
Auto-tuning Parameter Choices in HPC Applications using Bayesian Optimization

Harshitha Menon∗, Abhinav Bhatele†, Todd Gamblin∗

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California 94551 USA
†Department of Computer Science, University of Maryland, College Park, Maryland 20742 USA

E-mail: ∗{harshitha, tgamblin}@llnl.gov, †bhatele@cs.umd.edu

Abstract—High performance computing applications, runtimes,
and platforms are becoming more configurable to enable ap-
plications to obtain better performance. As a result, users are
increasingly presented with a multitude of options to configure
application-specific as well as platform-level parameters. The
combined effect of different parameter choices on application
performance is difficult to predict, and an exhaustive evaluation
of this combinatorial parameter space is practically infeasible.
One approach to parameter selection is a user-guided exploration
of a part of the space. However, such an ad hoc exploration of
the parameter space can result in suboptimal choices. Therefore,
an automatic approach that can efficiently explore the parameter
space is needed. In this paper, we propose HiPerBOt, a Bayesian
optimization based configuration selection framework to identify
application and platform-level parameters that result in high
performing configurations. We demonstrate the effectiveness of
HiPerBOt in tuning parameters that include compiler flags,
runtime settings, and application-level options for several parallel
codes, including, Kripke, Hypre, LULESH, and OpenAtom.

Keywords-parameter selection, auto-tuning, transfer learning,
performance modeling, bayesian optimization

I. INTRODUCTION

High performance computing (HPC) applications, runtimes,
and platforms have become highly configurable. The high
configurability enables applications to extract maximal per-
formance. Unfortunately, for users, the same configurability
has led to an increasingly large combinatorial search space
of application-specific as well as platform-level parameters.
These configurable parameters can be compiler flags, runtime
system settings, application-specific parameters, hardware-level
options etc. A particular choice of values for all the parameters,
often called a configuration, can significantly impact various
application performance metrics, such as execution time, power
consumption, and system throughput among other things.

Finding the best configuration in the case of a large number
of parameters is challenging because it involves exploring the
combinatorial parameter configuration space. While ad hoc
manual tuning by the user may yield satisfactory results, it
usually requires the user to have expert domain knowledge to
guide the tuning process. Moreover, in the case of a naı̈ve user,
manual tuning can result in a suboptimal configuration. Hence,
automatic performance tuning techniques have become neces-
sary to identify high-performing configurations. Autotuning can
either exhaustively evaluate all parameter choices or perform
directed search of the parameter space. However, exhaustive
methods work only for very small number of parameters as

a large number of parameters makes the parameter space
combinatorially large and infeasible to explore exhaustively.
Therefore, model-based methods are used for autotuning, as
they can replace expensive empirical evaluations.

Several supervised as well as semi-supervised learning
based models have been applied to select high-performing
configurations [1]–[3]. For these methods to perform well, they
require a large number of labeled instances that sufficiently
cover the search space. Moreover, the training instances are
randomly selected, irrespective of their usefulness in achieving
the true goal of the task. Note that the task of selecting high-
performing configurations does not require models to perform
well over the entire configuration space, which gives us the
opportunity to use fewer but informative instances to learn a
model that focuses on high performing configurations.

In this paper, we present HiPerBOt, an active learning
framework based on Bayesian optimization [4], to identify
application and platform-level parameters that result in high-
performing configurations of HPC applications. Active learning
allows the learning algorithm to choose the data from which it
learns the most to achieve a specified objective. This approach
is particularly beneficial when evaluating the objective function,
which in this case is running the application, is very expensive.
We designed HiPerBOt to allow easy transferability of learning
from a low-cost representative source data to target data. This
is especially useful in the HPC domain, where codes are tuned
for large scale based on a performance tuning study at small
scale and a few experiments at large scale. HiPerBOt will
enable users to select good configurations for their applications
using limited evaluations, reducing the user effort and resource
overhead.

Our main contributions in this work are the following:
• Application of Bayesian optimization in the context of

HPC application performance to tune parameters that
include compiler flags, runtime settings, and application-
level options.

• HiPerBOt, an active learning framework based on the
bayesian optimization method specifically catering to the
needs of HPC application tuning.

• Extending HiPerBOt to seamlessly support transfer learn-
ing, which involves transferring the learning from a low-
cost source data to a target data, and use it for performance
tuning when limited resources are available for collecting
data at scale for a target application.

• Using the model learnt by HiPerBOt to analyze the
relative importance of different parameters in selecting
high-performing configuration.

• A broad experimental evaluation of HiPerBOt and com-
parison with recently published state-of-the-art approaches
on a range of HPC applications and mini-applications,
including, Kripke, HYPRE, LULESH, and OpenAtom.

In our evaluation, we find that HiPerBOt performs sig-
nificantly better than competitive methods for selecting the
best-performing configuration while using limited number of
evaluations. In section IV we show that HiPerBOt uses 50%
fewer evaluations to find the best configuration for Kripke in
comparison to a competitive method.

II. BACKGROUND ON BAYESIAN OPTIMIZATION

Optimization problems involve minimizing an objective
function f(x), and in many cases this objective is a black
box function. Evaluating this function amounts to sampling
at a point x and observing the output value. When the
objective function is expensive to evaluate, e.g. running large
scale application runs for parameter tuning, it is important
to minimize the number of samples evaluated. This is where
Bayesian optimization [4] technique is very powerful. Bayesian
optimization has been used in the hyperparameter tuning for
Machine Learning, especially in tuning the hyperparameters
of deep neural networks [5], where training a neural network
is very expensive. Bayesian optimization approximates the
original, expensive to evaluate, objective function with a
surrogate objective, which is significantly cheaper to compute.
In the following, we describe the construction of the surrogate
objective function.

A. Surrogate Objective Construction

The surrogate objective I(x) is a model of the true objective
function f(x). It is significantly cheaper to compute and thus
can be computed for a very large set of possible values of x.
From this set, the most promising values can then be selected
to evaluate the more expensive true objective f(x). Typically, a
probabilistic surrogate model py|x(y | x) is used. The surrogate
model defines a probability density over the objective values
y given x. A good surrogate model would assign a high
probability to the correct value f(x). Given the surrogate
model py|x(y | x) and some x, Expected Improvement (I) [6]
is the expected margin by which the true objective f(x) will
perform better than a threshold value y(τ) of the objective
function:

I(x, y(τ)) =
∫ y(τ)

−∞
(y(τ) − y)py|x(y | x)dy (1)

For an objective value y, the margin of improvement over
the threshold y(τ) is defined as max{y(τ)−y, 0}. It is non-zero
only for those values of objective that are smaller than the
threshold y(τ) and thus lead to an improvement. In many cases
y(τ) is the best-observed value so far. However, often a more
conservative value is used. This margin captures the intuition

that a given x is useful only if it provides an improvement
with respect to the best currently known performance value.

