ML-based Modeling to Predict I/O Performance on
Different Storage Sub-systems

Yiheng Xu*, Pranav Sivaraman®, Hariharan Devarajan§, Kathryn Mohror®, Abhinav Bhatelef

*Palantir Technologies, Inc., Denver, USA
TDepartment of Computer Science, University of Maryland, College Park, USA
§Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, USA
E-mail: Tbhatele@cs.umd.edu

Abstract—Parallel applications can spend a significant amount
of time performing I/O on large-scale supercomputers. Fast near-
compute storage accelerators called burst buffers can reduce
the time a processor spends performing I/O and mitigate I/O
bottlenecks. However, determining if a given application could be
accelerated using burst buffers is not straightforward even for
storage experts. The relationship between an application’s I/0
characteristics (such as I/O volume, processes involved, etc.) and
the best storage sub-system for it can be complicated. As a result,
adapting parallel applications to use burst buffers efficiently is a
trial-and-error process. In this work, we present a Python-based
tool called PrismIO that enables programmatic analysis of I/O
traces. Using PrismIO, we identify performance bottlenecks when
using burst buffers and parallel file systems, and explain why
certain 1/0 patterns perform poorly. Further, we use machine
learning to model the relationship between I/O characteristics
and file system selections. We use IOR, an I/O benchmark
to gather performance data for training the machine learning
model. Our model can predict the better performing storage
system for unseen IOR scenarios with an accuracy of 94.47%
and for four real applications with an accuracy of 95.86%.

Index Terms—I/O performance, trace analysis tool, bench-
marking, machine learning, modeling

I. INTRODUCTION

I/O-intensive high performance computing (HPC) applica-
tions can suffer from I/O performance bottlenecks due to
slower advances in storage hardware technology as compared
to compute hardware [1]. Such I/O bottlenecks can have a
significant impact on the overall application performance [2].
Hence, newer I/O sub-systems are being designed to improve
applications’ I/O performance. Burst buffers are one such
example that have gained popularity in recent years.

Burst buffers (BBs) are fast intermediate storage com-
ponents positioned between compute nodes and hard disk
storage [3]. Instead of performing I/O on the parallel file
system (PFS), applications can perform I/O via burst buffers
and read from/write to the PFS at the end of the job. Studies
show that burst buffers can accelerate I/O for a variety of HPC
applications [4]-[8]. For instance, Bhimji et al. [7] demon-
strate that several types of applications including scientific
simulations, data analysis, etc. can achieve better performance
on BBs. BBs are also suitable for applications with frequent
checkpointing and restart [4].

Although burst buffers have the potential to improve I/O per-
formance, determining if an application could be accelerated
by putting files on BBs is a complex task. First, the under-
lying relationship between an application’s I/O characteristics
and its performance on I/O sub-systems can be considerably
complicated. In this paper, we use I/O characteristics to refer
to things that decide the I/O behavior of an application, such
as I/O volume, I/O library used, etc. For instance, the amount
of data transferred per read or write, which we refer to as
transfer size in the rest of the paper, can impact the I/O sub-
system choices. For example, we did several IOR [9] runs
keeping all configuration parameters the same except transfer
size when writing files on GPFS (the regular parallel file
system on Lassen) and BBs on Lassen. We find that for a
smaller transfer size, IOR performs better when using BBs,
while for a larger transfer size, it performs better on GPFS
(Figure 1). Varying other configurations of IOR can also lead
to significant performance differences. We did a suite of IOR
runs with various configurations, and the fastest configuration
runs 10x faster on GPFS than on BB.

1/O Bandwidth of IOR

8000 { RXX Lassen GPFS
B2 Lassen BB
—_
w
@ 60001
=
&
= o%%
B
= 1909599
R :96%%%
0% 19:9:0.9.9,
2 4000 SRS
&L KK
S X% IR
a & R
0%6% %% 0000‘0.0‘0
o SRS KRR
= SRS
2000 o (RS
K oS etesese
0929008 KKK
23 RIS
3L 03RRI
Po%e%e! ORKK
% IR
0.0.0‘ 0.0".0.0

64 KB
Transfer Size

Fig. 1. Comparison of I/O bandwidth achieved for different transfer sizes by
IOR when using Lassen GPES versus burst buffers (BB). Depending on the
transfer size, BBs do not always achieve better I/O performance than GPFS.

