
Usability and Performance Improvements in Hatchet
Stephanie Brink∗, Ian Lumsden‡, Connor Scully-Allison§, Katy Williams§, Olga Pearce∗, Todd Gamblin∗,

Michela Taufer‡, Katherine E. Isaacs§, Abhinav Bhatele†

∗Lawrence Livermore National Laboratory, Livermore, CA, USA
‡Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA

§Department of Computer Science, University of Arizona, Tucson, AZ, USA
†Department of Computer Science, University of Maryland, College Park, MD, USA

Abstract—Performance analysis is critical for pinpointing bot-
tlenecks in parallel applications. Several profilers exist to instru-
ment parallel programs on HPC systems and gather performance
data. Hatchet is an open-source Python library that can read
profiling output of several tools, and enables the user to perform
a variety of programmatic analyses on hierarchical performance
profiles. In this paper, we augment Hatchet to support new
features: a query language for representing call path patterns
that can be used to filter a calling context tree, visualization
support for displaying and interacting with performance profiles,
and new operations for performing analyses on multiple datasets.
Additionally, we present performance optimizations in Hatchet’s
HPCToolkit reader and the unify operation to enable scalable
analysis of large datasets.

Index Terms—performance analysis tools, parallel profiles,
calling context tree, call graph, graph analytics

I. INTRODUCTION

Profilers [1]–[5] measure code performance on HPC sys-
tems, allowing users to identify performance and scalability
bottlenecks. Most profilers use their own unique file formats
for storing profiling data. These profilers typically provide
graphical user interfaces (GUIs) to visualize the data. How-
ever, there is limited functionality available to the user to
analyze the data programmatically. This ultimately limits the
kinds of analyses users can perform on their data.

One challenge of parallel performance analysis is attribut-
ing execution time to the code. Simple profilers collect the
execution time of individual functions or statements in the
code. More advanced profilers can distinguish the time spent
in a function when called from different calling contexts, such
as an MPI_Bcast called by a physics routine versus an
MPI_Bcast called by a solver library. Other profilers may
attribute time to nodes in a call graph, which aggregates the
time spent in a function across all occurrences. In all these
cases, profile data may represent code in different ways, and
analyzing performance data can be a tedious process.

Hatchet [6] is an open-source Python library that overcomes
these analysis challenges by enabling users to read the hier-
archical profile data generated by different HPC profilers into
a canonical data model. Hatchet uses the pandas library [7],
[8] and combines graph data with pandas’ DataFrames. Using
Hatchet, users can perform a variety of operations on profiling
data either via the Hatchet API or their own analysis in Python.

In this paper, we present several recent changes in Hatchet that
improve its usability and performance.

We have developed a query language for representing call
path patterns that can be used to filter a calling context tree
(CCT). We have also added visualization support for display-
ing and interacting with performance profiles, in particular,
in Jupyter notebooks. We also present new operations added
to Hatchet for performing analyses on multiple datasets. And
finally, we present performance optimizations in Hatchet’s
HPCToolkit reader and the unify operation to enable scalable
analysis of large datasets.

The main contributions of this paper are as follows:

• a query language to specify call path patterns and a
demonstration of its use in analyzing performance varia-
tions across MPI implementations;

• enhancements to Hatchet’s existing tree-to-text renderer,
and a new interactive tree visualization for Jupyter note-
books;

• additions to the Hatchet API to facilitate comparing
multiple datasets; and

• optimization of some Hatchet operations and a study of
the performance impact of these optimizations.

II. BACKGROUND

In this section, we provide a brief overview of some
common profiling tools, the data they collect, and Hatchet’s
data model.

A. Profiling Tools and Performance Data

Two common methods for collecting execution profiles of
a program are: sampling and source code instrumentation.
A sampling-based tool such as HPCToolkit collects data at
a regular sampling frequency as the program is executing.
With source code instrumentation as used in Caliper, the user
annotates their code to specify annotation regions and the tool
collects data at each user annotation.

HPCToolkit: HPCToolkit [5] is a suite of tools for perfor-
mance measurement, analysis, and visualization. HPCToolkit
uses thread- and process-level sampling to measure different
performance metrics, and attributes their values to the full
calling context in which they occur (recorded as a CCT).
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(a) Hatchet’s GraphFrame data structure consists of a Graph object (left) and a pandas
DataFrame object (right).

