
Resource Utilization Aware Job Scheduling to
Mitigate Performance Variability

Daniel Nichols†, Aniruddha Marathe∗, Kathleen Shoga∗, Todd Gamblin∗, Abhinav Bhatele†

†Department of Computer Science, University of Maryland, College Park, Maryland 20742 USA
∗Lawrence Livermore National Laboratory, Livermore, California 94551 USA

E-mail: †dnicho@umd.edu, bhatele@cs.umd.edu, ∗{marathe1, shoga1, tgamblin}@llnl.gov

Abstract—Resource contention on high performance computing
(HPC) platforms can lead to significant variation in application
performance. When several jobs experience such large variations
in run times, it can lead to less efficient use of system resources.
It can also lead to users over-estimating their job’s expected
run time, which degrades the efficiency of the system scheduler.
Mitigating performance variation on HPC platforms benefits end
users and also enables more efficient use of system resources.

In this paper, we present a pipeline for collecting and analyzing
system and application performance data for jobs submitted over
long periods of time. We use a set of machine learning (ML)
models trained on this data to classify performance variation
using current system counters. Additionally, we present a new
resource-aware job scheduling algorithm that utilizes the ML
pipeline and current system state to mitigate job variation. We
evaluate our pipeline, ML models, and scheduler using various
proxy applications and an actual implementation of the scheduler
on an Infiniband-based fat-tree cluster.

Index Terms—performance variability, data analytics, machine
learning, prediction models, scheduling

I. INTRODUCTION

Performance variability has become a significant problem
for end users, especially as high performance computing (HPC)
systems grow in scale and complexity. It refers to the variation
in performance (execution time) observed when a given
executable is run with the same input parameters multiple times
on an HPC system. Users may observe several times worse
performance than expected for jobs submitted at different times
that are otherwise identical. This can happen due to operating
system (OS) noise or contention for shared resources such as
the network or filesystem [1], [2]. Performance degradation
negatively affects the end user as well as the operational
efficiency of the system.

When faced with performance variability, users are unable
to estimate run times for their jobs accurately, and hence may
request nodes for longer times than may be required. Most
HPC systems use batch schedulers such as Slurm [3] and
LSF [4] to run jobs and assign allocated resources to them.
These batch schedulers require a run time limit provided by the
user that serves as an upper bound on the duration the job will
be allocated resources. When the end user cannot predict the
total run time of their application due to large variances, they
will often over-estimate total job time input to the scheduler,
which may result in longer queue wait times [5]. On the other
hand, if the user underestimates performance degradation, their

application may be terminated prematurely resulting in loss of
job progress. Both these situations adversely affect resource
utilization as well as job throughput. In addition, variability also
makes it challenging to analyze the performance bottlenecks
in a parallel application, and study the impact of performance
improvements made to a code.

The overall operational efficiency of the HPC system also
suffers due to performance variability as jobs take longer to
complete on average. This results in fewer jobs being completed
over time and causes the system’s throughput to diminish.
Additionally, the scheduler receives less realistic time estimates
from users which inhibits its scheduling capability. Hence, it
is important to tackle the performance variability problem not
just at the individual user level, but at the system level.

With storage becoming relatively inexpensive, the amount
of system related data being logged has increased considerably.
Software such as the Lightweight Distributed Metric Service
(LDMS) [6] are being used to collect and aggregate multiple
data streams from system hardware and software on HPC
systems. We believe that such system data holds clues about
the performance variability of individual jobs. Moreover, we
hypothesize that past historical data can give us a reasonable
indication of the performance of jobs in the near future.

In this paper, we use historical job information and system
monitoring data to accurately predict if a job in the scheduler
queue will experience variation if scheduled right away. We
observe that ML models trained on historical data for control
jobs perform exceedingly well in predicting if a job in the queue
will experience variation. Our models obtain an F1 score of 0.95
in cross-validation. We use these trained models as an input to
the job scheduler to influence scheduling decisions with a goal
to reduce variability. Predictions from the trained ML models
are used by the scheduling algorithm to delay scheduling of
certain jobs in the queue if their run time may vary significantly.
We design and implement an end-to-end system, which we call
the Resource Utilization aware Scheduler for HPC (RUSH in
short), for collecting application and system data, accurately
modeling and predicting application variation, and intelligent
adaptive scheduling based on such predictions.

Using real workloads and an implementation of our schedul-
ing algorithm on a large allocation of the Quartz cluster at
LLNL, we show that RUSH effectively reduces the variation
and maximum run time of applications without significantly

affecting makespan or mean queue time. We see up to 5.8%
improvement in maximum run time and no performance
outliers. In our experiments, we see the average number of
runs experiencing variation drop from 17 to 4 using RUSH.
Additionally, we show that our ML model and scheduler can
generalize to applications not included in its training data as
well as different inputs for the same applications.

Our work makes the following important contributions:
• We create a pipeline for collecting longitudinal job

performance data.
• We train machine learning models using system monitor-

ing data to accurately predict the occurrence of variation
for an application.

• We propose a new resource utilization aware scheduling
algorithm that reduces application variation and lowers
the maximum run time.

• We implement our scheduler and run it on a large
allocation over several different workloads to show its
actual improvement.

• We show that our scheduling algorithm generalizes to
applications its ML model has never seen.

II. RELATED WORK

In this section, we discuss related work on identifying and
mitigating performance variability. We also discuss previous
work on intelligent job scheduling.

A. Analyzing System Monitoring Data

The recent availability of extensive monitoring data on HPC
systems has led to numerous studies looking at analyzing
this monitoring data and studying longitudinal patterns. These
studies try to identify performance trends and discover their
root causes. A recent work [1] uses performance counters from
the duration before a job runs to study the root causes of
performance variation. Another work [7] uses performance
counters to model expected run time of proxy applications and
assess the quality of future runs.