Second, even though we can manually figure out whether to
direct the I/O of an application to BBs by doing experiments,
it is a trial-and-error process. To the best of our knowledge,
there is no prior work that describes an efficient workflow for

I/O sub-system selection for arbitrary applications. Moreover,
even a single application can read from or write to multiple
files with different I/O characteristics. I/O to some files can
have characteristics that perform better on GPFS, whereas to
other files can have characteristics that perform better on BBs.
Figuring out the placement of each file manually for large-
scale HPC applications is unrealistic.

Lastly, doing detailed performance analyses is challenging
as well. Understanding why certain I/O characteristics result in
better or poor performance of I/O sub-systems through detailed
analyses is important. They also help us validate our decisions
of choosing BBs or not. However, doing so is not trivial. Users
have to make considerable efforts to write their own codes
for the analysis, as existing tools are not efficient enough for
detailed analysis. They also lack interfaces that enable users
to customize their analysis.

We address the challenges above by designing a methodol-
ogy to conduct detailed analysis and model the selection of
storage sub-systems using machine learning (ML) for HPC
applications. We first present our pandas-based I/O perfor-
mance analysis tool, PrismlO, and several case studies that
demonstrate its usefulness. PrismIO provides a Python data
structure and API that enable users to customize their analysis
programmatically. It also provides an API to extract the I/O
characteristics of an application. Next, we model the rela-
tionship between I/O characteristics of HPC applications and
performant I/O sub-system selections using machine learning.
We run IOR with various I/O configuration parameters on
several I/O sub-system installations and collect performance
data. Using this data, we train ML models that select the
best I/O sub-system for files read/written in a program based
on its I/O characteristics. Finally, we present a workflow that
efficiently extracts I/O characteristics of applications, executes
the ML model, and outputs a file placement plan.

The main contributions of this work are:

o We build a Python-based tool called PrismIO that enables
detailed analysis of I/O traces. We identify and reason
about different patterns/bottlenecks of I/O sub-systems.

o We conduct detailed experiments to study the relationship
between I/O characteristics and the best storage sub-
system choices. The resulting dataset can be used to
model this relationship.

« We train a machine learning model that approximates this
relationship on Lassen. The model predicts whether to
place files on BBs or GPFS based on I/O patterns with
94.47% accuracy.

o To make it easy to train ML models, we add API
functions in PrismIO that extract I/O characteristics and
integrate the modeling workflow into PrismIO. Using this
workflow, we predict the best storage sub-system choices
for four real applications with 95.86% accuracy.

II. BACKGROUND & RELATED WORK

In this section, we provide relevant literature needed to
understand our work. We introduce BB, its architecture, and
how it benefits I/O performance based on previous research.

We also provide previous works that study how to better use
BB and the limitations they found. Besides, we introduce
performance analysis tools for I/O and their limitations.

A. Burst buffers

Burst Buffers (BBs) are fast intermediate storage layers
between compute nodes and storage nodes [3]. The traditional
HPC 1/O architecture consists of on-node memory, I/O nodes
for handling I/O requests, and a disk-based parallel file system
[10]. But this architecture is not enough to fill the gap
between computational performance and I/O performance [7].
Therefore, BB is a natural solution to be introduced between
these layers. BBs are implemented on several state-of-the-art
HPC clusters such as Lassen, Summit, and Cori.

Burst buffers can be implemented in various ways. In terms
of hardware, BBs are mostly made with SSDs. For example,
Lassen at LLNL uses 1.6 TB Samsung PM1725a NVMe
SSDs [11]. In terms of architecture, there are two major types:
node-local and shared BBs [12]. Lassen and Summit adapt
node-local BBs. In this case, a BB is directly connected to a
compute node. All BBs are independent, which means they
don’t share the same namespace. For the shared BBs (as used
in Cori), BB nodes are separated from compute nodes and can
be accessed by multiple compute nodes through interconnected
networks [13]. In this case, compute nodes perform I/O on the
global BB file system with a shared namespace. In this paper,
we focus on node-local BBs.

Research has demonstrated the benefit BB brings to I/O
performance [2]. For example, Bhimji et al. analyze the
performance of a variety of HPC applications on Cori burst
buffers, including scientific simulations, visualization, image
reconstruction, and data analysis [7]. They demonstrate that
burst buffers can accelerate the I/O of these applications and
outperform regular Parallel File Systems (PFS). Pottier et
al. [14] also demonstrate that node-local burst buffer signifi-
cantly decreases the runtime and increases the bandwidth of an
application called SWarp. From the research mentioned above
[2], [7], [14], it is evident that BB has the potential to improve
the I/O performance of certain HPC applications.

