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Abstract—High-performance computing system architectures
are evolving rapidly, making exhaustive data collection for each
architecture to build predictive performance models increas-
ingly impractical. Concurrently, the arrival of new applica-
tions daily necessitates efficient performance prediction methods.
Traditional data collection can take days or weeks, making
it more efficient for scientists to leverage existing models to
predict an application’s performance on new architectures or
use data from one application to predict another on the same
architecture. The growing heterogeneity in applications and
resources further complicates the exact matches needed for
effective knowledge transfer. This work systematically studies
various Machine Learning (ML) models to predict the relative
performance of new applications on new platforms using existing
data. Our findings demonstrate that few-shot learning using
a few samples significantly enhances cross-platform knowledge
transfer, multi-source models outperform single-source models,
and Large Language Models (LLMs)-generated samples can
effectively improve knowledge transfer efficacy.

Index Terms—Performance Modeling, Machine Learning, Few-
shot Learning, Large language models (LLM), Cross-platform
performance prediction

I. INTRODUCTION

Traditionally, performance modeling of an High Perfor-
mance Computing (HPC) application is conducted in a data-
driven manner by collecting many training samples from
applications running on multiple platforms. These models aid
in understanding application behaviors and predicting comple-
tion times, crucial for effective resource allocation in critical
simulations like vaccine development. However, this method is
platform-dependent and time-consuming, especially with the
arrival of a new platform every six months. To avoid spending
a long time on performance data collection, scientists often
predict application performance on new platforms instead of
data collection, saving time and resources.

However, the absolute performance of an application de-
pends on interactions with the OS, software stack, and hard-
ware. Existing supervised machine learning approaches [12,
14] require extensive data collection. We propose a com-
parative approach using machine learning to predict relative
performance, avoiding the need to measure common factors
like runtime and OS. Measurements include application pa-
rameters, machine characteristics, and dynamic interactions.
We define the relative performance of an application X on
platform B compared to platform A as XB/A.

This study systematically examines various ML techniques

for predicting XB/A. We assess the effectiveness of state-
of-the-art methods in two scenarios: (1) when at least one
application is profiled on all available platforms, facilitating
significant data collection efforts, and (2) when no training ap-
plication is profiled on all platforms, but each pair has at least
one profiled on both. Predicting relative performance based on
data from other applications resembles visual categorization
tasks such as object recognition and image classification [13].
If the source model can adapt using a few samples from the
test application during transfer learning, it is called a few-shot
learning approach [16]. While most literature focuses on zero-
shot learning, we hypothesize that adjusting the source model
with a few samples using few-shot learning can can enhance
the model’s generalizability.

Moreover, when training samples are scarce, we explore the
applicability of the LLMs to generate performance samples
to fill the gap to enable direct knowledge transfer across
applications. Specifically, in this paper, we investigate the
following research questions: (1) study the efficacy of sev-
eral regression-based ML techniques when a relatively large
number of labeled training samples are present in transferring
knowledge; (2) whether a source model built using multiple
applications’ data is more effective than a single application’s;
(3) study whether leveraging a few new samples from the tar-
get application helps to improve ML model’s efficacy further,
and (4) in the presence of data scarcity, if a Large Language
Model (LLM) can be used to generate data to alleviate the
need for further data collection. We measure the efficacy of
an ML model using the widely used Mean Square Error (MSE)
metric, which calculates how different predictions are from the
real values. MSE = 0 indicates a perfect prediction.

To summarize our contributions in this paper, we:
• Evaluate various ML approaches in predicting relative per-

formance across platforms with sufficient training samples.
• Propose using a multi-source modeling approach and few-

shot learning to enhance relative performance prediction
efficacy.

• Introduce a novel predictive modeling method using LLMs
to address data scarcity challenges.
Our unique HPC performance dataset comprises 3494

samples from running 6 applications (Laghos, Kripke,
SW4lite, TESTDFFT, miniVite, AMG) on three plat-
forms. Extensive evaluations with this dataset indicate that:
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Fig. 1: Overview of the two scenarios that our proposed
approach addresses.

(1) gradient-based modeling techniques perform well due to
consistent data distribution across applications when suffi-
cient training samples are present; (2) knowledge transfer
from multiple-application source models is more effective
than single-application models; (3) few-shot learning enhances
relative performance prediction; and (4) leveraging generative
AI, especially LLMs, to synthesize performance samples is
effective when limited training data is present.