B. Mitigating Performance Variability

Existing work [8], [9], [2], [1], [10] has extensively studied
the causes of performance degradation and the degree that it
hinders application performance. Recent work has looked at
utilizing network control mechanisms and application aware
machine learning to mitigate network contention [11]. Another
approach shows that throttling messages in flight per-core can
significantly reduce congestion and increase application per-
formance [12]. This work also prescribes proactive congestion
mitigation. Meanwhile, [13] looks at monitoring network health
with “canary” jobs to prevent variability due to I/O contention.

C. Intelligent Job Scheduling

Previous work [14], [15], [16], [17] has used machine
learning to predict how reliable user provided run times are and
how much slowdown running a particular job will incur. These
works use information provided in the job submission script
and historical job log data to choose a scheduling strategy or

queue order. Additionally, these works evaluate their models
using simulations based on application trace and job log data.

Naghshnejad et al [14] propose a scheduling policy based
on a meta-learning technique that predicts the reliability of a
users predicted run time. This confidence is utilized to do more
aggressive backfilling. Carastan-Santos et al [15] use historical
job log data to similarly account for inaccurate user predictions.
Additionally, this work uses a simulated environment and non-
linear regression models to find optimal utility functions for
scheduling workloads.

There is also existing work that uses current system perfor-
mance to schedule jobs [18]. This work uses reinforcement
learning to gradually learn an optimal scheduling policy with
a weighted sum of makespan and queue time as an objective.

III. DATA COLLECTION AND MODELING

Previous work [13] that used I/O performance predictors
has shown that using current information about the file
system to delay scheduling of I/O-intensive jobs can improve
resource utilization. This shows that the relative health of
shared resources is a meaningful predictor in determining if
an application will experience performance variation in the
near future. It also shows that delaying the execution of an
application when shared resources are congested can lead to less
variation and higher resource utilization. Thus, we hypothesize
that deploying a resource utilization aware scheduler will also
improve these two metrics.

An adaptive job scheduler would require online knowledge of
system health and its relationship with application performance.
Existing works have shown that system monitoring data can
provide this meaningful insight into the health of shared
resources (see Section II-A). Moreso, [7] shows that this data
in conjunction with historical runs from proxy applications
can accurately predict their relative performance. With this
information available apriori, the job scheduler can alter its
queue order to prevent variation and further congestion.

Thus, we collect system data, shared resource benchmarks,
and proxy application profiles over time to build statistical
models to be used in our scheduling algorithm. Below, we
present the data used in our ML pipeline as well as our
collection methodology. All of the data was collected on the
Quartz system at LLNL. Quartz is a fat-tree cluster with 2,988
Intel Xeon E5-2695 compute nodes, connected by a Cornelis
Networks Omni-Path fabric.

A. System Monitoring Data from the HPC Cluster

Recent years have seen the growth of software stacks to
collect and analyze system data. We utilize these to gather infor-
mation about the state of the machine as proxy applications run.
With this data we can infer causes of performance anomalies
and predict future occurrences with statistical models.

We include two sources of system counters in our data:
sysclassib and lustre client. Sysclassib is a table of counters
containing values for the endpoint traffic such as the xmit rate
and recv rate. The lustre client table of counters contains the
number of system calls to the Lustre parallel filesystem as

 1

 2

 3

 4

 5

 6

 7

 8

Nov 12 Nov 19 Nov 26 Dec 03 Dec 10 Dec 17 Dec 24 Dec 31

R
el
at
iv
e
Pe
rf
or
m
an
ce

Kripke
AMG
Laghos
SWFFT
sw4lite
LBANN

PENNANT

Variability in performance of proxy applications over time

Fig. 1. Observed variability in the performance of proxy applications run in the production batch queue of Quartz at LLNL over a period of two months in
2020. Performance is relative to the lowest execution time per application. Several applications see over 2× performance variation and some even up to 14×.
(Several data points over 8× not shown in the plot.)

well as the amount of data being written/read. These data are
consistently collected by LDMS, which writes the aggregated
data into Cassandra tables on the LLNL Sonar system. Each
sample in the table is indexed on the hostname of its source
node and the timestamp from when it was recorded.

We utilize aggregate data points in training rather than
temporal data (see Section III-D). These aggregate data points
are calculated by aggregating counter values over some
duration before a job is run. In our training data we use
five minutes as the duration. The counters are aggregated
via minimum, maximum, and mean and, thus, each counter
column becomes 3. For example, the xmit_rate counter
in sysclassib becomes max_xmit_rate, min_xmit_rate,
and mean_xmit_rate. This data is also aggregated over
compute nodes as it is recorded on each node. In our dataset
we include the aggregates over both all compute nodes and the
nodes exclusive to the job being run, so that we can compare
the results from training the ML models over data from the
entire machine versus the nodes exclusive to each data sample.

B. Proxy Applications Used in Control Jobs

This system data provides insights into the state of the
machine, while proxy applications can provide insight into how
applications perform on that machine. Proxy applications are
simpler programs that mimic the typical workload of a larger
scientific code. As a result, they are ideal for generating data
that is representative of historical workloads of HPC systems.
We run seven proxy applications at frequent intervals to
collect performance data: Kripke [19], AMG [20], Laghos [21],
SWFFT [22], PENNANT [23], sw4lite [24], and LBANN [25].
These applications represent a range of computational and
communication patterns in a variety of scientific domains.
Each was compiled with the default build settings in their
build documentation using the system intel compiler.

We submitted jobs for each proxy application two to three
times a day on the cluster from August 2020 to February
2021 with each job being run at various times in the day.
Each application ran on 16 nodes using 512 cores in total.

All of the applications use MPI for distributed memory
parallelism and run in CPU only mode. Each run was profiled
with HPCToolkit [26]. We use Hatchet [27] to read in the
HPCToolkit profiles, and extract the inclusive run time of the
main compute region in each code. Figure 1 shows the variation
experienced by each application between November 12th, 2020
and December 31st, 2020 relative to each application’s mini-
mum running time. In mid-December, there was a significant
spike in variation in all applications.

