networks grow larger as supercom-
puters include more nodes and require higher bandwidth for
performance. This scaling significantly increases the fraction of
power consumed by the network, by increasing the number of
network components (links and switches). Typically, network
links consume power continuously once they are turned on.
However, recent proposals for energy efficient interconnects have
introduced low-power operation modes for periods when network
links are idle. Low-power operation can increase messaging time
when switching a link from low-power to active operation.

We extend the TraceR-CODES network simulator for power
modeling to evaluate the impact of energy efficient networking
on power and performance. Our evaluation presents the first
study on both single-job and multi-job execution to realistically
simulate power consumption and performance under congestion
for a large-scale HPC network. Results on several workloads
consisting of HPC proxy applications show that single-job and
multi-job execution favor different modes of low power oper-
ation to have significant power savings at the cost of minimal
performance degradation.

Index Terms—Network simulations; Energy-efficient networks;
Power and performance modeling; Multi-job workloads

I. MOTIVATION

Supercomputer networks scale by adding more switches
(routers) and links to connect more compute nodes together
and increase bandwidth. Popular network topologies [1], [2]
deploy high-radix routers to increase the number of links
for larger systems and higher bandwidth. Presently, network
links consume full power even when idling, i.e., when no
packets are being transmitted, thus wasting power during the
computational phases of applications. By contrast, other sys-
tem components, such as CPU and memory, conserve power
when underutilized. Reportedly [3], interconnection networks
consume up to 12% of the total system power, when the system
is fully utilized, and this percentage becomes larger in periods
of low system utilization. Reducing the power consumed by
the network can reduce the overall power budget for more
efficient HPC, by not only saving network power but also by
enabling spending extra power for computational capacity.

Existing proposals for improving power and energy effi-
ciency include adaptive link rate (ALR) [3], [4], [5] and
low-power idle (LPI) modes [6], [7]. Both proposals incur a
transmission time penalty, either due to reducing link speed,
as in ALR, or due to transitioning the link to a low-power
mode. LPI is typically an improvement over ALR because it
incurs less delay (microseconds vs. milliseconds) and offers
maximal power savings – up to 90% less power consumption
than fully active mode. LPI saves power by shutting down
transceiver components when a link is idling, whereas ALR
still consumes power during idle periods, albeit at a reduced
rate by reducing the link speed. Because of those advantages,
LPI has been ratified by the Ethernet consortium [8] as Energy-
Efficient Ethernet. In particular, LPI defines different low-
power modes that expose different trade-off points for power
saving and impact on performance. Specifically, a link can
enter deep-sleep operation when idle, saving maximum power
but adding an extended wake-up delay on packet transmission.
In contrast, there is a fast-wake operating mode, during which
the links stays partially active, thus saving less power than
deep-sleep, but has modest wake-up delay. We provide details
on low-power modes in the background section (Section II).

Recent studies [9], [10], [11], [12], [13] on LPI have shown
great potential for power savings, up to 70%, for a negligible
degradation in performance (less than 1%). However, those
results come from simulating single-job workloads on a small
cluster of 256 nodes with a fat-tree network topology. In prac-
tice, large supercomputers comprise of thousands of nodes,
and execute multiple jobs, which share the network. Different
installations also deploy different network topologies besides
fat-tree, such as dragonfly [14] and HyperX [15]. The results
and insights of previous work are limited due to missing these
important variations.

In this paper, we extend previous studies on energy-efficient
networks by simulating large-scale supercomputer networks
executing realistic, multi-job workloads. We extend the state-
of-the-art network simulator TraceR-CODES with power con-
sumption modeling and experiment with three different net-



work topologies: dragonfly, fat-tree, and HyperX. We use
HPC proxy applications to create representative, multi-job
workloads running on HPC systems.

Specifically, the paper makes the following contributions:
• A power model of link operation that is configurable

for timing parameters, when transitioning between low-
power and active modes, and for power consumption. The
model and methodology are based on existing proposals
for low-power operation [8], [12] and are flexible to
model different link technologies.

• The design and implementation of this power model
in the TraceR-CODES network simulator. We choose
TraceR-CODES to leverage its extensive library of vali-
dated network models for simulating communication, on
top of which we add our power models.