The surrogate model py|x(y | x) is used to predict the likely
values of the objective for a given x without conducting the
expensive evaluation f(x). In Bayesian optimization method,
instead of using p(y | x), Bayes rule is used to define py|x(y |
x) in terms of px|y(x | y), yielding:

py|x(y | x) =
px|y(x | y)py(y)

px(x)
(2)

Here, py(y) is the prior distribution for y and px(x) =∫
px|y(x | y)py(y)dy is the marginal distribution of x.
Modeling px|y(x | y) is still infeasible due to insufficient

data. However, note that in each iteration we are interested in
evaluating whether a configuration would perform better than
the best found so far. This observation is used to binarize the
space of y into two possibilities: 1) performance better than
some threshold y(τ) i.e. y < y(τ), and 2) performance worse
than some threshold y(τ) i.e. y ≥ y(τ). Here, y(τ) is used as a
measure of the best performance so far.

Hence, we define the probability distribution px|y(x | y)
in terms of two probability density functions; pg(x) for good
performance (y < y(τ)), and pb(x) for bad performance (y ≥
y(τ)):

px|y(x | y) =

{
pg(x) if y < y(τ)

pb(x) if y ≥ y(τ),
(3)

As we will see below, the above definition allows us to compute
the surrogate objective up to a scaling factor.

One option is to choose y(τ) as the best-observed value
of the objective so far. However, this may not be robust and
may exhibit large variance leading to problems in estimating
px|y(x | y). Instead, y(τ) is defined in terms of α-quantile for
stability i.e. y(τ) is chosen such that p(y < y(τ)) = α. With
this choice and using eq. (3), we can write px(x) as

px(x) = pg(x)α+ pb(x)(1− α) (4)

Substituting eq. (2) in eq. (1) and using eq. (4), we get:

I(x, y(τ)) = 1

α+ pb(x)
pg(x)

(1− α)
(5)

From above we see that the expected improvement I(x, y(τ))
is greatest for those values of x whose pg(x)

pb(x)
ratio is highest.

Therefore, instead of computing the value in eq. (1) exactly, we
can just compute the ratio pg(x)

pb(x)
for any candidate x. With this

observation, to compare a set of candidate configurations, we
can compute the ratio pg(x)

pb(x)
for each candidate and return the

one with the highest value of the ratio as the selected candidate
x∗t . x∗t can then be used for performing the full evaluation
y∗t = f(x∗t).

III. THE HIPERBOT FRAMEWORK

Our framework uses Bayesian optimization based active
learning method to identify top performing configurations (max-
imize certain application dependent metric) while minimizing

the number of full application runs. The technique we use builds
upon the approach described by Bergstra et al. [5] where they
apply it for hyperparameter optimization for Machine Learning.
Since computing the value of the objective for a configuration
by running the full application is expensive, we construct
a surrogate model using Bayesian optimization described in
section II. The surrogate model is cheap to compute and can be
used to efficiently evaluate a large number of configurations to
select a suitable candidate. Below, we first set up the problem
and provide an overview of the iterative method used in our
framework. Next, we state the full algorithm and describe its
application to transfer learning.

Let the application consist of n tunable parameters, each
of which is represented by xi, i ∈ {1, . . . , n}. We use x =
[x1, . . . , xn] to represent a configuration of the n parameters
as a vector. Further, let f(x) represent the performance
of a particular configuration x computed by running the
full application. Our goal is to find an optimal parameter
configuration x∗ that produces the best application performance
f(x∗). This can be written down as the following objective:

x∗ = argmin
x

f(x) (6)

However, directly optimizing the above objective is not feasible
since f(x) is expensive to compute. Therefore, we use an
iterative model based method that optimizes a sequence of
surrogate objectives It(x), t ∈ {1, . . . , T} that are efficient to
compute instead of the expensive true objective f(x). With
increasing iterations, the model used by our framework more
accurately models f(x), leading to better and better parameter
configurations. This method falls in the class of Sequential
Model Based Global-Optimization methods (SMBO) that have
previously been studied for black box optimization of functions
that are expensive to evaluate [6]–[9].

A. Overview of the Iterative Algorithm

Our framework uses an iterative model based algorithm. Let
t index the iterations up to the maximum iteration T . In each
iteration a single configuration x∗t is chosen to compute the
value of the true objective as y∗t = f(x∗t). The pair (x∗t , y

∗
t)

is then added to the observation history to produce Ht. The
observation history Ht is the set of all the computed objectives
and is updated as Ht = Ht−1 ∪ {(x∗t , y∗t)}. Ht is then used
to help choose x∗t+1 in the next iteration.

To choose x∗t in iteration t, a set of candidate configurations
are evaluated. Since the objective f(x) is expensive to compute,
evaluating a lot of candidates is not feasible. Using the
observation history Ht−1, a cheap to evaluate model surrogate
It(x) is constructed. The parameter configuration x∗t that
optimizes the surrogate It(x) at time t is then treated as the
best candidate to evaluate f(x) at time t. The algorithm starts
with a small initial set of parameter configurations obtained
by randomly sampling the parameter space. All of these initial
configurations are evaluated using f(x) to produce the initial
observation history H0. H0 is then used to produce the initial
model iterate I1(x) and the algorithm continues iteratively
until iteration t = T .

B. Probability Density Function for Configuration Space

Recall that x = [x1, . . . , xn] represents a configuration of n
parameters as a vector. Estimating the full joint distributions
pg(x) and pb(x) over the parameter space is not feasible as it
would require significant amount of data. Instead, we simplify
by assuming a factorized distribution for both pg(x) and pb(x):

pg(x) = pg,x1(x1)pg,x2(x2) . . . pg,xn(xn) (7)
pb(x) = pb,x1(x1)pb,x2(x2) . . . pb,xn(xn) (8)

Here, each parameter xi has two corresponding distributions
pg,xi(xi) and pb,xi(xi). Despite this simplification, we found
that our method works well in practice.

Note that a particular parameter xi can be continuous or
discrete, and this approach can support both the types as
described below.

1) Discrete Parameters: For a discrete parameter, discrete
distributions pg,xi(xi) and pb,xi(xi) are estimated using his-
tograms. pg,xi(xi) is estimated by computing a histogram of
all the x∗i ∈ Ht such that corresponding y∗i < y(τ). Similarly
for pb,xi(xi) such that corresponding y∗i ≥ y(τ).

2) Continuous Parameters: For continuous parameters, we
use kernel density estimation (KDE) to estimate both the
probability density functions. We use gaussian kernels with a
fixed bandwidth in our implementation.

C. Putting into Practice

We now put all the steps together and describe the entire
algorithm.