Frame: { function: ‘baz’,
             module: ‘libfoo.so’ }

Node 1 (key: 0xAB7FC4)

Frame: { function: ‘qux’,
             module: ‘libbar.so’ }

Node 2 (key: 0xCA19E4)

Frame: { function: ‘quux’,
             module: ‘libfoo.so’ }

Node 3 (key: 0xF6D5FA)

Frame: { loop: ‘grault’,
             module: ‘libbar.so’ }

Node 4 (key: 0x4E6CDA)

(b) The nodes in Hatchet’s Graph object
contain a Frame object, which identifies
the code construct it represents.

Fig. 1: Hatchet’s central data structure and data model.

Caliper: Caliper [2] is a general-purpose instrumentation
and profiling library for performance analysis. It provides an
API for annotating the application’s source code as well as
a flexible data aggregation model [9] for online or offline
analysis. Caliper generates a hierarchical annotation profile or
a CCT, depending on the use of source code annotations or
enabling the call path service.

Profiling data typically contains both contextual informa-
tion, such as the filename, line number, and call path for
a callsite, and performance metrics, such as exclusive and
inclusive time, number of instructions retired, or the number of
cache misses since the previous sample. The hierarchy might
represent a calling context tree (CCT) or call graph depending
on how the data is aggregated.

Calling Context Trees: A CCT represents the prefix tree of all
call paths in the execution of a parallel program. Each unique
function call based on its context becomes a node in the CCT,
and a path from the root to any node in the tree represents the
calling context that led to that particular function.

Call Graphs: A call graph is created when all nodes rep-
resenting the same function in a CCT are merged and their
performance metrics are aggregated. Call graphs contain all
the calling contexts for each node, but the performance metrics
are not stored per calling context.

B. Overview of the Hatchet Library

The primary data structure in Hatchet is called a
GraphFrame, which consists of two components: a
Graph defining the caller-callee relationships and a pandas
DataFrame storing the categorical and numerical data as-
sociated with each node. Fig. 1a shows the two objects of
a GraphFrame. Pandas [8], [10] is an open-source Python
library that provides data structures and manipulation tools
for data analysis. Hatchet introduces a canonical data model
for representing and indexing the performance data from
execution profiles. This structured index enables nodes in
the structured graph to be used as an index in the pandas

DataFrame. Fig. 1b illustrates that each node in the graph
contains a Frame, which identifies the code construct that
the node represents.

Hatchet provides readers for data gathered from several
popular profiling tools, such as HPCToolkit, Caliper, gprof,
callgrind, and cprofile. Once the data has been read into
Hatchet, a user can perform operations to filter or squash
the GraphFrame, for example. Some operations are applied
to a single GraphFrame (e.g., filter), while others are meant
to compare across GraphFrames (e.g., add). In the following
sections, we describe the new features that have been added
to Hatchet since it was initially introduced in [6].

III. CALL PATH QUERY LANGUAGE

We now present Hatchet’s call path query language and
demonstrate how it can be used to filter the GraphFrame in
the following subsections.

A. Design and Implementation

Previously, Hatchet did not provide a way for the user to
specify call path patterns to filter the graph. To enable this,
we design a call path query language based on Cypher [11]
and GQL [12] to filter performance data based on call path
patterns. In our query language, users provide a query path in
the form of a list of abstract graph nodes. A node consists
of two elements: (1) a wildcard specifying the number of real
graph nodes to match to the abstract graph node, and (2) a
filter determining whether a real graph node matches the
abstract graph node. We filter the nodes in the real graph
in three steps. First, we match all real nodes in the graph to
the abstract nodes in the user-provided query path. Second,
we collect an exhaustive list of paths in the graph that match
the entire query path. Finally, we use the exhaustive list to
create a list of real nodes found in the list of matched paths.
An example graph and query is shown in Fig. 3.

Our query language consists of two API levels. The “high-
level” API represents the query path as a Python list in which
each element is an abstract graph node. Filters in the high-
level API are represented as Python dictionaries keyed on the



(a) MPI functions (b) Child calls of MPI functions (c) Child calls of MPI_Allgather

MPI Functions
MPI_Allgather MPI_Waitall

MPI_Allreduce MPI_Finalize

Remaining MPI Time

Child Functions
<unknown file> [libmlx5.so.1.0.0]:1133 memset.S:1133

<unknown file> [libmlx5.so.1.0.0]:0 Geometry.h:0

pthread_spin_lock.c:26 malloc.c:0

stl_vector.h:0 Remaining MPI Time

Fig. 2: Analysis of communication in AMG: (a) The percent of total MPI time spent in MPI functions, (b) The percent of
total MPI time spent in the children calls of MPI functions, and (c) The percent of total MPI_Allgather time spent in children
calls. We focus on those function calls that contribute 10% or more of the total MPI or MPI_Allgather time, and combine the
time of all remaining function calls into Remaining MPI Time. MVAPICH and Spectrum MPI libraries are denoted by by M
and S, respectively. The functions defined in the legends are listed as provided by the HPCToolkit profiles.

attribute names of real nodes in the graph. The “low-level”
API represents the query path as a set of chained function
calls in which each function call represents a single abstract
graph node. Filters in the low-level API are represented by
Python callables that accept a pandas Series representing a
row and return a boolean. In both API levels, we represent
wildcards as either a number or a regex-style wildcard string.