• An extensive evaluation of low-power modes of link
operation by using three different topologies (dragonfly,
fat-tree, and HyperX), simulating a large supercomputer
network of 4,608 compute nodes and deploying single-
job and multi-job workloads comprised of HPC proxy
applications. Results of single-job workloads validate our
power model by comparing them with existing literature.

• New insights from the results of multi-job simulations,
which show that single-job and multi-job execution have
different power consumption and performance character-
istics when deployed on energy-efficient networks.

II. ENERGY-EFFICIENT LINK OPERATION

This section provides an overview on low-power operation
of network links. It introduces the two proposed low-power
modes – fast-wake and deep-sleep. Notably, these modes are
ratified in the IEEE Ethernet Standard [8], proposed by the
Energy Efficient Ethernet (EEE) working group.

Network links operate always-on to maintain synchroniza-
tion between the transmitter and receiver endpoints of the
link. This approach keeps the link in a ready-to-transmit state
but wastes power and energy during idle periods when there
is no communication. Specifically, transmitter and receiver
components of the switches at the endpoints of a link signal
continuously, thus consume full power, all the time, even if no
packet is transmitted. Recently, low-power link operation dur-
ing idle periods has been proposed to address this inefficiency.
In low-power mode, links turn off parts of the transmitter
and receiver components on opposite sides of the link to
reduce power consumption. In this mode, links are unavailable
to transmit or receive packets and resuming active operation
incurs a delay to wake up the link, re-activate transmitting and
receiving components, and ramp up to full power.

This wake-up delay adds overhead to packet transmission
when transitioning from the low-power to active mode. The
duration of the delay depends on the physical and electrical
characteristics of the links and transceivers. Existing proposals
define two modes for low-power operation, namely fast-wake
(FW) and deep-sleep (DS) with different wake-up delay and
power consumption characteristics. Fast-wake has a lower
wake-up delay for modest power savings, by keeping only the

TABLE I: Wake-up delays and packet transmission latency (in
µs) for deep-sleep and fast-wake

Link Tw|DS Tw|FW Tx Latency
speed MTU 1500B

25GBASE-R 14.25 0.34 0.48
40GBASE-R 5.50 0.34 0.30
100GBASE-R 5.50 0.34 0.12
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Fig. 1: Overview of the deep-sleep operation

transmitter component on and allowing the receiver to partially
shut down, for maintaining link synchronization. In contrast,
deep-sleep provides maximal power saving by shutting down
both transmitter and receiver components, incurring extra
delay to wake-up.

The motivation for different low-power modes comes from
the observation that the wake-up delay becomes a significant
overhead as link speeds increase. Table I shows wake-up
delays for both fast-wake and deep-sleep, and packet transmis-
sion latency for different speeds of backplane links, using data
from the Ethernet standard. By design, fast-wake is intended
as a compromise between deep-sleep and active operation. The
wake-up delay of deep-sleep is an order of magnitude higher
than transmit latency, whereas fast-wake delay is comparable
to that. The following sections elaborate more on the operation
and power characteristics of fast-wake and deep-sleep modes,
and a hybrid mode combining the two.

A. Deep-sleep operation

Figure 1 shows an overview of the deep-sleep operation.
The link enters low-power mode starting with a sleep signaling
phase of Ts duration, during which the link operates at peak
power. In that phase, the transmitter sends a sleep signal to
the receiver and ceases operation after Ts. Next, the link
enters quiet operation, where both the transmitter and receiver
have shut down. In addition, the link periodically enters a
refresh signaling phase, consuming full power, to maintain
synchronization at the physical layer. In the figure, the quiet
period is defined as Tq , while the duration of refresh is Tr. The
length of quiet and refresh periods depends on the technology
characteristics of the link. When the link needs to transition to
active operation for transmitting a packet, there is a wake-up
delay, denoted as Tw|DS , before resuming active operation.

By present standards and technology, Ts, Tr, and Tw|DS

are on the order of microseconds, whereas Tq is on the order
of milliseconds. Previous analysis [9], [11] has shown that
deep-sleep operation saves up to 90% of power consumption
compared to active mode. It is worth noting that although the
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Fig. 2: Overview of the fast-wake operation

standard specification defines the link operation during low-
power mode, it is up to the data link layer to decide when to
enter this low-power mode, either immediately when idling or
after a hold period that reduces transitions between active and
low-power modes. We elaborate on this topic later.