1) Select a small set of training samples uniformly at random
from the configuration space. Obtain the true objective
function value for each by running the experiment. Add all
the (sample, value of the objective function) pairs to the
list containing the observations (H0). For our experiments,
we selected 20 training samples to add to the initial
observations.

2) Build the surrogate model using the list of samples in
the observation history. The samples are divided into two
groups, good and bad, based on the quantile threshold. The
surrogate model then constructs two probability densities
(pg(x) for good and pb(x) for bad) for each of the
parameter in the configuration domain. We chose 20% as
the quantile threshold for our experiments.

3) Select one sample to add to the observation history based
on the prediction from the surrogate model (given by
equation 5). The selection algorithm selects the best
candidate with the highest expected improvement metric.

4) Evaluate the true objective function of the selected
candidate by running the experiment. Add the candidate
and objective function value pair to the observation history.
Update the surrogate model with the new history.

5) Iterate over steps 3-4 until termination condition is met.
The iterative process adds more and more samples that are
expected to be high-performing configurations. This further
improves the surrogate model to produce better predictions
of the expected improvement. As a result, it progressively

0 1 2 3 4 5
x

25
25
75

125
f(x

)

(a) Random Sampling

0 1 2 3 4 5
x

0.0

0.5

De
ns

ity

Good
Bad

0

2

Ex
p.

 Im
p.

Exp. Imp.

(b) Surrogate Function

0 1 2 3 4 5
x

25
25
75

125

f(x
)

(c) Iter-1

0 1 2 3 4 5
x

25
25
75

125

f(x
)

(d) Iter-10

Figure 1: A toy example. 1a shows a simple objective (blue line) along
with the initial samples color coded green for good and red for bad.
1b shows the color coded probability density functions (pg(x) and
pb(x)) constructed using the initial samples along with the Expected
Improvement (blue). Figures 1c and 1d show all the samples after one
and ten iterations respectively. We can see that the selected samples
are concentrating near the minima yielding the optimal parameter
value.

selects better and better high-performing configurations. The
termination condition can be determined either by the number
of objective function evaluations (experimental runs) that can
be performed, or based on the quality of the samples obtained
as the iteration progresses. If the score of the new samples do
not improve as iterations progress, then the iterative process
can be terminated.

We provide a toy example to show the main steps involved
in the algorithm. Figure 1a (blue line) shows a toy objective
function with one parameter. We are interested in finding the
parameter value that minimizes the objective. We start with
ten training samples selected uniformly at random from this
space and add them to the list of observations. A surrogate
model is then constructed using the bottom 20th percentile of
the observed objective values for setting the threshold for good
and bad configurations. Figure 1a plots the initial samples
with green for good and red for bad. Figure 1b shows the
corresponding probability density functions (pg(x) and pb(x))
constructed using the initial samples along with the Expected
Improvement (blue). Figures 1c and 1d show all the samples
after one and ten iterations respectively. We can see that the
selected samples are concentrating near the minima yielding
the optimal parameter value.

D. Selection Strategy: Ranking vs. Proposal

When deciding the next set of samples to select based on
the surrogate function, there are two options depending on the
parameter space. If the parameter space is discrete, finite and
small, we can construct an exhaustive set of samples in the
space. Expected improvement can then be computed for all of
them to pick the best.

However, if the parameter space is continuous then it will
not be possible to evaluate an exhaustive set of parameter
configurations. In that case, our method can sample candidates
using probability density function pg(x) defined for good
configurations. This would sample promising candidates while
still allowing for exploration due to random sampling.

E. Transfer Learning

When there are limited resources available to collect obser-
vations or training data, we can use earlier studies to guide
us through the process of modeling the performance. This
is common in HPC, where users regularly tune the input
parameter values for a large scale application based on their
study on a similar but much smaller scale problem. Typically,
the smaller scale problem is representative and uses fewer
resources but shares run-time characteristics with the large
scale target application. This approach is referred to as transfer
learning, where data from prior studies from a source domain
is leveraged to guide and accelerate the study on the target
domain. When the prior studies are relevant, transfer learning
can achieve better results with far fewer trials.

We propose to use transfer learning with Bayesian op-
timization to select high-performing configuration for the
target domain. Here we will use the data from a source
domain to improve prediction performance and make rapid
progress when modeling the target domain. Let DSrc be the
source domain and DTrgt be the target domain. The domain
consists of common n tunable parameters represented by
xi, i ∈ {1, . . . , n}. The goal of the learning task is to identify
high-performing configuration for the target domain DTrgt.
We use the Bayesian surrogate model for this task. Since the
surrogate model maintains probability density functions, we can
seamlessly incorporate data from DSrc as a prior distribution.
Once the prior distribution is applied, we perform the same
iterative method as described in section III-C to pick the high-
performing samples. The surrogate model probability density
function will be a weighted sum of the prior distribution with
the distribution from the DTrgt.

pg(xi) = w ∗ pSrcg (xi) + pTrgtg (xi) (9)

pb(xi) = w ∗ pSrcb (xi) + pTrgtb (xi) (10)

The underlying idea is that instead of conducting many
resource-heavy runs in the large-scale domain (DTrgt), we use
most of the data from small-scale domain (DSrc) to select the
optimal configuration for DTrgt.

IV. EXPERIMENTAL SETUP

This section describes the application datasets used in our
case studies, their configurable parameters, and the metrics
used for evaluation.

A. Evaluation Datasets

We use several HPC proxy applications as case studies, and
use the datasets published in [10] and [11] to evaluate the
effectiveness of the proposed approach. More details about the
collection and setup can be found in [10], [11]. We use a

diverse set of applications consisting of autotuning for compiler
flags, application-level parameters, and runtime options (e.g.
OpenMP thread count, power cap). Here, we will briefly
describe the applications as well as their parameters.
Kripke: Kripke is a proxy application designed for a production
code [12], which is a discrete-ordinates SN deterministic
particle transport code. The main parameters for Kripke include
options for data layouts, group and energy sets, solver, and
number of OpenMP threads. In addition to the application-level
parameters, there is a hardware-level configurable parameter
for power cap.
HYPRE: HYPRE [13] is a library containing a comprehensive
suite of scalable linear solvers for large-scale HPC applications.
We use the test benchmark new_ij in the HYPRE library
for evaluating various application-level tunable parameters.
The configurable parameters for HYPRE are solver, smoother,
coarsening scheme, and interpolation operator.