Fig. 3: Example using Hatchet’s new call path query language
to filter a graph. Here, our query specifies a call path rooted
at a node named “solvers”, followed by a node with a time
metric value less than 50, followed by any number of children
nodes. The result is a subtree containing three nodes.

B. Case Study: Identifying Sources of Performance Losses

We demonstrate the effectiveness of Hatchet once aug-
mented with our query language by analyzing the CPU perfor-
mance of MPI routines when using MVAPICH as compared
to IBM’s Spectrum MPI in two proxy applications and one
production application. We use the call path query language

to identify sources of performance losses associated with MPI
functions in AMG, Kripke, and LAMMPS. AMG [13] is a
parallel algebraic multigrid solver for linear systems derived
from the BoomerAMG [14] solver in the hypre library [15].
Kripke is a proxy application for a fully functional discrete-
ordinates transport code [16]. LAMMPS is a classical molecu-
lar dynamics code with a focus on materials modeling [17]. We
use two different MPI libraries (i.e., MVAPICH and Spectrum
MPI) with 64, 128, 256, and 512 processes on LLNL’s Lassen
supercomputer, where each node contains two IBM Power9
CPUs and four Nvidia Volta V100 (though only the CPUs
were used in our study). We profile all the applications using
HPCToolkit [5].

Using our query language, we extract the subgraphs rooted
at standard MPI function calls from the generated profiles.
Using the subgraphs we obtain, we examine the percentage of
the total MPI time spent in each MPI function call. We also
examine the percentage of total MPI time spent in each child
call of the MPI functions. Using this data, we determine the
MPI routines and their children calls that are most important
to the performance of the application running with a particular
MPI library.

In this paper, we only show results related to the
MPI_Allgather function in AMG due to space constraints.
Our reasons for this are two-fold. First, as shown in Fig. 2a,
MPI_Allgather clearly comprises the majority of the MPI time
spent in the AMG benchmark. Second, the AMG benchmark
has the largest performance difference between MVAPICH
and Spectrum MPI. This suggests that, if we can determine a



Fig. 4: An example tree rendered using Hatchet’s interactive tree visualization in Jupyter. Using the “Select nodes” feature, the
user brushes over the corge subtree (shown in the grey box). The metrics of the selected nodes are shown in the table in the
upper right. This selection can be accessed in other Jupyter cells using the fetchData function. Additional controls allow
for adjusting the color scale, changing which trees (in a forest of trees) are displayed, and changing what metric is displayed.

likely cause for the performance difference in MPI_Allgather

between the two MPI libraries, we can also determine the
likely primary cause for the overall performance difference
between the application versions using these two libraries.

To determine a likely cause for the performance difference
in MPI_Allgather, we first use the query language to obtain
the subgraphs of the AMG data rooted at MPI_Allgather calls.
We further reduce the data to consider only the children calls
of this MPI function that we previously identified in Fig. 2b as
most important to the performance of the program. The results
of this reduction are shown in Fig. 2c.

In our tests with MVAPICH and Spectrum MPI, we deter-
mine that the pthread_spin_lock function is consistently a
major contributor to MPI runtime (i.e., 10% or more of the
MPI time, usually 20% or more). Additionally, when consider-
ing MPI_Allgather, we conclude that the worse performance
of Spectrum MPI may be due to differences in its use of
pthread_spin_lock compared to MVAPICH.

Overall, Hatchet augmented with the call path query lan-
guage supports these new analysis capabilities: extracting
all call paths specific to a given library; determining the
performance contributions of function calls used internally in a
library; correlating children function calls to specific important
library API calls in an application; using this correlation to
determine children function calls that contribute the most to
the performance of the targeted library API call; and compar-
ing the correlation of children and API calls across libraries
to determine possible causes for performance differences in
these libraries.

IV. VISUALIZATION ENHANCEMENTS

We present a new interactive visualization for representing
the Hatchet tree, and interacting with it within a Jupyter

notebook. We also improve the existing tree-to-text renderer
in Hatchet. Both visualizations have refined designs for read-
ability.