Although these papers demonstrate BB is promising in im-
proving I/O performance, most of them raise the same concern:
The performance is sensitive to application I/O patterns [7],
[8], [14]. Pottier et al. demonstrated different workflows may
not get the same benefit from BBs [14]. Some of them have
decreased performance compared with the performance on
regular file systems. For instance, they indicated that the shared
burst buffer can perform worse than the regular PFS and
is sensitive to the amount of data transferred per read/write
operation. However, their work is only based on a single
application called SWarp so it might not be general enough
to cover common I/O patterns of HPC application. Existing
research on this issue has not given a general solution to
the problem due to insufficient experiments and modeling
to cover different I/O patterns. Besides, the metric they use
is the total runtime, which may not be a good I/O metric
as it can be significantly affected by work other than I/O

like computation. To summarize, the underlying relationship
between an application’s I/O characteristics and the storage
sub-system choice is still unclear.

B. I/O performance analysis tools

There exist I/O performance analysis tools that can assist
in studying such relationships. Two popular I/O performance
analysis tools are Darshan [15], [16] and Recorder [17]. Both
of them trace application runs and capture basic performance
information such as time and I/O volume of an operation.
They provide visualization scripts upon their traces. With them
users can derive aggregated I/O metrics such as I/O bandwidth,
file sizes, etc. These tools can be helpful to start with the
I/O sub-systems selection research question, however, they are
not efficient enough for detailed analysis due to the lack of
interfaces that enable users to customize their analysis. Users
have to make significant efforts to write their own codes to
achieve deeper discoveries. Besides these two tracing tools,
there is an automated analysis project called Tokio [18], [19],
short for total knowledge of I/O. The project collects the I/O
activities of all applications running on NERSC Cori for a time
period and then provides a clear view of the system behavior.
It does a great job in holistic I/O performance analyses such
as detecting I/O contention and unhealthy storage devices
at the system level. However, there is no application-level
analysis so it does not map I/O characteristics to I/O sub-
system selections. Two other tools, Hatchet [20] and Pipit [21],
provide programmatic APIs similar to PrismIO for analyzing
performance profiles and traces respectively.

III. DATA COLLECTION

In order to understand the relationship between I/O char-
acteristics and performance on different I/O sub-systems, we
decided to collect a significant amount of benchmarking data.
This data would also be useful for training the machine
learning models. A cornerstone of our work is to carefully
design experiments to build a large and unbiased dataset. In
this section, we introduce our experimental setup and data
collection in detail. We go through machines, benchmark
configurations, and how we process the data.

A. HPC platform used for the experiments

We conduct our experiments on Lassen. Lassen is a GPU-
based cluster at LLNL with IBM Power9 CPUs and NVIDIA
V100 GPUs. It uses IBM’s Spectrum Scale parallel file system,
formerly known as GPFS. GPFES is one of the most common
implementations of parallel file systems (PFS). It is used by
many of the world’s fastest supercomputers [22]. In terms of
burst buffers, Lassen uses node-local BBs implemented with
Samsung NVMe PCle SSDs.

B. The IOR benchmark and its configuration

We use the IOR benchmark [9] for benchmarking the I/O
sub-systems on Lassen and collecting I/O performance traces.
We chose IOR because it is easily configurable to emulate
various HPC workflows. Also, it has been shown to be an

effective replacement for full-application I/O benchmarks [23],
[24]. TOR has more than 40 command line configuration
parameters. In our experiments, we select representative 1/O
characteristics that are common in real applications and con-
figure the corresponding configuration parameters in IOR. We
emulate the I/O characteristics of real applications by covering
all possible combinations of the selected configuration param-
eters. For instance, we include collective MPI-IO because it is
commonly used in checkpoint/restart applications. We further
separate I/O into six types: RAR, RAW, WAR, WAW, RO,
and WO, to better map IOR runs to different types of I/O
in production applications (RAR stands for read after read,
RAW for read after write, RO for read only, etc.). For instance,
RAR and RO are common in ML applications between epochs.
We again cover all feasible combinations of these read/write
types and other I/O characteristics (configuration parameters).
In addition, all runs are done using GPFS and node-local burst
buffers on Lassen separately.