B. Fast-wake operation

Figure 2 shows the fast-wake operation for low power con-
sumption. As opposed to deep-sleep, the transmitter stays on,
continuously signaling to the receiver. The receiver partially
shuts down to save power, keeping only the minimum number
of active components to negotiate physical layer synchroniza-
tion with the transmitter. Due to this partly active operation,
the wake-up delay, denoted as Tw|FW , is significantly shorter
compared to that in the deep-sleep mode, on the order of
nanoseconds instead of microseconds. However, power savings
are less, up to 40% compared to active mode.

C. Extensions to low-power operation

As mentioned earlier, link specifications describe the mech-
anisms of low-power operation but do not dictate when to enter
that mode when idling. Previous studies [11], [13], [10], [16],
[12] have identified wake-up delay as a possible source of sig-
nificant network performance overhead, leading to application
performance degradation. Specifically, if a link enters low-
power mode immediately after becoming idle, bursty traffic
of few packets, a single packet at worse, suffers the wake-
up delay on every transmission of a packet. To alleviate that,
existing approaches propose inserting a hold interval (also
referred to as a stall timeout) to keep the link active for a
certain period of time before it transitions to low-power mode.
During the hold interval the link consumes full power, being in
active mode, but it is ready to transmit a packet without added
delay. The optimal selection of the hold timeout to maximize
power savings, while minimizing performance penalty, has
been a topic of research [12].

In the next section, we discuss the design and implementa-
tion of the power and performance model. The model applies
to both existing approaches for low-power link operation,
namely deep-sleep and fast-wake modes, and also it is flexible
to include extensions, such as hold timeouts, to investigate
performance and power trade-offs.

III. MODELING AND SIMULATION METHODOLOGY

In this section, we present the methodology to model low-
power operation, including its effects on power consumption
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Fig. 3: Various states of a link in the deep-sleep mode. Markers
show possible times of packet transmission.

TABLE II: Deep-sleep model timing analysis

Tx marker Overhead (Tx) Time of Pds

1 0 ∅
2 0 ∅
3 Tw|DS ∅
4 Tw|DS

t4−tq
Tq
− d t4−tq

Tq
− 1e

5 Tw|DS
t5−tq
Tq
− d t5−tq

Tq
− 1e

and performance. In order to do this, we extend the network
modeling capabilities in the state-of-the-art network simulator
TraceR-CODES. Our extensions closely follow the definition
of low-power link operation in the IEEE Ethernet Standard,
which is the state-of-the-art specification for low-power opera-
tion. Nevertheless, the power model is general, and can apply
to any kind of networking technology, by being parameterized
with respect to power consumption and delay parameters.

We use realistic parameters taken from the ratified Ethernet
standard to test the model, and to be able to compare with
literature on energy-efficient networks.

A. Modeling Different Low Power Modes

As opposed to a link running at full power in the default
case, we modify the network models in TraceR-CODES to
keep track of the power state or current mode of each link.
Specifically, for each link, the model segments the total time
of the simulation into periods where the link is operating in
different power modes. When a request for packet transmission
arrives, the current power mode of the link determines any
delay to packet transmission due to low-power operation, and
the corresponding power consumption of the link. Below, we
provide details about each low power mode and its model in
the simulation framework.

1) Deep-sleep mode: Figure 3 shows the various states
in which a link can be at different times when modeling
deep-sleep operation. Markers show possible times of packet
transmission. Note that besides including the intervals for
low-power link operation, the model includes a hold interval
of duration Th to model stalling the switch to low-power
mode. This is as per the extensions to link operation for
reducing overheads, as described in Section II-C. Additionally,
Table II lists the increase in transmission time (Tx) and the
accumulated time spent in low-power mode, for a single packet
transmission and each marked occasion.

Briefly, transmitting a packet during either the active interval
(1) or the hold interval (2) has no transmission overhead and
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show possible times of packet transmission.