A. Interactive Tree Visualization in Jupyter

A central design goal of Hatchet is easing analysis on
calling context trees and other similar performance data. While
programmatic analysis is the main focus of Hatchet, some
operations may be easier to perform in an interactive visual
environment. We introduce an interactive tree visualization
for Jupyter, shown in Fig. 4. The visualization is built using
D3.js [18] and Roundtrip [19]. Our Jupyter visualization has
several features that can be directly manipulated, with a key
addition of being able to select nodes visually and pass them
back to the scripting context.

The interactive tree permits selection of a single node on-
click or multiple nodes by brush (gray box drawn around
selected nodes). Selection of one or many nodes populates a
table in the visualization as shown in the upper right of Fig. 4.
The dynamic table lists all selected nodes and their associated
metric values. Selected nodes are outlined with a thick black
line. Once a user has drawn a selection over multiple nodes,
the corresponding query can be accessed in any other Jupyter
cell using the Roundtrip fetchData function. As shown in
Fig. 6, calling %fetchData(mySelection) returns the
corresponding call path query based on the selection, and
stores the query into the mySelection Python variable. The
resulting query can then be passed to the Hatchet filter function
to extract the same subtree programmatically that was selected
in the interactive visualization. With the interactive tree, users
can visually select nodes that can later be manipulated pro-
grammatically, allowing users to combine interactive visual
selection with scripting.
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Fig. 5: Tree-to-text rendering for a subtraction of two GraphFrames in Hatchet (resulting tree on the right). Any node that only
exists in one of the two trees is annotated with a green or red arrow in the result tree. Here, the mpi and psm2 nodes exist
only in the right tree, and are annotated with a green arrow. The hypre node exists only in the left tree, and is annotated
with a red arrow.

co r g e

b a r g r au l t ga rp ly

baz g r au l t

1 %fetchData mySelection
2 filter_gf = gf.filter(mySelection)

Fig. 6: Example demonstrating how the query (translated from
the user’s selection in the interactive tree in Fig. 4) can be
applied programmatically to filter the tree.

Additionally, the Jupyter tree visualization has several inter-
active controls for adjusting the display. The coloring of the
nodes is set by the selected metric in the Color by field.
Other metrics can be selected using the drop down menu. In
Fig. 4, nodes are colored by inclusive time. When multiple
trees are present in a Hatchet graph (forest of trees), users
can choose to display them all or just one, using a unified
colormap, or separate ones. Users can also choose to invert
the colormap. For the specific legend used in Fig. 4, dark
hues are associated with high metric values and light hues are
associated with low metric values.

B. Updates to Tree-to-text Renderer

Hatchet provides a visualization of its graph when the
graph is a tree via the tree-to-text renderer, inspired by
pyinstrument’s text renderer. We have redesigned the output
and extended its functionality to provide users with more
customization over their visualizations. Examples of the cur-
rent tree-to-text output can be seen in Fig. 5. By default,
node names are printed alongside the specified metric, such
as exclusive or inclusive time. Users can specify depth or
precision to Hatchet’s tree renderer to control the number
of tree levels to output and the number of decimal places to
output for the displayed metric values.

We also provide users with increased control over the
colormap. By default, the colormap annotates nodes with the
highest metric values in red and those with the lowest metric

values in green. In the case where a user computes the division
(or speedup) of two GraphFrames, a user may want to invert
the colormap, so that nodes with high speedup are annotated
in green, while nodes with low speedup are annotated in
red. Users can invert the default colormap by specifying
invert_colormap=True. Additionally, the tree renderer
now annotates nodes that only exist in one of the two Graph-
Frames in the right hand side of an algebraic operation, such
as subtraction. As shown in Fig. 5, the graphs of the two input
GraphFrames are structurally different, so we first unify the
graphs before computing the difference. Unifying the graphs
means that some nodes exist in one GraphFrame but not the
other, and vice versa. In the output GraphFrame, we annotate
those nodes with a red left arrow to indicate nodes that exist
only in the left input graph, or a green right arrow to indicate
nodes that only exist in the right input graph.

V. IMPROVEMENTS IN THE HATCHET API

In this section, we describe an extension to the filter function
and three new GraphFrame operations that have been added
to Hatchet – groupby aggregate, mul, and div. Filter and
groupby aggregate operate on a single GraphFrame object,
while mul and div operate on two GraphFrames objects.