We do the following to take performance variability into
account. We repeat each run five times at different times and
days to minimize the impact of temporal system variability.
Since our whole experiment contains around 35,000 runs, we
avoid adding abnormal burdens to the system by distributing
our IOR experiments over time. We run our jobs sequentially
so that at one time there is only one IOR run submitted by
us running on the system. We collect all I/O metrics from
IOR standard output, including total I/O time, read/write time,
bandwidth, etc, and take the mean over the five repetitions.
Each IOR run produces a sample for the training dataset.

TABLE I
DESCRIPTION OF DATA USED FOR TRAINING THE ML MODELS.

Input I/O feature Description

1/0 interface Categorical feature

Can be POSIX, MPI-IO, HDF5

collective Enable collective MPI-IO

fsync Perform fsync after POSIX file close
preallocate Preallocate the entire file before writing
transfer size The amount of data of a single read/write
unique dir Each process does /O in its own directory

The number of reads/writes

from open to close of a file

Use an MPI datatype for setting the file
view to use individual file pointer
perform fsync upon POSIX write close
Categorical feature

can be RAR, RAW, WAR, WAW, etc.
whether the file is randomly accessed

read/write per
open to close
use file view

fsync per write
1/0 type

random access

C. Data processing

The data used for analysis and model training is derived
from IOR runs with different configurations on Lassen GPFS
and BB, where each IOR run is a sample in the dataset. The
independent variables are all the I/O features (configuration
parameters) we included in the experiments. Descriptions of
these input features are presented in Table I. We first process
them to make them suitable for common ML models. For

example, most ML models cannot directly handle string-
formatted categorical columns. Also, if a column is nominal
instead of ordinal, simply converting it into integers ranging
from O to the number of categories may result in erroneous
inference. One popular solution is using one-hot vector en-
coding. It works by creating as many columns as the number
of categories for a categorical column in the data set. Each
column represents a category. We set a column to 1 if the
original value is the category represented by that column and
0 for all other columns. We encode all of our categorical
features such as file system used, I/O interface, etc., into one-
hot encoded vectors.

As our goal is to predict the best I/O sub-system to place
a file, the dependent variable should be the I/O sub-system.
Since we run every I/O feature combination on both GPFS
and BBs, the ground truth (oracle) label is the I/O sub-system
(GPFS or BB) that gives the best I/O bandwidth for each
run. The exhaustive I/O feature combinations plus the true
label make our final dataset. The final dataset has 19 feature
columns and 2967 rows.

IV. PRISMIO: AN I/O PERFORMANCE ANALYSIS TOOL

We have created PrismlO, a Python library on top of
pandas [25], [26], as a solution to better facilitate detailed I/O
trace analysis. It has two primary benefits. First, it enables
users to perform analysis on a pandas DataFrame instead of
an unfamiliar trace format. Based on the DataFrame struc-
ture, PrismIO provides an analysis API that assists users in
efficiently doing detailed analyses. Second, PrismIO provides
functions that can automatically extract the I/O characteristics
of applications from their I/O traces. This is the foundation
for applying our ML modeling workflow to new applications
because I/O characteristics are the input to the model.

A. Data organization in PrismIO

PrismlO is primarily designed for analyzing 1/O traces, and
we currently support traces gathered using Recorder [17],
which is an I/O tracing tool. Recorder instruments func-
tion calls from common I/O libraries such as fwrite,
MPI_file_write, etc. We also plan to support Darshan traces
in the future via their Python API. We implement PrismIO as
a Python library that builds on pandas to organize trace data
into a DataFrame, and build analysis functions on top of it.

The primary class in PrismIO that holds the trace data and
provides user-facing functions is called IOFrame. It reorga-
nizes the input I/O trace into a pandas DataFrame. Each row
in the DataFrame is a record of a function call. Columns
store numerical and categorical information of the function
calls, including start time, end time, MPI rank that calls
the function, etc. It also explicitly lists information that is
non-trivial to retrieve from complex trace structures such as
read/write access offsets of a file.