While all of the applications experienced some degree of
variation, they may have different sources of this variation
from their types of workload. Thus, the type of workload
is included in the dataset as a one-hot encoded vector over
compute, network, and I/O intensive. For the training data we
hand selected these values. However, in production this data
needs to be provided accurately to the scheduler. This can be
given by the user, empirical methods, or binary analysis.

C. Benchmarks Used to Monitor System Health

Before and during proxy application runs we collected
several metrics related to the health of the system as well
as the performance of the job. Right as each job is scheduled
we ran two MPI benchmarks with mpiP to gather information
about the network health. These benchmarks are used to offer
some information to the ML model as to how congestion is
currently affecting running applications.

The first benchmark is a simple ring routine with send/recv
that passes around a 100MB token for ten iterations. The second
calls AllReduce on 100MB of random data for five iterations.
Message sizes and iteration counts for these benchmarks were
picked empirically such that there was sufficient variance for the
ML models to learn from, but not enough to cause significant
communication overhead.

Using mpiP we record the time spent waiting on the blocking
Send, Recv, and AllReduce calls on each node. For the dataset
we record the minimum, maximum, and mean of each of these
values across used nodes. This becomes nine features in each
data point.

D. Input to the Machine Learning Models

Each of these application runs becomes a sample in the
final dataset. The input features for each sample consist of
the minimum, maximum, and mean of every counter in the
sysclassib and lustre client tables, the user provided application
type label, and the nine aggregated benchmark results. Finally,
each sample has its run time and z-score as output labels. The
resulting dataset and its features are presented in Table I.

TABLE I
DESCRIPTION OF DATA SOURCES AND THE NUMBER OF

COUNTERS/FEATURES DERIVED FROM THEM FOR TRAINING THE ML
MODELS.

Input source # Counters # Features Description

sysclassib 22 66 InfiniBand counters

opa info 34 102 Omni-Path switch
counters

lustre2 client 34 102 Lustre client metrics
MPI benchmarks 3 9 Execution time
Proxy applications - 1 Compute Intensive

- 1 Network Intensive
- 1 I/O Intensive

This collected data is designed to encapsulate the machine
state during an application run and the relative performance of
that run. The goal of the ML models is to analyze the machine
state data and basic information about a job and predict if it
will experience variation. Several recent works have explored
using various models to learn over system data [28]. We find
static models trained on aggregate statistics to work well for
our purposes.

IV. RUSH: RESOURCE UTILIZATION AWARE SCHEDULER
FOR HPC

We now present the two main components of RUSH: an
ML-based variability predictor, and a model-based adaptive
job scheduling algorithm, and also describe the design of the
entire pipeline. Figure 2 highlights how each component of
the pipeline fits together and their input/outputs.

Fig. 2. Pipeline Overview. The ML model is trained offline on historical jobs
and system data. Optimal features are selected and a trained model is exported.
This trained ML model, current system data, and submitted jobs are provided
as input to the job scheduler that, in turn, decides a new order for scheduling
jobs and mapping them to system resources over time.

A. Variability Predictor Module

The first module in the RUSH pipeline uses system and
control job data to predict if variation will occur from running

a job on the current system state. There are three inputs
to this module: system counters from Sonar, profiles from
longitudinal runs of proxy applications, and timings from
the MPI benchmarks. Within this module feature and model
selection are done first followed by training and exporting the
chosen model and features.

The ML models in the first component use the input data
as described in Section III. We set up the ML problem as a
classification task with the goal of classifying the occurrence
of variation given the system and benchmark data. The input
to this model consists of the 282 features listed in Table I.
For model and feature selection we use binary classification
and set the label of each data as 0 or 1. The first label, 0,
is assigned when an application’s run time is less than 1.5
standard deviations of its mean run time. This signifies no
variation. On the other hand, we assign a label of 1 when the
run time is greater than 1.5 standard deviations from its mean.
These variations are computed per-application using the mean
and standard deviation for each application’s run times, but
the model is trained on data from all applications. Instead of
arbitrarily selecting an ML model we train a variety of models
and use their F1 scores to to compare their performance (see
Section VI-B).

The set of classifiers used are standard models and we use
the best performing in the pipeline (see Section V) based on
F1 score. The models used are Extra Trees, Decision Forest,
K-Nearest Neighbors, and AdaBoost. Each is trained using
stratified cross validation to preserve the imbalance of the data.
To cross validate we split the data using six applications for
training and one for validation. This is performed over every
possible partitioning.

Features are selected after model selection using recursive
feature elimination. Features are eliminated recursively and
the set with the highest F1 score are kept. For the Extra Trees
and Decision Forest models, which have metrics for feature
importance, the least import features are removed first during
feature elimination.

After selecting the model and feature set the second
component outputs the trained ML model that can be used
offline. The chosen model is trained using the same data and
k-fold cross-validation. However, this model is trained on three
output classes: no variation, little variation, and variation. Here
the variation label stays the same while the no variation label
is assigned when an application’s run time is less than 1.2
standard deviations from its mean run time. Little variation is
when the application’s run time is between 1.2 and 1.5 standard
deviations of its mean run time. These labels are chosen based
on our observations of application performance behavior.

B. Model-based Adaptive Job Scheduler

The second component of RUSH is an intelligent job
scheduler that uses the models trained by the variability
predictor as input. The scheduler has three inputs: the trained
ML model, job queue, and systems data. It uses the ML model
with the systems data as input to implement a scheduling policy
and map jobs from the queue to system resources.

The proposed scheduler utilizes predictions provided by the
ML model to delay scheduling of jobs that will experience
variation. We do this by running the ML model on the current
system counters whenever a new job is about to be scheduled.
If the model predicts variation for this job we skip over it and
look at the next one in the queue. The delayed job remains at
the top of the queue and will be the first to be considered for
scheduling next time resources become available.