Extension to filter: The existing filter operation takes a user-
supplied function and applies that to all rows in the DataFrame.
As an example, the filter function may keep all rows in the
dataframe that have a particular column’s values greater than
some threshold. With the newly added query language, we
have extended the filter function to support taking a user-
defined query as input to filter the graph based on call path
patterns. Hatchet’s new call path query language is described
in detail in Section III. The Series or DataFrame represented
by the query is used to filter the GraphFrame’s DataFrame
to only match rows that are true. By default, filter performs
a squash on the graph to remove nodes that are no longer
in the DataFrame after applying the filter. Squash rewires the
graph such that the nearest remaining ancestor is connected to
the nearest remaining child on all call paths.

groupby aggregate: The groupby and aggregate operation
takes as input a column to use for the pandas groupby
operation and an aggregation function to apply on the members
of each group. It produces a new DataFrame that has number



of rows equal to the number of groups (rows in each group
are aggregated). This operation is useful for aggregating the
data into alternative groups based on heirarchies other than
the column that denotes the calling context. As an example,
users may want to look at the performance attributed to
different modules or file names (instead of the default, which
is typically function or region names), and aggregate the data
values accordingly.

As part of the groupby and aggregate operation, the graph
is reorganized to be able to index the new rows in the
DataFrame. For each group, the graph reorganization merges
all nodes belonging to a group into a single “supernode”
(and aggregates corresponding rows in the DataFrame to a
single row). When a node is merged into a supernode, any
of its edges to a parent or child are added as edges tp the
new supernode. Each supernode is represented by a new
node in the GraphFrame, and these new nodes are used
to index the DataFrame. The groupby aggregate returns a
new GraphFrame with a reorganized graph and a groupby-
aggregated DataFrame. Fig. 7 shows the graph before and after
a groupby-aggregate is performed, specifying module as the
new coilumn to use for the groupby operation.

1 gf = GraphFrame( ... )
2 groupby_col = ["module"]
3 agg_func = {"time": np.sum, "time (inc)": np.sum}
4 gf2 = gf.groupby_aggregate(groupby_col, agg_func)

Fig. 7: Groupby-aggregate operation applied to a single Graph-
Frame. The bottom figures show the resulting module-level
graph and associated DataFrame.

mul: The multiplication (*) operation computes the multipli-
cation of the corresponding DataFrames in two GraphFrames.
If the graphs of the operands are not the same, then unify
is applied first to create a single unified graph. Then the
DataFrames are reindexed by the unified graph. The multipli-
cation operation returns a new GraphFrame with the unified
graph and the result of multiplying the DataFrames. The
multiplication operator can also be used in-place (a∗ = b)

to update an existing GraphFrame.

div: The division (/) operation is similar to the other algebraic
operations in Hatchet, and computes the division of two
DataFrames. Similar to mul, if the graphs of the operands
are not the same, it first unifies the graphs and reindexes
the DataFrames before performing the division. The division
operation either returns a new GraphFrame or updates the
GraphFrame in-place if the in-place division operator (a/ = b)
is used.

VI. PERFORMANCE IMPROVEMENTS

Performance improvements in Hatchet aim to support large
profiles collected from executions of parallel programs on a
large number of processes. These efforts target two critical
functions in Hatchet: the HPCToolkit reader and unify. We
detail the optimization process and the results of these efforts
in the following subsections.

A. Performance Analysis Infrastructure

To enable performance analysis of Hatchet, we developed a
custom-made cProfile [20] wrapper class. This class provides
simple annotations for starting, stopping, and resetting the
profiler in Python code that uses Hatchet. Furthermore, we
created several interfaces for aggregating and exporting the
measured performance data for post-mortem analysis. This
minimal profiling infrastructure provides Hatchet developers
and users with a framework for quickly identifying bottlenecks
within Hatchet workflows.

B. Optimizing the HPCToolkit Reader

The detailed calling contexts and per process metrics gath-
ered by HPCToolkit can result in large and complex datasets.
As an example, an HPCToolkit profile of LAMMPS collected
on 512 processes (13 nodes) on LLNL’s Lassen system pro-
duces a calling context tree (CCT) of over 34,000 call sites and
approximately 50,000,000 performance data records. The size
of HPCToolkit’s profiles made Hatchet’s HPCToolkit reader
an obvious first step toward extending Hatchet’s support for
big data.

We identified the critical bottleneck of the HPCToolkit
reader inside of a recursive, tree-traversing function call that
constructs Hatchet’s graph nodes from HPCToolkit’s XML
representation of call sites in a profile. In addition to construct-
ing nodes for the Hatchet graph, when this function arrives
at leaf nodes, it subtracts the exclusive time of leaf nodes
from their parents (HPCToolkit stores the exclusive time of
statement nodes in both the leaf nodes and their parents).
The few lines of Python code dedicated to this computation
dominate the bottleneck found in this function.