B. API functions for analyzing I/O performance

PrismIO provides several analytical functions that report
aggregated information from different aspects, such as I/O

bandwidth, I/O time, etc. It also provides a feature extraction
API that extracts important I/O characteristics that end users
may be interested in. Feature extraction will be used in our
prediction workflow that we will discuss in Section V. In ad-
dition, PrismlIO provides preliminary visualization capabilities
for inspecting I/O traces visually. Below, we discuss some of
the important analysis functions provided in the PrismIO API.

io_bandwidth Users often inspect the achieved I/O band-
width for different file read/write operations by different
processes to understand the I/O performance of their code.
The io_bandwidth function provides the I/O bandwidth
for individual files per MPI process. This is implemented by
a groupby operation on the DataFrame by file name and MPI
rank, and then calculating the bandwidth by dividing the total
I/O volume by I/O time in each group (per file, per MPI
rank). This function also provides options for quick filtering.
Sometimes, the user wants to focus on certain MPI ranks
in a parallel execution. We provide a “rank” argument that
takes a list of ranks and filters by ranks that are listed before
the groupby and aggregation. We also provide a general filter
option where users can specify a filter function. Figure 2 shows
the few lines of code to use this function and the resulting
DataFrame output.

io_bandwidth (GB/s)

rank file_name
0 ior.00000000 1.735066
1 ior.00000001 0.720648
2 ior.00000002 1.977046
3 io0r.00000003 1.578698

ioframe = IOFrame.from_recorder ("/path/to/recorder/
trace")

ioframe.io_bandwidth (rank=[0,1,2,3],
: x["I/O_type"] == "read")

filter=lambda x

Fig. 2. 1/0 bandwidth achieved by MPI ranks 0-3 for each file they read (in a
sample IOR trace.) io_bandwidth returns a DataFrame with a hierarchical
index. We utilize the filter option to only report read bandwidths of ranks 0-3
for different files. The function automatically selects the most readable unit
for bandwidth, in this case GB/s.

io_time io_t ime returns the time spent in I/O operations per
file and per MPI process. Similar to io_bandwidth, users
can filter by different things. Figure 3 demonstrates an example
of using it to print the time spent in metadata operations (open,
close, sync, etc.) on each file by ranks 0, 1, 2, and 3.

shared_files Another common analysis in parallel I/O is
to study which files are shared across MPI processes.
shared_files reports for each file, how many processes
are sharing it and what their ranks (IDs) are. Figure 4 shows
part of the output of shared_files for an I/O trace.

C. Feature extraction API

Feature extraction is a class of API functions in PrismIO
that extract the I/O characteristics of an application from

metadata operation time rank time percentage

file_name rank

ior.00000000 0 1.695357 4.194487 0.404187
ior.00000001 1 1.683295 4.194311 0.401328
ior.00000002 2 1.698438 4.194152 0.404954
ior.00000003 3 1.693322 4.194152 0.403734

1| ioframe.io_time (rank=[0,1,2,3], filter=lambda x: x["

I/0_type"] == "meta")

Fig. 3. Time spent in metadata operations by ranks 0-3 for each file they
read (in a sample IOR trace.) In addition to absolute time, io_time also
reports the percentage of total time spent performing 1/O.

ranks sharing the file num ranks

file_name
rs0701 [0] 1
rs0701.data.0 [0,1,2,3,4,5,6,7,8,9,10, 11,12, 13,... 32
rs0701.data.1 [32, 33, 34, 35, 36, 37, 38, 39, 40, 41,42, 4... 32
rs0702 [0] 1
rs0702.data.0 [0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13,... 32
rs0702.data.1 [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 4... 32

stress_Plastic_strain [0] 1

1| ioframe.shared_files (dropna=True)

Fig. 4. A screenshot of a part of the DataFrame output by shared_files
for a sample trace. shared_files demonstrates how files are shared across
processes. Users can easily observe that some files are shared while others
are not in a run using 32 MPI processes.

its I/O trace. As mentioned earlier, the primary purpose of
these functions is to prepare inputs to the machine learning
model. In the machine learning context, the inputs to a model
are called features. As our model predicts whether to place
files on BBs based on I/O characteristics of applications, I/O
characteristics are the input features to our model. In the rest
of the paper, when we discuss inputs to the model, we use I/O
features to refer to I/O characteristics. Such features include
I/0 type (RAR, RAW, WAR, etc.), access pattern (random
or sequential), file per process (FPP), I/O interface (POSIX,
MPI-IO, etc.), etc. For an arbitrary application, users either
need to read the source code or analyze the trace to obtain
these features, which may require considerable time. Using
PrismlO, users can get these features via simple function calls
as shown below.