II. METHODOLOGY
A. Problem Formulation

The problem of cross-platform relative performance predic-
tion can be formulated as a knowledge transfer problem in
ML, where a source model trained on measurements from
various applications collected on platforms A and B is used.
The source model predicts the performance of an application
X on platform B using its hardware performance counters
on platform A. Predicting relative instead of absolute perfor-
mance enables avoidance of common factors such as runtime,
OS, and software stack, which would otherwise necessitate an
excessive number of performance samples.

Assuming performance samples with labels are available
for a set of applications on platforms A and B, measurements
can encompass various factors like application details, machine
specifications, and dynamic interactions with the system. For
this study, hardware performance counters serve as features. In
a typical scenario, a source model built from these measure-
ments can predict an application’s performance on B using its
hardware counters on A. However, in cases of data scarcity
where no application was measured on both platforms, such a
direct source model cannot be constructed.

Mathematically, these two scenarios can be summarized as:
• Case 1: Measurements from at least one application are

available on both platforms, A and B. (AppA∩AppB ̸= ∅).
• Case 2: No measurements from common applications are

available on both platforms, A and B. (AppA∩AppB = ∅).
B. Case 1: Measurements from at least one application are

available on both platforms, A and B
Figure 1a shows what happens in Case 1. In Case 1,

let’s assume we have the hardware performance counter mea-
surements from n common applications, x1, x2, x3, ..., xn on
platform A, denoted by C

[x1,x2,x3,...,xn]
A . We also have the

execution times for these applications available on platforms

A and B, denoted by T
[x1,x2,x3,...,xn]
A and T

[x1,x2,x3,...,xn]
B . We

calculate the ground truth values of their relative performance

on B relative to A as T
[x1,x2,x3,...,xn]
B/A =

T
[x1,x2,x3,...,xn]

B

T
[x1,x2,x3,...,xn]

A

. In
this case, we can leverage supervised learning as well as trans-
fer learning approaches to predict the relative performance of a
test application, XB/A using its hardware performance counter
measurements, CX

A , on A.
C. Case 2: No measurements from common applications are

available on both platforms, A and B
Case 2 (Figure 1b) is a more challenging problem since

building a source model to transfer knowledge directly be-
tween two platforms of interest is not viable due to the
unavailability of a common application. To simplify this
scenario within the scope of this work, we assume that
at least one application exists for each pair of platforms
whose hardware performance counters are measured on
both platforms. That is, as shown in Figure 1b, the shortest
path from A to B will contain at least one other platform P .
Let’s assume that xr, xm, xn are the applications with their
data available on both A and P . Whereas xd, xe, xg are the
applications with their data available on both P and B.

To address the challenge of transferring knowledge across
platforms where a direct knowledge transfer is not viable, we
proposed a two-step solution.

Step 1: Data generation: We propose to leverage the
tabular data generation capabilities of the LLMs to synthesize
performance samples for test applications. During the training
phase, we fine-tune an LLM with C

[xr,xm,xn]
A and C

[xr,xm,xn]
P .

This model learns to leverage one application’s features on
one platform to generate the features for the same application
on another platform. During the test time, we leverage the
fine-tuned LLM to generate performance samples for the test
application X including hardware performance counters CX

P

and the runtime TX
P on the platform P .

Step 2: Building a predictive source model During the
training phase, we build a source model similar to Case 1 with
xd, xe, xg applications’ hardware performance counter data
on platform P , C [xd,xe,xg ]

P as features and their ground truth
values of relative performances on B relative to P , T [xd,xe,xg ]

B/P
as target labels. During the testing phase, we leverage the
synthesized hardware performance counter values as input to
this source model to get the final predictions TX

B/P .
III. EXPERIMENTAL SETUP

A. Dataset
We leverage six different HPC proxy applications on three

CPU and GPU platforms. Table I and [10] describe the appli-
cations Laghos, Kripke, miniVite, AMG, SW4lite, and
TESTDFFT and the data collection process in detail. Table II
describes the set of hardware performance counters used as
features. Table III describes the specifications of the HPC
platforms where data is collected.
B. Case Studies

In this work, we predict the relative performance of various
applications on Ruby and Corona based on the hardware
performance counter data of that application collected on
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TABLE I: Description of the applications
Application Description