The procedure itself uses pandas’ conditional indexing
functionality to find all rows containing the current node’s
ID and its parent’s ID. The two resulting lists are then
subtracted as vectors and re-inserted into Hatchet’s DataFrame.
In a sequential profile, this would be only two rows in the
DataFrame, accessible directly by the structured index. How-
ever, HPCToolkit metrics are collected per execution thread



and process for each call site. This means that a given node
ID appears in the DataFrame n times, where n is the product of
the total number of execution threads × processes the profiled
application was running on. For highly parallel programs, this
can mean searching for tens of thousands of rows containing
the same parent and child ID.

This significant number of rows, with slight variations in
the metric data across threads and processes, causes Hatchet’s
DataFrame to explode in size compared to its correspond-
ing CCT. Since the pandas DataFrame is not optimized to
handle operations on very large datasets, operations such as
conditional indexing are the primary bottlenecks in Hatchet.
For each statement node in HPCToolkit’s XML data, the
conditional indexing executes twice: once for the parent and
again for the child to get the two vectors of exclusive metrics,
increasing the time spent in this slow operation.

We optimized the conditional index operation by leveraging
the structure of this data as well as opportunities to speedup
array-based operations provided by the C/Python hybrid lan-
guage, Cython [21]. We first extract the relevant columns
(i.e., exclusive metrics) from the DataFrame, pass them into a
Cython function, and exploit the structure of the data to stride
over millions of rows of data in a few iterations, locating and
updating only those rows of interest.

Hatchet’s DataFrame can be decomposed into t equal sized
sub-frames of length m, where t is the number of execution
threads × processes used to run the application and m is
the number of call sites. Since each sub-frame is sorted by
node ID, there is no need to iterate over the entire DataFrame
row-by-row. Instead, we make t strides of length m over the
metric values and subtract the children metrics from the parent
metrics at each iteration. For our largest dataset, we reduced
the number of iterations over our DataFrame (per function
call) from more than 100,000,000 to just above 30,000.

C. Evaluation of Performance Improvements

To examine the impact of our optimizations to the HPC-
Toolkit reader, we measured the runtime of Hatchet’s HPC-
Toolkit reader on a series of profiles varying in size from 999
call graph nodes and 191,808 rows in the DataFrame to 34,855
nodes and 53,537,280 rows. The HPCToolkit profiles used in
our performance study came from the case study described in
Section III-B. The smallest profile was for a Kripke execution
on 64 processes (2 nodes) and the largest was for a LAMMPS
run on 512 processes (13 nodes). The results of these trials are
presented in Fig. 8. for each read first on the unoptimized code
and again on the optimized code. Each point represents the
average performance over five trials to read in a HPCToolkit
profile of a given size (i.e., number of DataFrame rows).

Our optimizations significantly improve the performance of
Hatchet’s HPCToolkit reader. As shown in Fig. 8, the slow-
down of the pre-optimized implementation is more pronounced
with larger DataFrames, while the post-optimized code scales
linearly. For even larger datasets, the relative speedup of the
optimized HPCToolkit reader will continue to increase. For
a DataFrame containing 50,000,000 rows, the HPCToolkit

Fig. 8: Log-log plot showing performance before and after op-
timization of the HPCToolkit reader as the size of the Hatchet
DataFrame increases. The optimized HPCToolkit reader scales
significantly better compared to its unoptimized predecessor.

reader went down from six hours and fifteen minutes to two
minutes and twenty-four seconds, a reduction of two orders
of magnitude.

D. Optimizing the Unify Operation

The unify operation takes two GraphFrame objects, unifies
the graphs in them, and reindexes the DataFrames by the
nodes in the unified graph. The updated GraphFrames contain
the new unified graph (as shown in Fig. 9) and reindexed
DataFrames. The DataFrame of the Graphframe object calling
unify contains all the nodes from both DataFrames and also
stores metadata about the origin of nodes with a column
_missing_node, which denotes that a particular node ex-
isted only in its DataFrame or in the DataFrame of the other
GraphFrame. If a node existed in both GraphFrames, then this
column is left empty.

We chose to optimize unify since it is a primary operation
in most of Hatchet’s algebraic operations, such as multiply or
add. Since these algebraic operations are critical to the unique
profiling workflow offered by this library, it is essential that
they be performant. The initial performance analysis of unify,
executed with the same profiling infrastructure introduced in
Section VI-B, reveals merit in targeting unify as a potential
bottleneck. Unifying a LAMMPS dataset with 50,000,000
rows and 34,000 nodes with another dataset of roughly equiv-
alent size takes one hour and 38 minutes. Even when unifying
smaller datatsets (100,000 rows and 1,000 nodes in the CCT),
the unify operation is notably slow, consuming 30 seconds.