Our job scheduling modifications are general enough that
they can be used to modify other existing policies. For example,
we show that we can easily modify the FCFS+EASY scheduling
algorithm presented in Algorithm 1. The main and backfilling
policies can be replaced with other queue ordering policies.
One common example is Shortest Job First or SJF. This allows
RUSH to utilize the benefits from other optimal queue ordering
policies assuming they work by statically re-ordering the queue.

Algorithm 1 Scheduling Algorithm. This standard algorithm
queues jobs using policy R1 and uses EASY to backfill smaller
jobs. Start(·) is used to launch jobs when resources become
available.

Input Q← queue of jobs
M ← ML model
S ← current machine state
SkipTable← Count of times skipped for each job
R1 ← Queue ordering policy
R2 ← Backfill ordering policy

1 sort Q according to R1

2 for job j ∈ Q do
3 if j can be started currently then
4 pop j from Q
5 Start(j,Q,M, S,SkipTable)
6 else
7 Reserve j at earliest possible time
8 L← Q \ {j}
9 sort L according to R2

10 for job j′ ∈ L do
11 if j′ can be started currently without delaying reservation

of j then
12 pop j′ from Q
13 Start(j′, Q,M, S,SkipTable)
14 end if
15 end for
16 break
17 end if
18 end for

This algorithmic change only affects the job queue ordering.
It is agnostic towards resource mappings and network topology.
These can be accounted for in the start function when jobs are
being launched or by a separate software system. Therefore, the
proposed algorithm only needs to modify the Start(·) function
as shown in Algorithm 2. This function takes care of putting
jobs back on the queue when they are being delayed.

However, continually delaying jobs can lead to starvation.
To prevent job starvation the modified schedule also includes
a hard limit on the number of times a job can be skipped over.
In our experiments we set this to 10, but the threshold was
never met. This parameter could be extended to be per-job and

Algorithm 2 Modified Start(·) Function. This is called to
launch jobs when resources are available. This modified version
in RUSH puts jobs back on the queue if they will vary in
performance significantly.

Input j ← job
Q← scheduler queue
M ← ML model
S ← current machine state
SkipTable← Count of times skipped for each job

1 if SkipTable[j] < j.skip threshold and
M(j, S) ∈ variation labels then

2 SkipTable[j]← SkipTable[j] + 1
3 push j after front of Q
4 else
5 launch job j
6 end if

used to enforce priorities or even ignore the scheduling delay
entirely for certain jobs.

This leads us to the following design of the Start(·) function
in Algorithm 2. It first checks if a job j is past its skip threshold
(line 1). When j is past the threshold, then the and is short-
circuited and j will be run (line 5). If j is within its skip
threshold, then RUSH will evaluate the ML model M(j, S)
(line 1). Variation being predicted will lead to j being put back
on the queue (lines 2-3). Otherwise, j will be run (line 5).

V. IMPLEMENTATION

In its entirety, RUSH requires recording large amounts of
system data, training ML models, and modifying an existing
batch scheduler implementation. This section discusses how
these components of the pipeline were implemented.

A. Variability Predictor Implementation

To facilitate our scheduler, we utilize a data pipeline
(Figure 2) that controls running the proxy jobs, collecting
the performance and run time system data, and training the
ML models. This pipeline needs to be portable and efficient,
so that the same experiments and scheduler adaptations can be
used on other machines.

To make our pipeline portable we designed it entirely using
bash to control job launches and Python to collect and analyze
data. Jobs are launched using configurations from environment
variables and can launch using either LSF or Slurm based job
schedulers. Once the jobs run the data from these jobs are
aggregated and analyzed using Python.

In addition to portability the pipeline needs to be efficient
in its storage and analysis of large amounts of data. Collecting
32 HPCToolkit profiles per day can create several million files
in a short amount of time. To alleviate this storage burden we
only store database files from hpcprof-mpi in addition to
the hatchet dataframes of them.

Given a set of application runs we collect a unified dataset
depicted in Table I. To build contained datasets we query the
Sonar tables for aggregated LDMS data. We collect counter
information for the duration prior to a job running. In our tests
this was the five minutes prior to each proxy application’s run.

TABLE II
DESCRIPTION OF EXPERIMENTS RUN IN A SYSTEM RESERVATION OF 512 NODES OF QUARTZ TO COMPARE RUSH TO THE BASELINE.

Experiment Name Applications # of Jobs Description

ADAA All Data All Applications All 190 ML model trained on data from all running applications
ADPA All Data Partial Applications Laghos, LBANN, PENNANT 150 Subset of 3 applications running
PDPA Partial Data Partial Applications Laghos, LBANN, PENNANT 150 ML model trained on AMG, Kripke, sw4lite, SWFFT
WS Weak Scaling All 190 Jobs run on 8, 16, and 32 nodes – weak scaling
SS Strong Scaling All 190 Jobs run on 8, 16, and 32 nodes – strong scaling

The counters were reduced over this interval with the minimum,
maximum, and mean of each being included as a column in
the dataset. Next the profiling information, including the wall
clock time, is added into our table. This table is stored in a
Pandas dataframe, which is pickled and compressed for easier
use in the rest of the pipeline.

Prior to running experiments we train the ML models over
the collected data sets and select the best one based on their
F1 score and accuracy. At the end of the pipeline the models
are pickled and exported for use in the scheduler.

B. Job Scheduler Implementation

Using this exported model we modify the Flux [29] frame-
work to implement our scheduler. Flux is a job scheduling
software designed for HPC that integrates graph-based resource
modeling with traditional batch scheduling. This section details
how we implement our algorithm in Flux.
RUSH adds a scheduling policy within Flux to implement its

algorithm. This is done by adding a new “scheduling policy”
class to Flux. We extend the class queue_policy_fcfs_t,
which in turn extends the general queue_policy_base_t
class. Our subclass queue_policy_rush_t implements
the scheduling algorithm detailed in Section IV-B.