TABLE III: Fast-wake model timing analysis

Tx marker Overhead (Tx) Time of Pfw

1 0 ∅
2 0 ∅
3 Tw|FW t3 − tf

also no power savings. Transmitting a packet after the link has
entered the sleep interval (3) incurs the overhead of waking up
the link. However, there are no power savings since the link
stays in active mode during this sleep signaling phase. After
the link enters low-power operation (tq), transmitting a packet,
either during a quiet interval (4) or a refresh interval (5), has
the added delay of waking up the link. Nevertheless, in both
those cases the link saves power, since it has been in quiet
mode, and the time interval of reduced power consumption
(Pds) is shown in the table.

2) Fast-wake mode: Similarly, Figure 4 and Table III show
the model for fast-wake, including the impact on transmission
time and power consumption. Again, the model includes a
hold interval of active operation. If a packet transmits during
the active (1) or hold (2) interval, there is no transmission
overhead and no power savings. After the link enters fast-
wake signaling (tf ), transmitting a packet has a delay equal to
the wake-up time of fast-wake and link operation saves power
during the fast-wake signaling interval up to transmission time.

3) Combining deep-sleep and fast-wake: Previous
work [16], [12] shows that combining deep-sleep and fast-
wake modes in a hybrid, low-power operation improves
either power or performance over using one of them alone.
In this hybrid mode of operation, fast-wake precedes entering
deep-sleep, thus it reduces the overhead in transmission
compared to immediately entering deep-sleep mode. Also, it
saves additional power than the fast-wake operation alone, by
entering the deep-sleep mode for long periods of inactivity.

Figure 5 presents the model of hybrid, low-power operation,
while Table IV shows the timing analysis of the model. In this
mode, the hold interval for deep-sleep operation becomes the
interval during which the link operates in fast-wake mode.
Table IV shows the detailed analysis on timings.

B. Implementation

Our implementation extends the network model at the link
level, thus it is applicable to any network topology. It extends
the simulator data structures of each link to include timestamp
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Fig. 5: Various states of a link in the hybrid fast-wake +
deep-sleep operation. Markers show possible times of packet
transmission.

TABLE IV: Fast-wake + deep-sleep model timing analysis

Tx marker Overhead (Tx) Time of Pds Time of Pfw

1 0 ∅ ∅
2 0 ∅ ∅
3 Tw|FW ∅ t3 − tf
4 Tw|DS ∅ ts − tf

5 Tw|DS
t5−tq
Tq
− d t5−tq

Tq
− 1e ts − tf

6 Tw|DS
t6−tq
Tq
− d t6−tq

Tq
− 1e ts − tf

variables, to keep track of the time intervals defined in the
model, i.e., tf , ts, and tq . Also for each link, we add counter
variables to accumulate time spent in the possible modes of
operations – active, deep-sleep, or fast-wake, and report these
in the output at the end of the simulation.

Whenever a packet arrives at a link for transmission, the
simulator decides whether the packet will be delayed or not,
depending on the operation mode the link is in. At transmis-
sion time, the simulator also updates the time counters, accu-
mulating time for the different modes of operation of the link,
and updates the timestamp variables, moving them in future
time in anticipation of the next packet transmission. At the
end of the simulation, the time counters are updated one last
time, to count the timing intervals after the last transmission.
Notably, the implementation is configurable for all the timing
parameters, hence applicable to any link technology that fits
the model, present or future.

IV. EXPERIMENTAL SETUP

This section describes network configurations, other simu-
lation parameters, and the workloads of deployed applications.

A. Network parameters

Table V summarizes the network configurations used in
simulations. In brief, the target is to simulate a contemporary,
large supercomputer installation. For that, we assume a switch
radix of 48 ports and 4,608 compute nodes (similar to LLNL’s
Sierra cluster, which has 4,320 nodes, and ORNL’s Summit
cluster, which has 4,608 nodes). Simulation evaluates the
following topologies: (i) a 3-level fat-tree, (ii) a row-column
(RC) dragonfly, and (iii) HyperX. Fat-tree and dragonfly
topologies are widely used in HPC datacenters, while HyperX
is recently proposed as a scalable alternative that achieves
similar performance with fewer switches. The choice of how
many compute nodes to attach to each switch of different



TABLE V: Network configurations used in the simulations
(switch radix=48, link speed=100 Gbps)