Unify’s runtime is dominated by the time spent updating
the DataFrames. However, in contrast to HPCToolkit, slow-
downs are spread out among several pandas library opera-
tions in Hatchet’s internal DataFrame management function,



1 gf1 = GraphFrame( ... )
2 gf2 = GraphFrame( ... )
3 gf1.unify(gf2)

Fig. 9: An example of Hatchet’s unify operation. The left graph
and middle graph are unified by traversing both graphs and
adding any nodes that exist in one graph but not the other to
the result. The result is a single unified graph shown on the
right. The DataFrame of the GraphFrame object calling unify
contains a new _missing_node column identifying which
nodes were exclusive to each graph (denoted by an L or R).

_insert_missing_rows. Our initial performance en-
hancements involved tweaking existing code to follow pandas
conventions. We replaced assignment of values in DataFrames
in C-like loops for Python lists or NumPy arrays that are
then assigned to a pandas DatatFrame column. Both native
Python and NumPy handle single-element array access and
their array/list creation significantly better than pandas. This
optimization provides some marginal speedup and reveals a
need to integrate Cython for more substantial performance
gains.

Another bottleneck in unify is the pandas isin method,
called by the _insert_missing_rows function. This
particular method takes an argument of a list, NumPy array
or pandas Series, and returns a boolean mask with a true
or false for each element in the passed array. This mask
indicates each element’s presence in the calling DataFrame.
For DataFrames of over 1,000,000 rows, common for most of
our test datasets, pandas falls back to NumPy’s isin function-
ality, which combines np.unique for sorting, and a binary
search for determining membership. The isin operation does
not perform especially well with lists of complex objects, such
as the nodes used by Hatchet.

To improve the slowdown in pandas’ isin, we imple-
mented a more specialized function in Cython. Hatchet’s
specific isin function is directly optimized for Hatchet’s
data and designed to use as few columns as possible. By
using Cython, we reduced overhead introduced by superfluous

calls through pandas to NumPy, and into NumPy’s various
libraries. Furthermore, we pre-process our complex array of
“node” objects into a sorted array of integer node IDs. This
fundamental array can be quickly iterated over and with lower
memory overhead. We implemented the isin function itself
as a binary search inside of a loop over the searched-for array
of elements. We further sped up this binary search by adding
an early stopping condition: if we have previously visited the
current node ID, then copy the prior results to this one and
forego the search. This optimization ensures that the number
of binary searches performed is bound by the number of nodes
and not the number of rows.

There is very little opportunity for a critical spot op-
timization like Hatchet’s custom isin function. However,
removing multi-indexes resulted in another 25% speedup over
the order-of-magnitude speedup gained from prior optimiza-
tions. Hatchet leverages multi-indexes comprised of nodes,
processes, and threads to provide a meaningful and unique
index for each row in its DataFrame. Compared to single
indexes, multi-indexes introduce a noticeable overhead to
standard pandas operations like concat or even assignment
of a new column. Although the source of this overhead is
not abundantly clear, the use of multi-indexes apparently
introduces a layer of calls through the “multi” library in
pandas. By removing the multi-index, we eliminated this layer
of calls to “multi” and reduce the slowdown observed with
many pandas methods.

E. Evaluation of Performance Improvements

To measure the impact of our optimizations to the unify
method, we collected the runtimes produced by unifying
two similar GraphFrames produced from the same set of
HPCToolkit profiles we used to profile Hatchet’s HPCToolkit
reader. For our performance study, we unify two HPCToolkit
profiles for the same application, each using a different MPI
implementation. The performance results, averaged over five
trials are shown in Fig. 10. Because this experiment required
pairs of datasets per run (i.e., one profile using MVAPICH and
the other using Spectrum MPI), there are two fewer data points
in this figure as compared to Fig. 8. The two missing profiles
were only collected with MVAPICH or Spectrum MPI but not
both, so they were omitted from our performance study.