We will use Kripke and HYPRE to evaluate both the high-
performing configuration selection task as well as transfer
learning task. The source dataset for the transfer learning
consists of data collected by running the application on smaller
node count (16 instead of 64 nodes in the target dataset) with
a smaller problem size.
LULESH: LULESH [14] is a proxy application that approxi-
mates shock hydrodynamics calculations. LULESH uses several
compiler optimization flags as well as OpenMP options to
achieve good performance.
OpenAtom: OpenAtom [15] is an application written in
Charm++ for studying atomic, molecular, and condensed phase
materials systems based on quantum mechanical principles.
Charm++ applications rely on over-decomposition of the
physical domain to achieve load balancing and overlap of com-
munication with computation. However, over-decomposition
of the domain can incur overhead. Hence, it is important to
choose the right level of over-decomposition, which is one
of tunable parameters we will be studying. In addition, the
parameter space includes options for type of density and pair
calculation.

B. Evaluation Metrics

A model for selecting high-performing configurations is
expected to have several good configurations in the list of
samples selected. Moreover, a high-fidelity model would have
the best performing configuration or the ones close to the best
performing configuration in its list of samples. One option
for evaluation metric is to use classification accuracy, which
determines the accuracy with which the model is able to
correctly classify configurations as optimal or non-optimal.
However, that is not applicable in this context because we do
not care about accurately selecting non-optimal configurations.
Therefore, the metrics for evaluation should focus on how well
the model is able to select high-performing configurations.
Configuration Selection Evaluation Metric

The following are the two metrics we use for evaluating
methods for configuration selection.

1) Best Performing Configuration: This metric records the
best performing configuration from the list of selected samples.
2) Recall: This metric gives the ratio of number of “good”
configurations that were included in the selected set of samples
and the actual number of “good” configurations in the entire
sample space. Here, a “good” configuration refers to those
configurations which are among the best ` percentile (the one
with the smallest run-time). Let y` be the objective function
value corresponding to the best ` percentile configuration. The
Recall metric is defined as follows:

R(`) =
|{x | x ∈ H, f(x) ≤ y`}|
|{x | ∀x, f(x) ≤ y`}|

(11)

where |.| is the cardinality of a set, H is the set of
configurations selected by the model for which there are
observations, and f(x) is the true objective function.
Transfer Learning Evaluation Metric

We use the same Recall metric as above for transfer learning.
For transfer learning, a “good” configuration refers to that
configuration which is within a performance threshold tolerance
of γ% from the absolute best performance. We chose this as
opposed to top ` percentile (used in the configuration selection
task) in order to have the same evaluation criteria used in [11].
In [11], good samples are within γ% threshold of the absolute
best configuration. Therefore, the Recall metric is defined as
follows:

R(γ) =
|{x | x ∈ H, f(x) ≤ (1 + γ)f(xbest)}|
|{x | ∀x, f(x) ≤ (1 + γ)f(xbest)}|

(12)

where |.| is the cardinality of a set, H is the set of
configurations selected by the model, f(x) is the true objective
function, and f(xbest) is the objective function for absolute
best configuration. Higher Recall score indicates that a larger
number of good configurations are present in the model’s
selected list. A Recall score of 1 implies that the model has
selected all the best performing configurations.

V. EVALUATION OF CONFIGURATION SELECTION

In this section we evaluate our approach against a few
configuration selection methods using the datasets described
in section IV-A. For each dataset, we analyze the performance
of all the methods for a range of samples by running
the model algorithm 50 times and reporting the mean and
standard deviation for each evaluation metric. We evaluate the
effectiveness of HiPerBOt by comparing against the methods
listed below.
1) GEIST: This is a semi-supervised learning based adaptive
sampling scheme for parameter space exploration. GEIST [10]
represents the parameter space using undirected graphs, and
applies label propagation method. GEIST bootstraps its search
with an initial set of configurations. The nodes of the graph are
assigned labels, optimal and non-optimal, based on some initial
threshold for the objective function. It uses an iterative approach
to propagate the labels to all the nodes in the parameter space
graph, and selects a set of optimal configurations based on the
CAMLP [16] label propagation algorithm.

2.0%
(32)

4.0%
(64)

6.0%
(96)

8.0%
(128)

9.9%
(160)

11.9%
(192)

Sample Size

8

10

12

14

16

18
Ex

ec
ut

io
n

tim
e

(s
) Exhaustive best

Random
GEIST
HiPerBOt

(a) Best Configuration

2.0%
(32)

4.0%
(64)

6.0%
(96)

8.0%
(128)

9.9%
(160)

11.9%
(192)

Sample Size

0.0

0.2

0.4

0.6

0.8

Re
ca

ll

Random
GEIST

HiPerBOt

(b) Recall

Figure 2: Kripke execution time. 2a shows that HiPerBOt is able
to find the absolute best configuration using just 96 samples, which
yields an improvement of 26% in execution time in comparison to
GEIST. 2b indicates that HiPerBOt finds more than 2X the number
of good configurations in comparison to GEIST.

2) Random Selection: In this strategy the configurations are
selected uniformly at random from the parameter space.
3) Exhaustive Best: This is the performance of the best
configuration, which can be obtained using an exhaustive search
of all the samples in the sample space.

GEIST has been compared with other sampling approaches,
such as Gaussian Process (GP) [17] and Canonical Correlation
Analysis (CCA) [18], and shown to be performing significantly
better [10]. Therefore, we do not include results for GP and
CCA, and instead just compare with GEIST.

A. Kripke

Kripke has several application-level tunable parameters, such
as data layout, OpenMP thread count and number of sets to
overlap communication with computation. There are a total
of 1609 configurations with a large variance in performance
metric.

An expert’s choice of parameters selection would involve
manually testing for each loop ordering with a few group/energy
sets, which would result in the execution time of 15.2
seconds [10]. Figure 2a shows that HiPerBOt can find the
absolute best configuration with the lowest execution time (8.43
seconds) using just 96 samples, which is less than half the
number of samples required by GEIST. Moreover, the runtime
of the best performing configuration for HiPerBOt is better
than the best configuration for GEIST by 26% for the sample
size of 96. Performance of GEIST and random sampling suffers
because there are only a few samples in the high-performing
bins, which makes it difficult to pick them. Note that as the
sample size increases, Recall metric also improves. HiPerBOt
has more than twice the number of high-performing samples
in the sample set in comparison to GEIST.

In addition to finding configurations with the least run-time,
we can use HiPerBOt to select configurations that minimizes the
total energy consumption under power-capping. An expert’s
choice to optimize for energy would be to use 2nd or 3rd

highest power level [10] to achieve energy consumption of
4742 Joules, which is much higher than the best configurations
selected by autotuning. Figure 3 shows the performance of
HiPerBOt in comparison to GEIST and random sampling. This

0.2%
(39)

0.8%
(139)

1.3%
(239)

1.9%
(339)

2.5%
(439)

Sample Size

2500

3000

3500

4000

4500

En
er

gy

Exhaustive best
Random
GEIST
HiPerBOt

(a) Best Configuration

0.2%
(39)

0.8%
(139)

1.3%
(239)

1.9%
(339)

2.5%
(439)

Sample Size

0.0

0.1

0.2

0.3

Re
ca

ll

Random
GEIST

HiPerBOt

(b) Recall

Figure 3: Kripke energy. 3a shows us that HiPerBOt is able to select
the best configuration that achieves the lowest energy by evaluating
only 2.2% of the whole sample space. 3b shows that HiPerBOt has
a recall score of 0.3, for which, 300 out of 439 samples are good
samples.