Topology Fat-tree RC dragonfly HyperX

Compute nodes per switch 24 8 12
Number of switches 192 576 384
Number of compute nodes 4,608 4,608 4,608
Description 3-level 6× 16 8× 8× 6

TABLE VI: Parameter values used in the power models (based
on 100GBase-*R)

Technology parameters

Ts 1.1 µs
Tw|DS 5.5 µs
Tw|FW 0.34 µs
PDS 0.1 × PACT

PFW 0.6 × PACT

Power configuration

Mode Hold

Active (ACT) –
Deep-sleep (DS) 0, 1, 2, 4 (×Ts)
Fast-wake (FW) 0, 1, 2, 4 (×Ts)
Hybrid (FW+DS) 1, 2, 4 (×Ts)

topologies ensures that the injection and global bandwidths
are balanced, see [17]

B. Power model parameters

Table VI shows the values for the parameters of the power
model, described in detail in section III-A. We base those
numbers on the IEEE Ethernet specification [8] for 100GBase,
copper links. Our motivation for this choice is to use realistic
parameters ratified by the Ethernet standard and to be able to
compare with other literature on energy-efficient networks.

Those technology parameters set the delay of signaling
time Ts and wake-up time Tw|DS for deep-sleep operation,
and Tw|FW for fast-wake, respectively. Power consumption of
deep-sleep mode and fast-wake mode is parameterized on the
power consumption of active mode. Specifically, the power
consumption of the deep-sleep mode is 0.1× of the power
consumption of active mode, while that of fast-wake is 0.6× of
active mode, following observations reported in literature [18].

Further to the technology parameters for low-power oper-
ation, the table also shows the experimentation parameters
of all possible power modes. In more detail, we perform
experiments in active (ACT) mode, which means links are
always on without implementing low-power operation, deep-
sleep (DS), fast-wake (FW), and the hybrid mode which
combines fast-wake and deep-sleep. In low-power modes, we
try different hold values, defined as multiples (0×, 1×, 2×,
4×) of the technology parameter Ts, which sets a lower
bound for the hold time need to enter deep-sleep operation.
The configurations of the hybrid power mode assume that
Th|FW = Th|DS to have a manageable experimentation space.
Note, that hold value 0 for hybrid mode is unused, since it
implies only deep-sleep operation.

TABLE VII: Workload configurations

Job mappings linear, random

Single-job Multi-job

Number of processes 256, 512, 1024, 4096
2048, 4096 Random a ∈ A

and r ∈ 256, 512, 1024∑
ri = 4096

Formally, the total average power consumption is

P =

L∑
i=1

PACT × ti|ACT + PDS × ti|DS + PFW × ti|FW

ti|ACT + ti|DS + ti|FW

where L is the number of links and ti|x denotes the time spent
by link i in power mode x. Depending on the power mode
(active, deep-sleep, fast-wake, hybrid) different components
of the equation are relevant. Power consumption of a low-
power mode is a fraction of the power consumption of the
active power mode. We report power savings as percentages
compared to the power consumption in the active mode, i.e.

PACT − P x

PACT

× 100%

C. Applications and workloads

Table VIII presents in detail the applications used in sim-
ulations and table VII shows information on the deployed
workloads. All of the programs are HPC proxy applications,
part of the ECP proxy application suite [19], that correspond
to realistic, large-scale HPC applications.

We classify the communication patterns as bursty or con-
tinuous to help interpret the results of the evaluation. Whether
an application classifies as bursty or not depends on the
application’s communication pattern itself, and its scaling,
based on its input and number of processes, which affect
the ratio of computation to communication. In this setup,
Kripke, ExaMiniMD and miniFE have bursty communication
intermittent to long computation periods. By contrast, the
applications Laghos and miniAMR communicate frequently.
The remaining applications, AMG and SW4lite, fall in between.

We collect traces, using ScoreP [20], by running a single
iteration of the main computational loop, which is repre-
sentative of the computation and communication patterns of
the application, given iterative execution. Moreover, traces
include runs with different numbers of processes, from 256
up to 4,096 processes. Inputs to the applications are chosen
to represent realistically sized problems, based on previous
reports [21], with either strong, weak, or mixed scaling. For
brevity, table VIII shows the exact input for 256 processes,
which is scaled accordingly for runs of more processes.