The RUSH implementation provides a modified function for
ordering the queue. It first orders the queue with R1 as FCFS.
When jobs are about to be run a Python script is first executed
that runs the ML model with the next job as input.

This Python script then reads the collected counter data,
runs the ML models, and provides its prediction to standard
output. Our implementation uses this to make a scheduling
determination as defined in Algorithm 2.

Jobs are matched to resources using Flux’s default algorithm.
Information about this mapping is captured implicitly in the
system counters. Thus RUSH can be utilized with any resource
mapping algorithm.

VI. EXPERIMENTAL SETUP

In this section, we describe the experiments and metrics
used to evaluate the ML models and the new job scheduler.

A. Scheduling Experiments

To test the effectiveness of our scheduler we designed
experiments to mimic typical workloads on an HPC system. We
then compare the proposed scheduling policy on this workload
with the default FCFS+backfilling scheduler as a control.

In order to create an HPC system-like environment we ran
all of the experiments within a fixed set of 512 nodes on Quartz.

These nodes lie in the same pod of the fat-tree cluster. The
nodes are allocated by the system Slurm scheduler as a single
job and we run Flux within this allocation to handle scheduling
jobs in the experiments.

To mimic a typical HPC workload we design several
experiments using the seven proxy applications listed in
Sec III-B. We setup a queue of jobs that takes between 30
and 50 minutes for all of them to run to completion. Each
job runs on 16 nodes with 512 processes. At the beginning of
the experiment we submit 20% of the jobs to the Flux queue
immediately and submit the rest uniformly over 20 minutes.
This mimics normal scheduling behavior where knowledge of
every job to be scheduled is not known apriori.

Since we ran on a single pod on the fat-tree, we used a
noise job that runs on 1/16th of the nodes in the experiment
that continuously sends variable amounts of all-to-all traffic on
the network. This allowed us to run fewer experiments as we
observed variation more frequently with the noise. To account
for other system noise we run ten trials of each experiment:
five with FCFS+EASY and five with RUSH.

We ran several different experiments to test how the
scheduling policy performed under different circumstances.
Table II highlights the experiments conducted within each
512-node reservation.

We first test the scheduling policy on all of the applications
in “ADAA”. This experiment runs all seven proxy applications
and uses an ML model trained on a dataset containing runs
from all seven applications.

To test the generalizability of the scheduler experiment
“PDPA” only runs three applications and uses the ML model
trained on the other four applications exclusively. We use
Laghos, LBANN, and PENNANT as the applications to run
and AMG, Kripke, sw4lite, and SWFFT to train the ML model.
Experiment “ADPA” runs the same applications, but uses the
full dataset for training. This serves as a control for “PDPA”.

The final two experiments, “WS” and “SS”, test how the
policy generalizes to different scales of the jobs. Both run all
of the applications and use an ML model trained on all of
the data. However, they run each application on 8, 16, and 32
nodes. “WS” uses weak scaling to change the input parameters
and “SS” strong scaling.

B. Metrics for Evaluating the ML Models

Before the scheduler is run in these experiments the ML
models need to be trained and exported. This section discusses

the metrics used to evaluate the success of the models in
predicting variation.

Performance variation is rare and, thus, the dataset is
imbalanced. There are significantly more samples with little
or no variation than there are samples with variation. This
means testing accuracy is not a useful performance metric. A
model that always predicts that no variation will occur would
still yield an accuracy greater than 90%, but not provide any
meaningful information to the scheduler. Due to this limitation,
we use precision and recall related metrics to evaluate the
success of our models. In particular, we use the F-measure (F1

score) to compare and find the best performing model.

F1 =
tp

tp + 1
2 (fp + fn)

where tp is the number of true positive predictions, fp the
false positives, and fn the false negatives. F1 score is a standard
measure for how well models predict imbalanced labels.

When comparing different models, we use the average F1

score from cross-validation. The F1 score was calculated for
the binary classification problem of variation vs no variation.

C. Metrics for Evaluating the Job Scheduler

We record different metrics that help us evaluate our new
job scheduler across multiple different axes of improvement.
Schedulers can provide improvement in several different areas,
each of interest to different parties in the supercomputing
eco-system. Providing reliability and high resource utilization
is important to system administrators, while end-users may
be more concerned with wait queue time and ease-of-use.
Additionally, the efficiency of the scheduler is typically crucial
to everyone.

Scheduler efficiency can be measured in terms of the
makespan, which is defined as the duration from the submission
of the first job to the end of the last job. The makespan describes
the amount of time it takes a scheduling policy to complete a
workload on a certain system.

However, some policies with better makespans may see
adverse performance in other areas. So we also record the
mean time in queue as well as the mean job variation per
application. The mean time in queue will show how delaying
jobs impacts the average time spent waiting in the queue. The
job variation will indicate to what degree RUSH successfully
mitigates run time variation.

VII. RESULTS

We now present our results from training the machine
learning models and the job scheduling experiments.

A. Prediction Accuracy of ML Models

Figure 3 presents the performance of different ML models
we experimented with based on their F1 scores. We see that
given the system data in Table I and longitudinal run time data
(see Section III-B), the ML pipeline described in Section IV-A
is able to accurately predict run time variation.

The high F1 scores show that the models can predict true
labels or instances of variation well. While all of them perform

 0

 0.2

 0.4

 0.6

 0.8

 1

AdaBoost DecisionForest ExtraTrees kNN

F 1
 S
co
re

All Nodes Job-only Nodes

Comparing F1 Scores for All vs. Job-only System Data

Fig. 3. F1 scores for different ML models. We see that the AdaBoost model has
the highest F1 scores. Additionally, we see that the models have comparable
performance even without access to full system data.

well in this regard, the AdaBoost classifier outperforms the
others. The results in the rest of the paper use Adaboost as
the classifier.