Laghos FEM for compressible gas dynamics
Kripke 3D Deterministic Particle Transport Code
miniVite Graph Community Detection
TESTDFFT Parallel 3D FFT
SW4lite Seismic Wave Simulation
AMG Algebraic Multi Grid Solver

TABLE II: Collected hardware performance counters

Feature Description

Branch Intensity Ratio of branch instructions to total instruc-
tions

Load Intensity Ratio of load instructions to total instructions
Store Intensity Ratio of store instructions to total instruc-

tions
L1 Load Misses Load misses from L1 cache
L1 Store Misses Store misses from L1 cache
L2 Load Misses Load misses from L2 cache
L2 Store Misses Store misses from L2 cache
Single Floating Point
Intensity

Ratio of single precision FP instructions to
total instructions

Double Floating Point
Intensity

Ratio of double precision FP instructions to
total instructions

Arithmetic Intensity Ratio of integer arithmetic instructions to
total instructions

I/O Bytes Read Bytes read from IO
I/O Bytes Written Bytes written to IO
Extended Page Table Extended page table size
Memory Stall Memory Stalls

Quartz for the two scenarios described in Section II. We use
the applications with data available on all three platforms—
Quartz, Ruby, and Corona—for training a supervised
source model.

For Case 2, we assume that there is no common training ap-
plications’ data available on platforms Quartz and Corona.
However, there are common applications that run on platforms
Quartz and Ruby, but not on Corona. Similarly, there
are common applications that run on Ruby and Corona,
but not on Quartz. In this case, Section IV-E evaluates
the effectiveness of the LLM in generating counter data for
TESTDFFT on Corona. For tabular data generation, we
leverage the DistillGPT2 [6] LLM from the publicly available
Great [2] framework.
C. Evaluation Metrics and Hyperparameter Tuning

We evaluate model performance using MSE as computed in
Equation 1. We then report the average MSE across 5 trials
of randomly partitioned train and test splits.

MSE(y, ŷ) =
∑N−1

i=0 (yi − ŷi)
2

N
(1)

Here, y represents the ground truth values, ŷ denotes the
predicted values from the model, and N is the number of
test samples. We use the Keras library for implementing the
models and conduct hyperparameter tuning with SKLearn’s
Grid Search CV. High MSE indicates poor accuracy. We use
feature-wise min-max scaling for all experiments.

IV. RESULTS
A. RQ1: Impact of training a source-model using a single

application
This experiment aims to evaluate how well a source model

built from a single application performs when it has seen no

TABLE III: Machine Specifications
Metric Quartz Ruby Corona

CPU Type Intel Xeon
E5-2695 v4

Intel Xeon
CLX-8276L

AMD Rome

Cores/node 36 56 48
GPU Support No No Yes
GPU Type N/A N/A AMD MI50
GPUs/node N/A N/A 8

TABLE IV: ML models and their hyperparameters.

Model Hyper-parameters Search range

XGBoost (XGB), Bagging, Ad-
aboost (ADB), Random Forrest
(RF), Support Vector Regressor
(SVR), Decision Tree Regressor
(DT), Extra Trees (ER)

max features [sqrt, log2]
Learning Rate [1e−5, 1e−1]
n estimators [5-100]
max depth [5-15]
loss [squared error, huber, lin-

ear, square]

Linear Regression (LR), Las-
soCV (Lasso), Elastic Net CV
(ENet)

cv [2-10]
eps [1e−3, 1e−1]]
gcv mode [auto, svd, eigen]

KNN
neighbours [1-100]
metric [euclidean, manhattan,

minkowski]

samples from the test application. Table V presents results
from using TESTDFFT as the target, and each of Laghos,
Kripke, and miniVite as the source application separately.

TABLE V: RQ1: Average MSE when using no adaptation
during test-time using TESTDFFT as the target and each of
Laghos, Kripke, and miniVite as the source model.