For single-job workloads, we experiment by simulating a
single application, scaling it from 256 up to 4,096 processes.
We generate multi-job workloads by simulating multiple ap-
plications co-executing. The applications and their number
of processes are selected at random, with the restriction that
the total number of processes for the workload sums up to



TABLE VIII: Applications used in the simulations and their inputs at 256 nodes used for generating the traces.

Application Input Parameters Time (s) Scaling

Kripke –procs 8,8,4 –zones 256,256,128 –quad 16 –niter 1 5.54 Weak
Laghos -pt 221 -pa -p 1 -tf 0.6 -no-vis -m cube01 hex.mesh –cg-max-steps 50 –max steps 4 -ok 2 -ot 1 -rs 3 -rp 2 6.35 Mixed
AMG -problem 2 -n 32 32 32 -P 8 8 4 1.20 Weak
ExaMiniMD box 100×100×100, 4× 106 atoms 1.83 Strong
SW4lite grid x=1.0 y=1.0 z=1.5 h=0.00226 0.62 Weak
miniFE -nx 512 -ny 512 -nz 256 2.03 Weak
miniAMR –npx 8 –npy 8 –npz 4 –nx 8 –ny 8 –nz 8 0.032 Weak

4,096 processes. Specifically, each application may have either
256, 512, or 1,024 processes. Multi-job workloads are more
realistic because supercomputers execute multiple jobs sharing
the entire machine for most of their lifetime. The network
simulator replays previously collected traces, and executes
multiple iterations of each job of a particular application
and number of processes to maximize co-execution time of
all jobs. That is, short-running jobs execute multiple times
to have approximately the same execution time of larger,
co-executing jobs. Importantly, we generate and simulate 20
multi-job workloads to have a statistically sufficient sample.

In summary, for single-job execution, we perform 3 (topolo-
gies) × 2 (mappings) × 7 (applications) × 5 (process counts)
× 12 (power mode and hold combinations) = 2520 experi-
ments. For multi-job execution, we perform 3 (topologies) ×
2 (mappings) × 20 (workloads) × 12 (power mode and hold
combinations) = 1440 experiments. Each single-job simulation
needs a maximum of 2 hours to complete, depending on
the required simulated time and communication intensity.
Each multi-job simulations needs a maximum of 12 hours
to complete depending on the consisting workload. Due to
the large number of experiments, the simulations have been
executed in parallel, on a cluster to speed up their completion.
The next section discusses the results of those experiments.

V. RESULTS OF SINGLE JOB EXECUTION

Due to the large volume of experiments, we show indicative
plots to highlight the most important findings. Figure 6 shows
power savings and performance degradation compared to
executing with always-on, active power for all applications
and number of processes used. The figure shows results on
the dragonfly topology only, both linear and random mappings,
since results are similar for the fat-tree and HyperX topologies.

Expectedly, power savings are maximal for the deep-sleep
power mode, followed by the hybrid (FW+DS) one, and last
is the fast-wake only mode. Notably, power savings for deep-
sleep and fast-wake modes approach the possible maximum,
which is 0.9× and 0.4× of active power, respectively. Re-
garding hybrid mode, power savings depend on the time spent
in its fast-wake or deep-sleep components. A key observation
is that this is application dependent. Specifically, the length
and dispersion of communication periods, i.e., burstiness of
transmissions, determines the time spent in active, fast-wake
or deep-sleep mode. Referring back to figure 5, which details
the hybrid model, if the period of communication bursts is
less than the hold interval Th|DS , low-power operation will

spend most time in the fast-wake component. Alternatively,
if communication periods are larger than this hold intervals,
low-power operation will enter deep-sleep and remain there
until the next transmission. For example, contrasting figures 6a
and 6b on power savings, Kripke executing in hybrid mode
has power savings close to deep-sleep only mode, thus hybrid
low-power operation spends most of the time in the deep-
sleep component, due to communication periods being larger
than the hold interval. By contrast, Laghos in hybrid mode
has identical power savings to fast-wake only mode, due to
its short communication period that enables fast-wake low-
power operation and returns to active mode on the next packet
transmission. This observation on communication periods also
justifies why Kripke has negligible performance degradation
in any power mode, whereas Laghos is more communication
intensive, hence deep-sleep degrades its performance up to
15%, by the added delay overhead from frequently switching
between active and deep-sleep modes.