The models are also insensitive to data exclusivity. We have
two choices when aggregating data from the system. We can
either aggregate over all the nodes on the system or only
over those nodes that are allocated to the jobs in the dataset.
When system data from only the job’s nodes are used, we
see comparable performance to training over all the nodes in
the system. This is an important performance component as it
allows the scheduler to only collect subsets of system data at a
time (from the nodes a job is going to be scheduled on) when
making scheduling decisions. This is a significant reduction in
data processing that allows the scheduler to aggregate counters
more frequently and efficiently.

B. Reduction in Application Performance Variability

The model accuracy results above confirm that we can use
the trained model to advise the job scheduler regarding whether
an incoming job will experience variation or not. Next, we
discuss results from the experiments described in Section VI-A
and how RUSH helps in reducing performance variation.

Figures 5 and 4 show the number of runs that experienced
variation in the first three experiments in Table II. Aver-
aged across the five repetitions of the ADAA experiment,
FCFS+EASY has between 1.5 and 3.5 runs on average per
application with significant variation (see Figure 5). Using
RUSH, this is reduced to between 0 and 1.5. The most variation
prone applications, Laghos and LBANN, have almost no
occurrences of significant variation when the RUSH scheduler
is used. This shows the ability of the scheduler to reduce
variation when its ML model has apriori knowledge of all the
applications being run.

Experiments ADPA and PDPA show that the variation
improvement also holds when the ML model has been trained
on a subset of the running applications. This is shown in Figure
4 where we see similar improvement when the ML model is
trained over the full dataset (left) versus a partial dataset (right).
Compared to ADAA, ADPA and PDPA show slightly higher

 0

 2

 4

 6

 8

 10

Laghos PENNANT LBANN

N
um
be
r
of

 jo
bs

 w
ith

 v
ar
ia
tio
n FCFS

RUSH + ADPA

Number of Occurrences of Variation (ADPA)

 0

 2

 4

 6

 8

 10

Laghos PENNANT LBANN

N
um
be
r
of

 jo
bs

 w
ith

 v
ar
ia
tio
n FCFS

RUSH + PDPA

Number of Occurrences of Variation (PDPA)

Fig. 4. There is only a slight increase in the number of applications experiencing variation when using the ML model trained on data from all of the
applications (left plot, ADPA) and separate applications (right plot, PDPA.)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

Lag
ho
s

AM
G

Kr
ipk
e

SW
FFT

PE
NN
AN
T

sw
4lit
e

LB
AN
N

N
um
be
r
of

 jo
bs

 w
ith

 v
ar
ia
tio
n FCFS

RUSH + ADAA

Number of Occurrences of Variation (ADAA)

Fig. 5. The number of runs that experience variation significantly reduces under
the proposed scheduler (RUSH) for the ADAA experiment when compared to
FCFS+EASY.

amounts of variation in both FCFS+EASY and RUSH. This is
due to the fact that Laghos and LBANN are the applications
with the most variation and now more instances of them are
running together than before. Pennant ends up having more runs
with variation on average in PDPA than ADPA in the RUSH
experiment. However, the increase is small in comparison to
the decreases in LBANN and Laghos.

Since fewer runs suffer from variation using RUSH, we also
expect the run times of each application to be more predictable.
Figures 6, 7, and 8 present the run time distributions in each
experiment. The run time distribution includes all of the runs of
each experiment in Section VI-A split by application. Figure 6
compares the run times of the proxy applications between
FCFS+EASY and RUSH scheduling policies for the ADAA
experiment. We observe that the maximum and mean run times
reduce for the most sensitive applications, Laghos, LBANN,
and sw4lite. The scheduling policy is able to successfully
reduce variation in most instances. This is shown by the smaller
ranges in run times and number of runs closer to the mean.

From these results we also see an improvement in the
maximum run time. This is likely the most important im-
provement from the perspective of an end-user as now they
have a tighter upper limit on their application’s running time.

 650

 700

 750

 800

 850

Laghos LBANN

T
im
e
(s
)

4.9%

4.0%

475

500

550

600

650

675

AMG Kripke SWFFTPENNANTsw4lite

FCFS
RUSH + ADAA

2.6%

2.4%

0.2%

-0.1%

5.8%

Variability in Application Performance (ADAA)

Fig. 6. Distribution of execution times for each application in the ADAA
experiment. RUSH reduces the maximum run time and the range of run times.

 650

 700

 750

 800

 850

 900

Laghos LBANN

T
im
e
(s
)

FCFS
RUSH + PDPA

5.0%

6.0%

 500

 520

 540

 560

 580

 600

Pennant

-0.3%

Variability in Application Performance (PDPA)

Fig. 7. Distribution of execution times for each application in the PDPA
experiment. The scheduler still performs well for applications where its ML
model has never seen their data.

As before, Laghos, LBANN, and sw4lite, all experience the
largest improvement in terms of maximum run time.

In Figure 7 we see that RUSH performs just as well
when it has partial data versus full data. PDPA has similar
improvements in maximum run time when compared with
ADAA. In our experiments we find that ADPA, the control for
PDPA, shows similar results to ADAA for LBANN, PENNANT,

 600

 650

 700

 750

 800

 850

8 16
Laghos

32 8 16
LBANN

32

T
im
e
(s
)

1.9%

1.6%
2.2%

0.9%

4.1%
0.7%

 450

 500

 550

 600

 650

8 16
AMG

32 8 16
Kripke

32 8 16
SWFFT

32 8 16
PENNANT

32 8 16
sw4lite

32

FCFS
RUSH + WS

1.4%

0.9%
1.5%

0.6%
0.9%

1.6%

1.6%

1.0%
0.6% 0.7%

0.2%
0.0%

3.3%

2.0% 0.0%

Variability in Application Performance (WS)

Fig. 8. Distribution of execution times for each application in the Weak Scaling (WS) experiment.

and Laghos. We can conclude that having access to historical
runs for an application prior to scheduling is not necessary to
reduce its maximum run time. The generalizability of RUSH
is important, since this data is typically not readily available.