0.9%
(41)

3.1%
(141)

5.3%
(241)

7.4%
(341)

9.6%
(441)

Sample Size

3.50

3.75

4.00

4.25

4.50

4.75

Ex
ec

ut
io

n
tim

e
(s

) Exhaustive best
Random
GEIST
HiPerBOt

(a) Best Configuration

0.9%
(41)

3.1%
(141)

5.3%
(241)

7.4%
(341)

9.6%
(441)

Sample Size

0.0

0.1

0.2

0.3

0.4

0.5

Re
ca

ll Random
GEIST

HiPerBOt

(b) Recall

Figure 4: HYPRE. 4a shows that it progressively selects better
configurations, and can find the absolute best using 5% of the sample
space. 4b indicates that HiPerBOt becomes better at selecting good
configurations resulting in a sharp increase in Recall score.

dataset consists of 17815 configurations, including hardware-
level power capping options. HiPerBOt is able to select the
best configuration that achieves the lowest energy by evaluating
only 2.2% of the whole sample space. This particular dataset
has more than 800 good configurations that satisfy the tolerance
threshold, which is why Figure 3b has a maximum Recall score
of 0.3, at which point around 300 good samples are present
in the sample set with 489 samples.

B. HYPRE

The new_ij benchmark of HYPRE has four tunable
parameters, namely, solver, smoother, coarsening scheme,
and interpolation operator. This generates a total of 4589
configurations. HYPRE has a distribution similar to that of
Kripke, where there are only a few samples close to the
best performing bins. HiPerBOt is able to pick the best
performing configuration as well as have a large number of
good configurations in its sample set. We can also see in
fig. 4a that it progressively selects better configurations, and
can quickly narrow down to the best performing configuration
by evaluating just over 5% of the sample space. We observe in
fig. 4b that, as iterations progress, the surrogate model becomes
better at selecting high-performing configurations, resulting in
a better Recall score. For a sample size of 241, the run-time
for the best configuration for HiPerBOt is 5% better than that
of GEIST.

1.0%
(46)

3.0%
(146)

5.1%
(246)

7.2%
(346)

9.3%
(446)

Sample Size

2.8

3.0

3.2

3.4
Ex

ec
ut

io
n

tim
e

(s
) Exhaustive best

Random
GEIST
HiPerBOt

(a) Best Configuration

1.0%
(46)

3.0%
(146)

5.1%
(246)

7.2%
(346)

9.3%
(446)

Sample Size

0.0

0.2

0.4

0.6

0.8

Re
ca

ll Random
GEIST

HiPerBOt

(b) Recall

Figure 5: LULESH. 5b shows a Recall score of 0.8 for HiPerBOt,
indicating that it finds 80% of the good configurations. This is more
than 2X the number of good configurations selected by GEIST.

0.4%
(39)

1.6%
(139)

2.7%
(239)

3.8%
(339)

4.9%
(439)

Sample Size

1.25

1.30

1.35

1.40

1.45

Ex
ec

ut
io

n
tim

e
(s

) Exhaustive best
Random
GEIST
HiPerBOt

(a) Best Configuration

0.4%
(39)

1.6%
(139)

2.7%
(239)

3.8%
(339)

4.9%
(439)

Sample Size

0.0

0.1

0.2

0.3

0.4

0.5

Re
ca

ll

Random
GEIST

HiPerBOt

(b) Recall

Figure 6: OpenAtom. 6a shows that HiPerBOt is able to select the
best performing configuration by evaluating only 3% of the parameter
space. 6b indicates that the Recall score of HiPerBOt is 30% better
than GEIST.

C. LULESH
For LULESH, there are eleven compiler flag options available

for tuning, resulting in a total of 4800 configurations. Users
often resort to using the default flags enabled by the -O3
compiler flag option, which results in an execution time
of 6.02 seconds (best is 2.72 seconds). However, -O3 does
not necessarily yield best performance. Figure 5b shows
that HiPerBOt has more than twice the number of good
configurations in its sample set in comparison to GEIST. A
Recall score of 0.8 for HiPerBOt indicates that 80% of the
good configurations have been selected.

D. OpenAtom
OpenAtom has 8 tunable parameters and a total of 8928 pos-

sible configurations. An expert user would apply a symmetric
decomposition, which has an execution time of 1.6 seconds
(best is 1.24 seconds). We observe in fig. 6a that HiPerBOt is
able to select the best performing configuration while exploring
only 3% of the parameter space. The Recall score of HiPerBOt
is 30% better than that of GEIST for the sample size of 489,
which means that HiPerBOt has 30% more good configurations
than GEIST.

E. HiPerBOt Hyperparameters Sensitivity

In this section we evaluate the sensitivity of the performance
with respect to the hyperparameters of HiPerBOt. The two
hyperparameters are: 1) number of initial samples used for
initializing the model, and 2) quantile threshold for constructing
probability densities for pg(x) (good configurations) and pb(x)

20 40 60 80 100
Initial sample Size

1.00

1.02

1.04

1.06

1.08

1.10

Se
le

ct
ed

 /
ex

ha
us

tiv
e

kripke
lulesh
hypre

openAtom
kripke_energy

(a) Initial Samples

0.0 0.1 0.2 0.3 0.4 0.5
Threshold

1.000

1.025

1.050

1.075

1.100

1.125

Se
le

ct
ed

 /
ex

ha
us

tiv
e kripke

lulesh
hypre

openAtom
kripke_energy

(b) Percentile Threshold

Figure 7: Performance as a function of the hyper-parameter value.
Y-axis shows the ratio of the execution time of the best sample
selected by HiPerBOt and execution time of the best sample obtained
by exhaustive evaluation. Higher value of the ratio indicates poor
selection while a value close to one indicates near optimal selection.
7a shows the performance of HiPerBOt for different initial number
of samples. Initial sample size of 20 gives the best performance for
most of the applications. 7b shows the performance of HiPerBOt for
different thresholds,where threshold of 0.20 percentile shows the best
performance.