access_pattern access_pattern counts the number of
different access patterns per file including consecutive, se-
quential, and random access. Figure 5 demonstrates the
access_pattern output of an example trace. This can be
a useful feature in determining I/O performance.

readwrite_pattern readwrite_pattern identifies all the
read/write patterns in an I/O trace such as RAR, RAW,

consecutive sequential random total

file_name
testFile.00000063 0 0 2 2
testFile.00000052 0 0 2 2
testFile.00000041 0 0 2 2
testFile.00000051 0 0 2 2

1| ioframe.access_pattern ()

Fig. 5. A screenshot of a part of the DataFrame when using
access_pattern for a sample trace. It counts the number of accesses
of different types. In this case, there are two random accesses on files and
no other type of access. From the counts, users can figure out what kind of
accesses are the most frequent in a run.

etc., and calculates the amount of data transferred us-
ing those patterns. Figure 6 demonstrates the output of
readwrite_pattern of a sample trace.

RAR RAW WAR WAW read write

file_name
stdout 0 0 0 0 0 371.0
testFile.00000063 0 0 0 0 0 66560.0
testFile.00000052 0 0 0 0 0 66560.0
testFile.00000041 0 0 0 0 0 66560.0
testFile.00000051 0 0 0 0 0 66560.0

ioframe.read_write_pattern ()

Fig. 6. A screenshot of a part of the DataFrame when using
readwrite_pattern for a sample trace. It calculates the amount of data
transferred using different read/write patterns. This example run only does
write so the pattern of all files is write only (WO).

D. Visualization API

timeline Often times, end users want to inspect I/O traces
visually to understand and explore the trace. While this is
not recommended for extremely large traces due to scalability
issues, we provide basic visualization support in PrismIO
through the timeline function. It plots the timeline of
function calls for each MPI process. Each horizontal block
represents the time interval of a function execution, from start
to end. The timeline function also provides filter options
to select certain types of functions. Figure 7 demonstrates an
example timeline plot of I/O functions for a sample trace.

V. ML MODEL FOR SELECTING BEST I/O SUB-SYSTEM

We use machine learning models to predict and recommend
which file(s) should be placed on which I/O sub-system for
best performance, which we refer to as “file placement” in
the rest of the paper. We train an ML model that selects the
best I/O sub-system for application file placements. Moreover,
to efficiently apply the model to an application whose 1/O
characteristics are not known, we make the selection process

60 - = access
= close
ftruncate
— fwrite
~ 40 = Iseek
s —
I mmap
E = open
read
204 unlink
= vfprintf
= write
0‘ T T T T
2.5 3.0 35 4.0
Time (s)

ioframe.timeline (filter=lambda x:
J— "I/O")

x["function_type"]

Fig. 7. Timeline of I/O functions in a sample trace. X-axis shows time,
and y-axis shows the MPI rank. Users can easily make observations such
as functions that are abnormally slow, load imbalance, temporal orders of
function calls, etc. For this example, users can easily identify that access
runs slow on most processes, but fast on two specific processes. Users can
efficiently get important insights and get directions for further analysis.

part of a workflow with assistance from PrismlO’s feature
extraction APL In this section, we discuss the design of our
ML methodology and overall workflow.

A. Models for predicting file placement

The key to answering whether to place files written by an
application on burst buffers is to understand the relationship
between the I/O characteristics of an application and its
performance on different I/O sub-systems. As mentioned in
Section IV, we use the term I/O features to refer to I/O
characteristics that we use as inputs to our model. Since some
features are continuous such as transfer size and numbers
of reads/writes, we need a model to interpolate the relation-
ship. And since the parameter space is large, heuristic-based
methods may not work well and are difficult to extend when
adding new I/O features. Therefore, we decided to use machine
learning (ML) techniques to model such relationships. An
application can have multiple files with very different I/O
patterns. These files from the same application can usually
be placed on different I/O sub-systems. Therefore, our model
focuses on predicting for individual files instead of the whole
application. Ideally, it predicts the best I/O sub-system for each
file and thus results in the best file placement plan overall for
the application.