Figures 8 and 9 present the experiments where the applica-
tions are run under weak and strong scaling respectively. In
the WS experiment, RUSH reduces the spread of run times and
the maximum run time more in the 8 and 16 node count runs.
This is likely due to more communication in the 32 node runs
and bias in the ML model from only training on 16 node runs.

Figure 9 shows the percent improvement in maximum run
time when the applications are strong scaled. We see that the
scheduler still provides improvement even as the amount of
work per node decreases. For each application the maximum
run time is reduced and sw4lite and LBANN show the greatest
improvements. In experiments WS and SS, there were no
applications with increase in the maximum run time. The run
time distributions either stayed the same or, more often, reduced
in range. This displays the ability of RUSH to extend to other
node counts even under different types of scaling.

 0

 1

 2

 3

 4

 5

8 16 32
Laghos

8 16 32
AMG

8 16 32
Kripke

8 16 32
SWFFT

8 16 32
PENNANT

8 16 32
sw4lite

8 16 32
LBANN

Pe
rc
en
t
Im
pr
ov
em
en
t
in

 M
ax

 R
un

 T
im
e

Variability in Application Performance (SS)

Fig. 9. Percentage improvement in the maximum run time for each application
in the Strong Scaling (SS) experiment when comparing RUSH with the baseline.

C. Scheduler Evaluation

In addition to mitigating variation for individual users,
we also want to ensure that the scheduler does not impact

system throughput negatively. We start with comparing the
makespan for the two scheduling policies in Figure 10. For
each experiment, the makespan is improved by between 18
and 66 seconds. The variation in each application has been
reduced without burdening the makespan significantly and in
some cases improving it. By reducing the expected run time of
some of the applications, RUSH reduces the duration of some
of its jobs. In cases where a significant amount of variation is
prevented, the scheduler will have a lower makespan.

 0

 10

 20

 30

 40

 50

 60

 70

ADAA ADPA PDPA WS SS

M
ak
es
pa
n
(m
in
s.
)

Experiment

FCFS

46.1 44.5 44.4
50.1 50.1

 RUSH

45.8 44.0 44.0
49.7 49.0

Comparison of Makespan

Fig. 10. Scheduler makespans. For each experiment this figure displays
FCFS+EASY and RUSH’s makespans averaged over their five trials. RUSH
outperforms FCFS+EASY in each experiment.

Figure 11 shows the differences in wait times for each
application for the ADAA experiment. This plot only includes
wait times for the 80% of applications that were not placed in
the queue at the start of the experiment. In the case of RUSH, the
wait times are spread out and show both favorable and worse
performance compared to the FCFS+EASY scheduler. The
average wait time went up for variation intensive applications
such as Laghos, sw4lite, and LBANN. This is due to them
being pushed back in the queue more often than others. Both
Kripke and AMG got through the queue faster on average
in the RUSH scheduler. Though the wait times vary, they are
always within a minute. This less than a percent increase in
wait time is insignificant, especially compared to the reduction
in variation that can be obtained at its cost.

 0

 5

 10

 15

 20

Lag
ho
s

AM
G

Kr
ipk
e

SW
FFT

PE
NN
AN
T

sw
4lit
e

LB
AN
N

W
ai
t T
im
e
(m
in
s.
)

FCFS

12.2 12.3 12.1 12.6 12.3 12.1 12.4

RUSH + ADAA

13.1 12.5 11.8 11.6
12.9 12.8 13.1

Comparison of Average Wait Time

Fig. 11. Average wait time per application in experiment ADAA. RUSH has
a larger range of wait times and is often higher.

VIII. CONCLUSION

Performance variability arising from resource sharing be-
tween concurrently running jobs on HPC systems can lead to
inefficiencies for jobs and the system as a whole. In this work,
we have shown that historical run information and system
monitoring data representing the current system state can be
used to predict the variation a job may incur if scheduled right
away. Exploiting this result, we have developed a resource
utilization aware scheduling algorithm called RUSH that uses
machine learning models to predict the future performance
of incoming jobs. We demonstrate that RUSH can be used
to modify the default job schedule to mitigate variation
and even improve overall system utilization. In practice, an
implementation of this policy could improve utilization as well
as allow users to run code with more predictable run times.

In the future, we will continue investigating how this apriori
knowledge of performance variation can be integrated with
schedulers and other system mechanisms to improve resource
utilization. We will also further explore latent performance
metrics and their use in HPC-focused scheduling.

ACKNOWLEDGMENT

This material is based upon work supported in part by the
National Science Foundation under Grant No. 2047120. This
work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-825754).

REFERENCES

[1] I. J. Costello and A. Bhatele, “Analytics of longitudinal system monitoring
data for performance prediction,” 2020.

[2] A. Bhatele, J. J. Thiagarajan, T. Groves, R. Anirudh, S. A. Smith, B. Cook,
and D. K. Lowenthal, “The case of performance variability on dragonfly-
based systems,” in Proceedings of the IEEE International Parallel &
Distributed Processing Symposium, ser. IPDPS ’20. IEEE Computer
Society, May 2020.

[3] “Slurm workload manager,” 2020. [Online]. Available: https://slurm.
schedmd.com/documentation.html

[4] “Ibm spectrum lsf session scheduler,” 2021. [Online]. Available: https://
www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-session-scheduler

[5] D. Klusáček and V. Chlumskỳ, “Evaluating the impact of soft walltimes
on job scheduling performance,” in Workshop on Job Scheduling
Strategies for Parallel Processing, 2018, pp. 15–38.

[6] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, and T. Tucker, “The lightweight distributed metric
service: A scalable infrastructure for continuous monitoring of large scale
computing systems and applications,” in SC ’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2014, pp. 154–165.