(bad configurations). To analyze the sensitivity we report the
performance in terms of the ratio of the execution time of the
best sample selected by HiPerBOt and execution time of the
best sample obtained by exhaustive evaluation as a function of
the hyperparameter value. Higher value of the ratio indicates
poor selection while a value close to one indicates near optimal
selection. Figure 7a visualizes the evaluation results for the
number of initial samples. The initial sample size is varied
from 10 to 100, and the total number of samples is fixed to
150. Figure 7b visualizes the results for the quantile threshold.
The quantile threshold is varied from 0.01 to 0.5. Note that the
performance for initial sample size of 100 is slightly worse than
others because only 50 more samples are selected that are based
on the model. The evaluation shows that the performance is less
sensitive to the initial sample size for most of the applications,
while there is a sweet spot for the percentile threshold.

VI. PARAMETER IMPORTANCE ANALYSIS

A particular choice of the value for a parameter can signifi-
cantly impact the application performance metrics. However,
the performance metrics are not equally sensitive to all the
parameters. Some parameters tend to have a more pronounced
impact on the application performance in comparison to others.
Here, we propose to use the surrogate model to quantify the
effect of different parameters on the performance.

The surrogate model maintains two distributions for each
parameter xi: 1) pg,xi(xi) is the distribution over xi corre-
sponding to good configurations, and 2) pb,xi(xi) for bad
configurations. Our key observation is that for the parameters
with significant impact on the application performance, the set
of values corresponding to good performance will be different
from those for bad performance. Therefore, the distributions
pg,xi(xi) and pb,xi(xi) will be significantly different from
each other. We propose to use the difference between the
two distributions as a measure of the relative importance of a
parameter.

There are a variety of choices for computing the difference

TABLE I: RELATIVE RANKING OF PARAMETERS.

Application 10% samples All samples

HYPRE
Solver(0.12),Ranks(0.08),OMP(0.02), Ranks(0.49),OMP(0.32),Solver(0.26),
Smoother(0.01),MU(0.00),PMX(0.00) Smoother(0.01),MU(0.00),PMX(0.00)

OpenAtom
rhory(0.08),sgrain(0.07),rhorx(0.04), sgrain(0.26),rhory(0.08),gratio(0.08),
gratio(0.04),rhoratio(0.03),rhohx(0.01), rhohx(0.04),rhohy(0.03),rhorx(0.02),
rhohy(0.01),ortho(0.00) rhoratio(0.01),ortho(0.00)

Kripke exec
Ranks(0.11),Nesting(0.08),Gset(0.08), Ranks(0.21),OMP(0.12),Dset(0.08),
Dset(0.06),OMP(0.02) Gset(0.08),Nesting(0.05)

Kripke energy
Nesting(0.17),PKG LIMIT(0.07),Gset(0.06), Nesting(0.16),Ranks(0.16),OMP(0.13),
Ranks(0.02),Dset(0.00),OMP(0.00) PKG LIMIT(0.12),Gset(0.09),Dset(0.03)

LULESH
level(0.10),malloc(0.09),force(0.06), builtin(0.21),malloc(0.17),unroll(0.13),
builtin(0.05),unroll(0.05), level(0.04),force(0.03),
noipo(0.00), strategy(0.00),functions(0.00) noipo(0.01),strategy(0.00),functions(0.00)

between two distributions. In this work, we propose to use the
Jensen-–Shannon (JS) divergence DJS(pg,xi(xi), pb,xi(xi)) for
its symmetry in arguments. For two probability distributions
P and Q defined in the same probability space X , the JS
divergence is defined using M = (P +Q)/2 as

DJS(P,Q) =
1

2
DKL(P,M) +

1

2
DKL(Q,M) (13)

DKL(P,M) =
∑
x∈X

P (x) log
P (x)

M(x)
(14)

Here DKL(P,M) is the Kullback–Leibler (KL) divergence
from M to P . DKL(Q,M) is defined similarly. Note that
DJS(P,Q) ≥ 0, with equality for identical distributions.

Table I shows the relative importance of the parameters
for various applications studied in the paper. We show all the
parameters for each application along with the JS divergence
when 10% samples are used to construct the surrogate model
as well as when all the samples are used (actual ranking). For
HYPRE, the combination of number of MPI ranks and OpenMP
threads per node affects resource utilization and application
time. Therefore, we expect the application performance to be
sensitive to those parameters. In addition, the type of solver
also affects the application performance. For LULESH, except
for the compiler flags strategy, noipo, and functions, all the
compiler parameters are critical in determining good performing
configurations. For Kripke, we notice that the ranking varies
slightly between the surrogate model as well as the actual
ranking using all the data. We hypothesize that this is due
to the fact that all the parameters have significant impact on
the performance. As evident, our method is able to identify
important parameters with only a fraction of the total number
of samples in most of the applications.

VII. EVALUATION OF TRANSFER LEARNING

We evaluate HiPerBOt against PerfNet [11], a recently
published transfer learning approach used in HPC domain.
PerfNet is a deep learning based transfer learning approach
that combines observations at smaller scale with limited
observations collected at larger scale. For transfer learning,
we use all the data from DSrc to act as the prior distribution
for our surrogate model. Note that we use the same number of
samples as used for the evaluation of PerfNet in order to reuse
the results published in [11]. The number of samples selected is

0.05(2) 0.1(2) 0.15(18) 0.2(18)
Error Threshold (Number of Good Cases)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
Sc

or
e

Perfnet
HiPerBOt

(a) Kripke

0.05(8) 0.1(19) 0.15(83) 0.2(190)
Error Threshold (Number of Good Cases)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll
Sc

or
e

Perfnet
HiPerBOt

(b) HYPRE

Figure 8: Kripke: 8a shows that for thresholds 5% and 10%, both
PerfNet and HiPerBOt are able to find all the good configurations.
For 15% and 20% HiPerBOt finds 17 out of 18 good configura-
tions.HYPRE: 8b shows that HiPerBOt achieves a better Recall score
in comparison to PerfNet. For tolerance threshold of 5% HiPerBOt
finds all the good configurations.

1% of the total samples in DTrgt plus 100 more. The evaluation
is conducted for different performance tolerances, including
5%, 10%, 15%, and 20%. We use Kripke and HYPRE for our
study.

A. Kripke
Kripke has several tunable parameters for selecting the

data layouts to improve parallelism and in turn performance.
There are 17815 configurations in the DSrc dataset, and 17385
configurations in the DTrgt. All the data from DSrc are used to
construct the prior probability densities. Total of 273 samples
are selected from DTrgt, and HiPerBOt iteratively selects high-
performing samples to add to the list of observations. Figure 8a
shows the Recall score for PerfNet and HiPerBOt. For small
performance thresholds of 5% and 10%, both PerfNet and
HiPerBOt are able to select all the good configurations resulting
in a Recall score of 1.0. For performance thresholds of 15% and
20%, Recall of HiPerBOt is slightly lower than that of PerfNet;
however, it selects 17 out of the 18 good configurations.