Elaborating on performance degradation for single-job ex-
ecution, our results agree with literature, thus cross-validate
with existing work. Specifically, as with results of previous
studies, performance degradation is application dependent. It
depends on the computation to communication ratio and on
the burstiness of communication. Furthermore, performance
degradation is analogous to the wake-up delay incurred by the
power saving mode, with deep-sleep incurring the most delay,
followed by fast-wake, whereas the hybrid mode will incur
delay proportional to the percentage of time spent in each of
its component low-power modes.

The performance degradation ranges from negligible, for
example Kripke experience less than 0.03% across power
modes, to significant. By contrast, miniAMR experiences up
to 10× slowdown when the deep-sleep mode is enabled.
Interestingly, fast-wake and hybrid modes have negligible
performance degradation (<1%) for all programs. That sug-
gests that they present an attractive deployment decision to
enable power savings with little performance degradation.
Notably, the deep-sleep mode may be prohibitive for certain
applications that are communication-bound, as is the case
for miniAMR. Notably, performance degradation is higher in
random mapping, since packets may need to traverse more
links to reach their destination, hence accumulate more latency
by waking up links in low-power operation.

Summary: For single-job execution, fast-wake and hybrid
modes present the best proposition because they show neg-
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Fig. 6: Dragonfly: Power savings and performance degradation compared to execution with active power. X-axis shows number
of processes. Markers show different power and hold modes



ligible performance degradation with power savings ranging
from 40% to about 80%. The upper limit of power savings
is possible in hybrid mode, depending on whether burstiness
of communication enables the deep-sleep component. Deep-
sleep provides maximal power savings of up to 90% but
may slow down performance significantly (up to 10×) for
communication-bound applications.

VI. RESULTS OF MULTI-JOB WORKLOAD EXECUTION

This section discusses the results and insight on multi-job
workloads. This is the first time that a study on energy-efficient
interconnects evaluates realistic, multi-job execution. Figure 7
presents power savings and performance degradation across
the 20 multi-job workloads, showing the distribution of results
in violin plots, for all power modes, topologies and mappings.
Labels on the plot show the median value.

As a first observation, results are similar across topologies,
thus the effects of low-power operation are independent of
the particular topology. Deep-sleep modes present the highest
power savings, between 82% and 90%, followed by the hybrid
mode, between 38% and 43%, and last is the fast-wake mode,
between 36% to 39%. The hold intervals have little impact to
power savings and performance degradation. Notably, in all
cases, the hybrid mode has similar power savings to the fast-
wake only mode. This is because cross-traffic, from sharing
the interconnect, keeps most links in fast-wake operation when
idling rather than deep-sleep.

Interestingly, performance degradation is modest for deep-
sleep, between 3% and 7%. There is the outlier of miniamr,
which has performance slowdown of up to 2× (4×) in linear
(random) mapping, since it it is communication bound, as
discussed in section V. Nevertheless, this slowdown is much
less than the 10× slowdown shown for single-job execution.
Generalizing, performance degradation in multi-job execution
for deep-sleep is less than that of single-job execution be-
cause cross-traffic from other executing jobs in the multi-job
workloads keeps shared links active, thus avoids the latency
penalty of those links. So, deep-sleep has maximal power
savings on non-shared links with the added latency penalty
and less power savings on shared links kept active from cross-
traffic but without any performance penalty. This observation
makes deep-sleep a more attractive proposition for multi-job
workloads rather than single-job ones.

Also, performance degradation is negligible for fast-wake
and hybrid modes (<1%) due to the limited delay overhead
of fast-wake operation and cross-traffic.

Summary: Deep-sleep is an excellent proposition for sig-
nificant power savings (> 80%) with modest performance
degradation (< 7%) for other than communication bound
applications. Fast-wake and hybrid modes provide very similar
power savings of about 40% with negligible performance
degradation for any type of applications – communication or
computation bound.

VII. RELATED WORK

This section summarizes the existing techniques for energy-
efficient interconnection networks, network simulators and
other methods for estimating the power and performance of
interconnection networks.