Model Single-Application Source Model

Laghos Kripke miniVite

Ruby Corona Ruby Corona Ruby Corona

ARD 0.143 8.761 0.0125 0.072 0.0001 13.48

ADB 0.147 0.090 0.043 0.195 0.006 13.56

ET 0.134 0.044 0.005 0.160 9.14E-06 13.58

BR 0.136 0.040 0.015 0.123 1.71E-07 13.45

SVR 0.102 0.075 0.028 0.072 1.85E-06 14.0

Lasso 0.143 2.13 0.338 0.822 9.21E-05 13.48

ENet 0.143 0.485 0.325 0.773 9.21E-05 13.48

KNN 0.144 0.032 0.011 0.152 0.0003 13.44

DT 0.163 0.068 0.073 0.222 0.024 13.70

RF 0.133 0.055 0.016 0.170 0.004 13.56

XGB 0.144 0.029 0.008 0.135 1.34E-06 14.06

From Table V, we observe that on average, using Kripke’s
performance as the source model yields a 66% improvement
over Laghos and a 98% improvement over miniVite
in predicting the relative performance of TESTDFFT. This
result can be explained by Figures 2a-d where Kripke and
TESTDFFT show a similar nature of correlations among
their respective features and target values, which is different
from that of Laghos and miniVite’s. From Table V, we
also observe that certain ML models are better for certain
application pairs. There is no one consistent winning ML
model. We also observe that it is harder to transfer knowledge
from Quartz to Corona. This observation can be explained
by the fact that Quartz is a CPU-based machine while
Corona is a GPU-based one. Hence, their architectures are
significantly diverse, which makes it difficult for the CPU-
based source model to get a good predictive performance out
of the box without further fine-tuning.
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Fig. 2: Heatmap with Correlation Matrix of the hardware performance counters of (a) Laghos, (b) Kripke, (c) miniVite,
and (d) TESTDFFT on Corona.

B. RQ2: Impact of fine-tuning a single-source model using
few-shot samples from the target application

In this experiment, we evaluate the effectiveness of using
few-shot samples to adapt single-application source models
during test time. For these experiments, we use Laghos as
the source and TESTDFFT as the target.

TABLE VI: RQ2: Average MSE when using a single-source
model and adapting it using few-shot samples. We use
Laghos as the source and TESTDFFT as the target.

Model Applications
1%

Ruby Corona
ARD 0.060 0.005
ADB 0.028 0.007
ET 0.024 0.005
BR 0.061 0.005
SVR 0.102 0.075
Lasso 0.031 0.006
ENet 0.032 0.006
KNN 0.021 0.006
DT 0.101 0.105
RF 0.027 0.006
XGB 0.143 0.038

From Table VI we observe that using as low as 1% samples
to fine-tune the source model drastically improves its ability
to generalize over zero-shot. For instance, using 1% few-shot
samples can reduce error for the ET and RF models by 82%

and 79%, respectively. This result supports our hypothesis that
using few-shot learning to adapt the source model can improve
the model’s ability to generalize to new scenarios.
C. RQ3: Impact of training a source-model using multiple

applications
In this section, we evaluate the impact of using a source

model built from multiple applications’ data directly without
adapting it during test time. Table VII shows results from
experiments using a source model built from the data of
Laghos, Kripke, miniVite, SW4lite, and AMG and
TESTDFFT as the target application. The results indicate that
the accuracy of all models significantly improves when using a
multi-source model for prediction, compared to a single-source
model as shown in Table V. This improvement is observed for
both Ruby and Corona across all models.
D. RQ4: Impact of fine-tuning a multi-source model using

few-shot samples from the target application
This experiment’s objective is to evaluate how well a

multi-source model can generalize when adapted using a few
samples during the test time. Table VIII shows the %-change in
MSE when fine-tuning using 1% of samples compared to none.
We use Laghos, Kripke, miniVite, SW4lite, and AMG
to build the source and TESTDFFT as the target application.

Figure VIII shows that few-shot samples significantly im-
prove prediction accuracy for some of the models compared to
no adaptation, meaning the multi-source model can generalize
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TABLE VII: RQ3: Impact of using multiple applications to
build the source model and use it with no adaptation for
TESTDFFT as the target.

Model Platforms
Ruby Corona

ARD 1.29E-05 0.01
ADB 5E-03 0.043
ET 1.39E-06 0.047
BR 4.50E-05 0.002
SVR 8.48E-06 0.032
Lasso 1.29E-05 0.000
ENet 1.29E-05 0.003
KNN 4.69E-05 0.031
DT 1E-05 0.005
RF 9E-03 0.03
XGB 5E-07 0.027

TABLE VIII: RQ4: %-Improvement in MSE of a multi-
source model when fine-tuned compared to no adaptation.
Only showing the subset of the ML models that shows benefit
from fine-tuning a multi-source model.