B. HYPRE
The new_ij benchmark for HYPRE has parameters to

select the type of solver, smoother etc. The total number of
configurations in the DSrc is 57313 and that in DTrgt is 50395.
Again, we use all the data from the DSrc domain as prior
for the surrogate model. Here, the models pick 603 samples
from DTrgt to evaluate. Figure 8b shows the comparison of
HiPerBOt with PerfNet. We observe that PerfNet has a Recall
score of 1.0 for performance tolerance threshold of 5%, but the
score starts to decrease as the tolerance increases. The Recall
score drops with increase in tolerance threshold because there
are more configurations that qualify as good configurations,
but the total samples selected remains 603. HiPerBOt is able
to maintain the Recall score at 1.0 identifying all the 19
configurations for tolerance threshold of 10%, and achieves a
higher Recall score than PerfNet.

In summary, irrespective of the distribution of samples,
HiPerBOt is very good at identifying high-performing con-
figurations, and selecting the absolute best configuration with
very limited samples for all the benchmarks. The runtime for

HiPerBOt is significantly less than the application time for
a single configuration. For example, HiPerBOt for LULESH
took around 600 ms to select the best configuration whereas
evaluating all configurations took more than 19 hours (as
reported in [10]) and the best application time was 2.7
seconds. Moreover, HiPerBOt consistently outperforms GEIST
for configuration selection, and achieves better results in
comparison to PerfNet for transfer learning.

VIII. RELATED WORK

The traditional method for tuning scientific libraries and
applications uses analytical methods to predict performance.
Development of these analytical models requires expert knowl-
edge of the underlying architecture as well as application
characteristics. Moreover, these methods tend to have poor
accuracy when evaluating complicated systems [19]. Al-
ternatives to analytical methods are empirical performance
models, which rely on experimental evaluations on target
machines to build performance prediction models [1], [20]–
[24]. Bergstra et al. [2] used boosted regression trees for
creating a performance model. Balaprakash et al. [3] presented
an automatic multi-objective modeling approach for predicting
application performance and power usage based on hardware
performance counters. Beckingsale et al. [1] used decision
tree based classifier model to select runtime execution policies.
While these supervised learning based methods can be used
for parameter space tuning of HPC applications, they require
a large amount of training data which can incur a high cost.
These training instances are randomly selected to evaluate
irrespective of how useful each instance is in achieving the
objective. This leads to a wastage of resources by exploring
regions of the parameter space that do not contribute to the
goal of the task. Note that the task of selecting high-performing
configurations does not require models to perform well for the
entire configuration space, enabling our method to perform
well by using fewer but informative instances.

Active learning based methods provide a low-cost predictive
model with less training overhead by selecting only useful
training samples. Ogilvie et al. [25] presented an online
predictive algorithm to select training samples. Chen et al. [26]
presented a similar online approach for non-HPC applications.
Balaprakash et al. [22] proposed an iterative parallel algorithm
that builds surrogate performance models using dynamic tree
model. Adaptive sampling-based works [17], [18] are very
relevant to our approach. Ganapathi et al. [18] proposed a
Kernel Canonical Correlation Analysis (KCCA) based approach
to derive the relationship of parameters with performance and
energy. Duplyakin et al. [17] presented a Gaussian Process
Regression based method to minimize search space.Thiagarajan
et al. [10] proposed GEIST, an adaptive sampling technique that
uses label propagation algorithm to identify well performing
parameter configurations. In this paper, we present a detailed
comparison of our approach with GEIST and show that
our method outperforms their approach. We did not include
comparison results with GP [17] and CCA [18] because GEIST

was shown to perform significantly better in comparison to
them.

Bergstra et al. [5] proposed a Bayesian optimization method,
Tree Parzen Estimator (TPE), for optimal parameter selection
for training neural networks. Several Bayesian optimization
tools, such as, Hiperopt [27], SigOpt [28], Spearmint [29],
are geared towards machine learning workloads, where the
candidates are sampled from a distribution and are especially
suitable when the parameter space is continuous. This work
is similar to several of these tools, but differs in that we
apply HiPerBOt to performance tuning of HPC applications.
Configuration parameters for HPC applications are mostly
discrete and finite. We proposed Ranking strategy, where the
next set of samples is selected by computing the expected
improvement for all the samples and picking the best. This also
eliminates the scenario where duplicate samples are selected.
Moreover, we extend the same Bayesian optimization technique
for transfer learning.
Transfer Learning Methods: Transfer learning methods aim
to improve the performance or data requirements for a target
application by transferring the knowledge from a similar or
related application. Roy et al. [30], [31] presented techniques
for auto-tuning by porting the performance models created on
one architecture and transferring them to other architectures.
Muralidharan et al. [32] and Ding et al. [33] performed code-
variant tuning using learning based methods. Price et al. [34]
optimized the configuration space search by optimizing sample
search on progressively larger sets of target platforms. Falch
et al. [35] fine-tuned the parallelizing runtime system for
target applications on GPU platforms. Grebhahn et al. [36] and
Marathe et al. [11] use transfer learning for transferring domain
knowledge learned on low-cost configurations to select high-
performing configurations for a target application. In contrast,
our approach can use just the samples collected for the target
problem, or it can use the data from source domain to speedup
the learning process in the target domain. An advantage of
HiPerBOt is that it can work seamlessly in both the cases.

IX. CONCLUSION

In this work, we have presented HiPerBOt, an active learning
framework based on Bayesian optimization, to select high-
performing configurations using limited samples. We showed
that HiPerBOt performs significantly better than alternative
methods by identifying best-performing configuration with
fewer samples. For example, it uses 50% fewer samples for
Kripke in comparison to the best alternative method. HiPerBOt
also finds more than 2× the number of good configurations
for LULESH in comparison to the best alternative. We applied
HiPerBOt to transfer learning, where executions at a smaller
scale were used to speedup the parameter space tuning process
at larger scale. HiPerBOt outperformed the alternative method
for Kripke. Most importantly, HiPerBOt provides an efficient
way for users to apply autotuning to select high-performing
parameter configuration for their application with significantly
less resource overhead.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
772119). This work was supported in part by funding provided
by the University of Maryland College Park Foundation.

REFERENCES

[1] D. Beckingsale, O. Pearce, I. Laguna, and T. Gamblin, “Apollo: Reusable
models for fast, dynamic tuning of input-dependent code,” in Parallel and
Distributed Processing Symposium (IPDPS), 2017 IEEE International.
IEEE, 2017.

[2] J. Bergstra, N. Pinto, and D. Cox, “Machine learning for predictive
auto-tuning with boosted regression trees,” in Proceedings of Innovative
Parallel Computing, May 2012, pp. 1–9.