A. Energy-efficient networking

Besides low-power idle operation, other approaches for
reducing power consumption of interconnection networks pro-
pose reducing the link rate to throttle data transfer, thus
reduce power consumption through demoting performance.
For example, an optical link of the type 4× QDR InfiniBand
consumes 80% or 90% of the power that 4× SDR link or
a DDR InfiniBand links consumes, respectively. InfiniBand
provides the ability to dynamically configure link rate [3],
with the overhead of several nanoseconds to microseconds. A
similar approach to InfiniBand, which is called ALR (Adaptive
Link Rate), has been discussed in the IEEE802.3 Ethernet
committee [4], [5]. Another approach [3] to improving the
power efficiency of interconnection networks is to dynamically
adjust the number of lanes used for communication. All these
proposals have been shown to save power during low network
load but fail to reduce the power of idle links, thus have modest
power savings. In that sense, low-power idle operations is
superior given it has little to no performance degradation in
fast-wake modes.

Li et al. [22] propose a technique similar to low-power
idle operations, by turning links on and off. However, their
proposal requires a separate control network to power up or
down links. The control network needs to be always powered
on, thus reduces the potential power savings. Using the same
approach, Alonso et al. [23] propose an automatic way for
turning on and off links, leveraging traffic information. Despite
turning on and off links intelligently, the always-on operation
of the control network limits power savings.

Reviriego et al. [9] present an experimental evaluation of
energy-efficient Ethernet with low-power idle operation to
show potential of power savings. We used insight from this
study to motivate our work.

B. Network simulation

There are several simulators [24], [25], [26], [27], [28],
[29], [30], [31], [32] for interconnection networks in HPC
systems. Typically, they use communication traces collected by
executing an application on a real system. Execution models
among simulators vary on fidelity and accuracy, ranging from
flit to packet-level simulation. Importantly, most of those sim-
ulators do not support multi-job workloads. TraceR-CODES
can simulate multi-job workloads and has been validated in
several studies [33], [34], hence our choice to extend it for
modeling power consumption.

Closer to our approach is the work of Saravanan et al. [11],
[13], [16], [12]. That work extends the Dimemas [26] simu-
lator to model power consumption. However, its has limited
scope because it only studies single-job workloads in a single
fat-tree topology scaled up to 256 nodes. By contrast, our
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Fig. 7: Power savings and performance distributions (violin plots) across 20 multi-job workloads for different power modes,
split to different topologies and mappings

work includes multi-job workloads to realistically simulate
network congestion and actual operation of a supercomputer
and tests three state-of-the-art network topologies (dragonfly,
fat-tree, HyperX) scaled to 4,608 nodes to evaluate actual
network sizes. Our work validates previous results on single-
job execution but crucially presents new results and provides
novel insight on realistic, multi-job execution for energy-
efficient networking.

Other approaches employ analytical modeling for perfor-
mance estimation [35], [36] and power consumption [37], [6]
of energy-efficient networks. However, those models abstract
away congestion and other important effects to simplify esti-
mation, thus suffer from inaccuracies.

VIII. CONCLUSION

We present the first study on power savings and perfor-
mance implications of energy-efficient interconnects for real-
istic, multi-job workloads on large HPC systems. We extend
the TraceR-CODES network simulator to model low-power
operation alongside performance modeling. We perform ex-
periments on three, contemporary network topologies, namely
dragonfly, fat-tree, and HyperX, simulating a cluster of 4,608
compute nodes. Moreover, we experiment with different, state-
of-the-art low-power modes (deep-sleep, fast-wake, and hy-
brid), which present different trade off points for saving power
and increasing latency on communications. For the evaluation,

we use traces from HPC proxy applications, executing either
as a single-job or as a multi-job workloads, to emulate typical
execution on a supercomputer.

Results on single-job execution validate existing literature
for large network deployments: power savings are analogous
to the low-power operation, and performance degradation is
proportional to the communication intensity of the application.
More importantly, results on multi-job workloads present new
insights: performance degradation from deep-sleep operation is
minimal due to cross-traffic that keeps shared links active, thus
avoiding accumulating wake-up delays. For future work, we
intend to explore the power and performance characteristics of
future supercomputing installations by scaling up the number
of compute nodes and deployed workloads, and to investigate
the extent that power-aware routing algorithms provide addi-
tional gains.
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