For smaller datasets, we saw a reduction in runtime from 30
seconds to approximately 1 second. For mid-sized DataFrames
containing millions of rows, unify’s execution time went
from minutes down to tens of seconds. For very large datasets,
unify’s runtime went down from greater than an hour to
only a few minutes. The primary contributor to the order-of-
magnitude speedup between our pre- and post-optimization
is Hatchet’s Cythonized, custom isin function. The simi-
larity in the trends of our pre- and post-optimization run-
time measurements speaks to the similarity of the underly-
ing functionality which drives NumPy’s isin method and
Hatchet’s. We attribute the substantial speedup to a reduction
in overhead from Python function calls, memory management,
bounds checking, and reduced space requirements. However,



Fig. 10: Log-log plot showing the pre- and post-optimization
performance of the unify operation as the size of the dataset
increases.

no algorithmic advantage exists like that produced by our
HPCToolkit reader optimizations.

F. Performance Improvement of Common Workflows

A simple workflow for Hatchet is depicted in Fig. 11.
In this workflow, a user reads in two HPCToolkit profiles,
perhaps collected at two different levels of concurrency or
varying the underlying MPI implementation. A user then
uses one of Hatchet’s algebraic operators to make a quick
comparison between the two runs, storing the result in a new
GraphFrame. Before doing the optimizations discussed in this
section, this program would take fourteen hours to compare
two HPCToolkit profiles collected from a large program run
on 512 ranks. After integrating the optimizations detailed in
this section, the overall runtime for analyzing large datasets
has been significantly reduced. The runtime for this workflow
has been reduced to ten minutes and thirty seconds for the
same large profiles (80× improvement).

1 gf1 = GraphFrame.from_hpctoolkit( ... )
2 gf2 = GraphFrame.from_hpctoolkit( ... )
3 gf3 = gf1 - gf2

Fig. 11: Simple workflow using the Hatchet library. Two
similar HPCToolkit datasets are read in to Hatchet, and we
compute the difference in their metrics. With optimizations,
we reduced the time for executing this workflow from 14 hours
to 10 minutes and 30 seconds.

VII. RELATED WORK

There is a wide variety of profilers that can collect call
graphs or call paths for post-hoc analysis [2]–[5], [22],

[23]. Many of these profilers also provide visualization tools
for viewing calling context trees (CCT), including Tau [4],
HPCToolkit’s HPCViewer [24] and HPCTraceViewer [25],
CallFlow [26], [27], Cube GUI [28], and flame graphs [29].
All of these profilers support their own data format, and most
visualization tools provide a custom GUI interface for viewing
the call path. While some tools are capable of importing data
from other tools, there is a lack of tools with a programmable
interface for automating interactions with the profile data. With
Hatchet, we develop a canonical data format for profile data, so
that tdata from several popular profiler tools can be analyzed
with Hatchet. Additionally, Hatchet provides interfaces to
automate the performance analysis of call path data, so users
do not have to learn new data formats or visual interfaces.

Within the tools community, there is an effort to leverage
a database for storing data and to provide their own language
for interacting with the data. PerfExplorer [30], for example,
provides its own database, a GUI interface, and a custom data
format known as PerfDMF [31]. Similarly, Open|SpeedShop
uses an SQL database and its own GUI interface. The work
most closely related to Hatchet is differential profiling, which
demonstrated the benefits of computing the difference between
two call trees to pinpoint performance bottlenecks [32], [33].
To expand on this idea and to enable analysis of larger
profiles, Tallent et al. extended HPCToolkit to include derived
metrics [34], [35]. Since Hatchet is built upon the pandas
data analysis library [8], [10], it provides a number of data
manipulation APIs that are performant on large tabular data.

VIII. CONCLUSION AND FUTURE WORK

Analyzing performance and pinpointing bottlenecks in par-
allel programs are important to guide developers in their opti-
mization workflow. It is a significant challenge to effectively
analyze the performance of complex programs that contain
tens of thousands of lines of code, resulting in large dynamic
calling context trees or call graphs. In this paper, we provided
an overview of four different efforts to enhance Hatchet’s
usability and performance.

We introduced Hatchet’s new query language to enable
users to specify call path patterns for filtering the graph. We
demonstrated Hatchet’s new interactive visualization capabili-
ties in Jupyter, enabling users to drag and select a subtree to
filter the graph. We have also improved the functionality and
information displayed using Hatchet’s tree-to-text renderer. We
provided an overview of new APIs that have been added to
Hatchet’s analysis toolbox. Lastly, we discussed different op-
timizations to Hatchet’s existing APIs and showed significant
speedups at large scale.

In the future, we plan to add functionality to save Hatchet’s
GraphFrame to disk, enabling users to save intermediate
GraphFrames periodically throughout the analysis process.
For large datasets that may take a significant amount of
time to read in, this capability will significantly improve the
analysis workflow with Hatchet, since analysis can start from
an intermediate step. We also plan to explore options that will
enable use of parallel frameworks for analyzing Hatchet data.
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