[3] P. Balaprakash, A. Tiwari, S. M. Wild, L. Carrington, and P. D. Hovland,
“Automomml: Automatic multi-objective modeling with machine learning,”
in International Conference on High Performance Computing. Springer,
2016, pp. 219–239.

[4] J. Mockus, Bayesian approach to global optimization: theory and
applications. Springer Science & Business Media, 2012, vol. 37.

[5] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in Advances in neural information processing
systems, 2011, pp. 2546–2554.

[6] D. R. Jones, “A taxonomy of global optimization methods based on
response surfaces,” Journal of global optimization, vol. 21, no. 4, 2001.

[7] F. Hutter, “Automated configuration of algorithms for solving hard
computational problems,” Ph.D. dissertation, University of British
Columbia, 2009.

[8] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in International
Conference on Learning and Intelligent Optimization. Springer, 2011.

[9] J. Villemonteix, E. Vazquez, and E. Walter, “An informational approach
to the global optimization of expensive-to-evaluate functions,” Journal
of Global Optimization, vol. 44, no. 4, p. 509, 2009.

[10] J. J. Thiagarajan, N. Jain, R. Anirudh, A. Gimenez, R. Sridhar,
A. Marathe, T. Wang, M. Emani, A. Bhatele, and T. Gamblin,
“Bootstrapping parameter space exploration for fast tuning,” in
Proceedings of the 2018 International Conference on Supercomputing,
ser. ICS ’18. New York, NY, USA: ACM, 2018, pp. 385–395. [Online].
Available: http://doi.acm.org/10.1145/3205289.3205321

[11] A. Marathe, R. Anirudh, N. Jain, A. Bhatele, J. Thiagarajan,
B. Kailkhura, J.-S. Yeom, B. Rountree, and T. Gamblin, “Performance
modeling under resource constraints using deep transfer learning,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: ACM, 2017, pp. 31:1–31:12. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126969

[12] A. Kunen, T. Bailey, and P. Brown, “KRIPKE-a massively parallel
transport mini-app,” Lawrence Livermore National Laboratory (LLNL),
Livermore, CA, Tech. Rep, 2015.

[13] R. D. Falgout and U. M. Yang, “HYPRE: A Library of High Performance
Preconditioners,” in Computational Science–ICCS 2002. Springer, April
2002, pp. 632–641.

[14] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”
Lawrence Livermore National Laboratory, Tech. Rep. LLNL-TR-641973,
August 2013.

[15] N. Jain, E. Bohm, E. Mikida, S. Mandal, M. Kim, P. Jindal, Q. Li,
S. Ismail-Beigi, G. J. Martyna, and L. V. Kale, “Openatom: Scalable
ab-initio molecular dynamics with diverse capabilities,” in International
Conference on High Performance Computing. Springer, 2016.

[16] Y. Yamaguchi, C. Faloutsos, and H. Kitagawa, “Camlp: Confidence-
aware modulated label propagation,” in Proceedings of the 2016 SIAM
International Conference on Data Mining. SIAM, 2016, pp. 513–521.

[17] D. Duplyakin, J. Brown, and R. Ricci, “Active learning in performance
analysis,” in Cluster Computing (CLUSTER), 2016 IEEE International
Conference on. IEEE, 2016, pp. 182–191.

[18] A. Ganapathi, K. Datta, A. Fox, and D. Patterson, “A case for machine
learning to optimize multicore performance,” in Proceedings of the First
USENIX conference on Hot topics in parallelism, 2009.

[19] A. Tiwari and J. K. Hollingsworth, “Online adaptive code generation
and tuning,” in Parallel & Distributed Processing Symposium (IPDPS),
2011 IEEE International. IEEE, 2011, pp. 879–892.

[20] I.-H. Chung and J. K. Hollingsworth, “A case study using automatic
performance tuning for large-scale scientific programs,” in High Perfor-
mance Distributed Computing, 2006 15th IEEE International Symposium
on. IEEE, 2006, pp. 45–56.

[21] W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather, “Minimizing the
cost of iterative compilation with active learning,” in Proceedings of the
2017 International Symposium on Code Generation and Optimization.
IEEE Press, 2017, pp. 245–256.

[22] P. Balaprakash, R. B. Gramacy, and S. M. Wild, “Active-learning-
based surrogate models for empirical performance tuning,” in Cluster
Computing (CLUSTER), 2013 IEEE International Conference, 2013.

[23] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth, “A
scalable auto-tuning framework for compiler optimization,” in Parallel
& Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on. IEEE, 2009, pp. 1–12.

[24] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catanzaro,
“Nitro: A framework for adaptive code variant tuning,” in Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International. IEEE,
2014.

[25] W. F. Ogilvie, P. Petoumenos, Z. Wang, and H. Leather, “Fast automatic
heuristic construction using active learning,” in International Workshop
on Languages and Compilers for Parallel Computing. Springer, 2014.

[26] J. K. Chen, R.-B. Chen, A. Fujii, R. Suda, and W. Wang, “Surrogate-
assisted tuning for computer experiments with qualitative and quantitative
parameters,” 2017.

[27] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in International Conference on Machine Learning,
2013, pp. 115–123.

[28] I. Dewancker, M. McCourt, and S. Clark, “Bayesian optimization primer,”
2015.

[29] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in neural information
processing systems, 2012, pp. 2951–2959.

[30] A. Roy, P. Balaprakash, P. D. Hovland, and S. M. Wild, “Exploiting per-
formance portability in search algorithms for autotuning,” in Parallel and
Distributed Processing Symposium Workshops, 2016 IEEE International.
IEEE, 2016.

[31] P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel, and Y. Agarwal,
“Transfer learning for performance modeling of configurable systems:
An exploratory analysis,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, 2017.

[32] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catanzaro,
“Nitro: A Framework for Adaptive Code Variant Tuning,” in Proceed-
ings of the IEEE International Symposium on Parallel & Distributed
Processing, May 2014, pp. 501–512.

[33] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and
S. Amarasinghe, “Autotuning algorithmic choice for input sensitivity,”
in Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’15), Jun. 2015.

[34] J. Price and S. McIntosh-Smith, “Improving auto-tuning convergence
times with dynamically generated predictive performance models,” in
Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2015 IEEE
9th International Symposium on. IEEE, 2015, pp. 211–218.

[35] T. L. Falch and A. C. Elster, “Machine learning-based auto-tuning for
enhanced performance portability of opencl applications,” Concurrency
and Computation: Practice and Experience, vol. 29, no. 8, 2017.

[36] A. Grebhahn, N. Siegmund, H. Köstler, and S. Apel, “Performance
prediction of multigrid-solver configurations,” in Software for Exascale
Computing. Springer, 2016, pp. 69–88.