[7] O. Aaziz, J. Cook, and M. Tanash, “Modeling expected application
runtime for characterizing and assessing job performance,” in 2018 IEEE
International Conference on Cluster Computing (CLUSTER), 2018, pp.
543–551.

[8] F. Petrini, D. J. Kerbyson, and S. Pakin, “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q,” in Proceedings of the 2003 ACM/IEEE
conference on Supercomputing (SC’03), 2003.

[9] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There
goes the neighborhood: performance degradation due to nearby
jobs,” in Proceedings of the ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’13. IEEE Computer Society, Nov. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503247

[10] B. Li, S. Chunduri, K. Harms, Y. Fan, and Z. Lan, “The effect of system
utilization on application performance variability,” in Proceedings of
the 9th International Workshop on Runtime and Operating Systems for
Supercomputers, ser. ROSS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 11–18. [Online]. Available:
https://doi.org/10.1145/3322789.3328743

[11] A. Patke, S. Jha, H. Qiu, J. M. Brandt, A. C. Gentile, J. Greenseid,
Z. Kalbarczyk, and R. K. Iyer, “Application-aware congestion mitigation
forhigh-performance computing systems,” CoRR, vol. abs/2012.07755,
2020. [Online]. Available: https://arxiv.org/abs/2012.07755

[12] M. Luo, D. K. Panda, K. Z. Ibrahim, and C. Iancu, “Congestion avoidance
on manycore high performance computing systems,” in Proceedings of
the 26th ACM International Conference on Supercomputing, ser. ICS ’12.
New York, NY, USA: Association for Computing Machinery, 2012, p.
121–132. [Online]. Available: https://doi.org/10.1145/2304576.2304594

[13] M. R. Wyatt, S. Herbein, K. Shoga, T. Gamblin, and M. Taufer, “Canario:
Sounding the alarm on io-related performance degradation,” in 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2020, pp. 73–83.

[14] M. Naghshnejad and M. Singhal, “A hybrid scheduling platform: a
runtime prediction reliability aware scheduling platform to improve
hpc scheduling performance,” The Journal of Supercomputing,
vol. 76, no. 1, pp. 122–149, Jan 2020. [Online]. Available:
https://doi.org/10.1007/s11227-019-03004-3

[15] D. Carastan-Santos and R. Y. de Camargo, “Obtaining dynamic
scheduling policies with simulation and machine learning,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: Association for Computing Machinery, 2017. [Online].
Available: https://doi.org/10.1145/3126908.3126955

[16] M. Tanash, B. Dunn, D. Andresen, W. Hsu, H. Yang, and A. Okanlawon,
“Improving hpc system performance by predicting job resources
via supervised machine learning,” in Proceedings of the Practice
and Experience in Advanced Research Computing on Rise of the
Machines (Learning), ser. PEARC ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3332186.3333041

[17] E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving backfilling
by using machine learning to predict running times,” in SC ’15:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2015, pp. 1–10.

[18] D. Zhang, D. Dai, Y. He, F. S. Bao, and B. Xie, “Rlscheduler: An
automated hpc batch job scheduler using reinforcement learning,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’20. IEEE
Press, 2020.

[19] A. Kunen, T. Bailey, and P. Brown, “KRIPKE-a massively parallel
transport mini-app,” Lawrence Livermore National Laboratory (LLNL),
Livermore, CA, Tech. Rep, 2015.

[20] V. E. Henson and U. M. Yang, “Boomeramg: A parallel algebraic
multigrid solver and preconditioner,” Applied Numerical Mathematics,
vol. 41, no. 1, pp. 155–177, 2002, developments and Trends in Iterative
Methods for Large Systems of Equations - in memorium Rudiger Weiss.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0168927401001155

[21] V. A. Dobrev, T. V. Kolev, and R. N. Rieben, “High-order curvilinear
finite element methods for lagrangian hydrodynamics,” SIAM Journal
on Scientific Computing, vol. 34, no. 5, pp. B606–B641, 2012. [Online].
Available: https://doi.org/10.1137/120864672

[22] A. P. et al, “Swfft,” https://git.cels.anl.gov/hacc/SWFFT, 2017.
[23] C. R. Ferenbaugh, “Pennant,” https://github.com/lanl/PENNANT, 2016.
[24] “sw4lite,” https://github.com/geodynamics/sw4lite, 2017.
[25] B. V. Essen, H. Kim, R. A. Pearce, K. Boakye, and B. Chen,

“LBANN: livermore big artificial neural network HPC toolkit,”
in Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, MLHPC 2015, Austin, Texas,
USA, November 15, 2015. ACM, 2015, pp. 5:1–5:6. [Online]. Available:
https://doi.org/10.1145/2834892.2834897

[26] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance analysis
of optimized parallel programs,” Concurrency and Computation: Practice

and Experience, vol. 22, no. 6, pp. 685–701, 2010.
[27] A. Bhatele, S. Brink, and T. Gamblin, “Hatchet: Pruning the overgrowth

in parallel profiles,” in Proceedings of the ACM/IEEE International
Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’19, Nov. 2019, lLNL-CONF-772402. [Online].
Available: http://doi.acm.org/10.1145/3295500.3356219

[28] B. Schwaller, B. Aksar, O. R. Aaziz, E. Ates, J. M. Brandt, A. Coskun,
M. Egele, and V. J. Leung, “A machine learning approach to
understanding hpc application performance variation.” 10 2019. [Online].
Available: https://www.osti.gov/biblio/1642784

[29] D. H. Ahn, N. Bass, A. Chu, J. Garlick, M. Grondona, S. Herbein,
J. Koning, T. Patki, T. R. W. Scogland, B. Springmeyer, and M. Taufer,
“Flux: Overcoming scheduling challenges for exascale workflows,” in
2018 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS),
2018, pp. 10–19.