Model Applications
1%

Ruby Corona
ARD 99.13 99.94
ADB 100.00 99.98
ET 97.17 99.87
BR 99.88 99.68
ENet 99.52 99.75

better. Specifically, by incorporating just 1% of TESTDFFT
samples to fine-tune the ARD model, we observe a remarkable
99.13% improvement in accuracy for predicting relative per-
formance on Ruby and a 99.9% improvement for Corona.
However, we only observe this positive result for a subset
of the ML models, not all. This result necessitates further
investigation using more few-shot samples.

E. RQ5: Evaluate the predictive models under data scarcity

The objective of this experiment is to evaluate the effec-
tiveness of using an LLM-generated performance samples for
relative performance prediction. For Case 2, we assume the
source platform to be Quartz, where the new application’s
hardware performance counter data is available. Additionally,
we consider Corona as the target platform and Ruby as
the intermediate platform. We consider TESTDFFT as the
target; Laghos and SW4lite are run on Quartz and Ruby;
Kripke and miniVite are run on Ruby and Corona.

Compared to the single-source Laghos model shown in
Table V, Table IX shows that the source model built using
generated data from a fine-tuned LLM can actually improve
the prediction accuracy. This observation signifies that we
can replace the data from Laghos using the generated data,
reducing the data collection overhead.

TABLE IX: RQ5: MSE for TESTDFFT when using an LLM-
generated data for building the source model.

Models Platforms
Ruby Corona

ARD 0.119 0.092
ADB 0.089 0.028
ET 0.070 0.094
BR 0.094 0.016
SVR 0.077 0.027
Ridge 0.045 0.030
Lasso 0.078 0.023
ENet 0.056 0.031
KNN 0.097 0.243
RF 0.054 0.087
XGB 0.075 0.016

F. Discussions
It is evident from Figure 2 that certain applications exhibit

similar behaviors across platforms. This similarity benefits
multi-source models, enabling them to perform well in zero-
shot and few-shot scenarios. Single-source models, on the
other hand, can suffer from data distribution shifts when ap-
plications are dissimilar. Moreover, our experiments show that
fine-tuning an LLM to generate data when training samples are
insufficient can be a viable solution approach with the added
benefit of reduced data collection overhead.

V. RELATED WORKS
Performance prediction is a critical task in HPC. Grobelny

et al. [4] propose a scalable framework for HPC perfor-
mance prediction without incorporating ML methods, whereas
our approach leverages ML for enhanced accuracy. Nudd et
al. [11] introduce PACE, a simulation-based framework for
performance and execution time prediction, but we use actual
hardware performance counters for real-time predictions. Car-
rington et al. [3] propose a framework using signal processing
techniques, while our approach employs few-shot learning
and generative AI for improved accuracy. Ardalani et al. [1]
use regression and ensemble models for GPU performance
prediction from CPU code, focusing on GPU and CPU within
the same platform, whereas we predict cross-platform relative
performance. Valov et al. [15] explore transferring perfor-
mance prediction models across hardware platforms but do
not address data scarcity, which our approach mitigates by
using few-shot samples and existing application data. Lee et
al. [8] propose polynomial regression and neural networks for
performance modeling, whereas we focus on relative perfor-
mance prediction for new applications using few-shot learning
and LLMs. Marathe et al. [9] use deep neural networks and
few-shot learning for performance prediction, similar to our
approach, but we further enhance the performance of transfer
learning by leveraging LLMs when data is not sufficient. Kim
et al. [7] and Hou et al. [5] utilize log analysis and neural
networks for performance prediction. At the same time, we
focus on hardware performance counter data and benchmark
basic ML models, reserving advanced techniques for future
work. Our method leverages few-shot samples and platform
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relationships to predict relative performance effectively.
VI. CONCLUSIONS

In this work, we use a unique HPC dataset collected from
various applications and platforms to evaluate the efficacy of
traditional ML models for knowledge transfer. We address two
scenarios: one with sufficient data and one with insufficient
data. Our evaluations show that different types of ML models
are well-suited for different applications and platforms. when
ample labeled performance samples are available. However,
when data is scarce, using few-shot learning to adapt an LLM
to fill the data gap can improve the predictive models’ efficacy.
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