Since Lassen uses node-local BBs, the decision to be made
is either using them or not. So we pose the ML prediction as
a binary classification problem. We evaluate several different
classifiers and compare their test accuracies. For our evaluation
We do a 90-10 split of our dataset. We train the model with
90% of the data, and then use the rest 10%, which is unseen by
the model, to obtain test accuracies by comparing predictions
with the true labels. We train and evaluate each classifier 10
times with random data splits. and report the average test
accuracy of the classifiers.

B. Workflow for identifying best performing I/O sub-system

We make the selection process efficient and easy-to-use for
the end user by developing a workflow. This is because apply-
ing the ML model to unseen large-scale HPC applications with
a large number of different files is non-trivial. When end users
do not know the I/O features of an application, they cannot
use the model easily. To solve this problem, we combine the
feature extraction API in PrismIO with the model and make
them into a workflow. Figure 8 highlights the workflow design
and demonstrates how different parts and their inputs/outputs
fit together in the workflow. Given an application, the user
should only need to run it once on any machine and trace it
with Recorder. Then the workflow takes the Recorder trace as
input, extracts I/O features for each file, and feeds them into
the pre-trained model to predict the best file placement per file
i.e. which file should be placed on which I/O sub-system.

. 1/0
Profile |Formatted| Feature Subsystem
Reader Extraction | Features ¥ .

Selection

Best I/0
Subsystem

] [\n
i

X Detailed

__________ Analysis |

I
I
N

Fig. 8. Overview of our modeling workflow. Users provide the raw trace of
their application run and PrismIO restructures it into a programmable data
structure (IOFrame). Then PrismIO extracts I/O features from the IOFrame
object. These features are provided as input to the model that decides the best
I/O sub-system to use for this application.

We have implemented this workflow into a function called
predict in PrismIO. Users simply need to call it with the
trace path. It groups the data by file names and calls the feature
extraction API on each of them. It then loads the pre-trained
model and predicts whether to use BBs for each file. The I/O
features and predictions are organized as a DataFrame indexed
by file name. Figure 9 demonstrates a part of the workflow
output of a sample trace.

transferSize(-t) WrRdPerOpen WO predicted_system

dump.0.0.txt 2105.250000 40 .. 1.0 bb
dump.0.1.txt 2105.250000 40 .. 1.0 bb
dump.0.10.txt 2105.250000 40 .. 1.0 bb
dump.80.8.txt 2105.500000 40 .. 1.0 bb
dump.80.9.txt 2105.500000 40 ... 1.0 bb
log.lammps 20.013333 750 .. 1.0 bb

1| result = predict ("/path/to/recorder/trace")

Fig. 9. A screenshot of a part of the DataFrame of the prediction workflow
output for a sample trace. Each row corresponds to a file. We can easily
understand what are the I/O features of this file, and given those features,
which I/O sub-system should be used for this file. In this example, we know
that all I/O to these files are write operations, and there are four writes with an
average size of 2105.25 bytes. Based on this, all of these writes are predicted
to perform better when placed on BB.

MPI rank

135 136 1.36

Time (s)
(a) Lassen GPFS

135

60 —— close
= — lIseek
% 4012 — open
e E read
o
Z 704
07 T T T 1
1.35 1.35 1.35 1.36 1.36
Time (s)

(b) Lassen BB

Fig. 10. Timeline of I/O function calls in IOR traces from GPFS and BB using the configuration from the extreme point “Good BB Bad GPFS”. We run

them on two nodes and 32 processes per node.

VI. I/0 ANALYSIS CASE STUDIES

In this section, we present some case studies to demonstrate
the process of I/0 performance analysis using PrismIO.

A. Extreme runs analysis

We first demonstrate how PrismIO can be used for perfor-
mance analysis of specific runs where the I/O performance is
unusual. We look at all IOR runs in the dataset introduced
in Section III, and identify some “outlier” or “extrema” runs
with extremely poor or good performance when using the PFS
versus BB. We call such runs as extreme runs. Figure 11
plots the achieved I/O bandwidth of IOR runs (using 64
processes on 2 nodes) on GPFS or BB on Lassen. Each
point on the plot represents a single run with a certain I/O
feature combination. The x-axis represents the I/O bandwidth
on GPFS and the y-axis shows the I/O bandwidth on BB. The
farther the point from the diagonal, the IOR run with that
configuration performs more differently on PFS and BB.

4000+
3500 { Good BB Bad GPFS
9 1
$ 30001 =
& 2500-
c d
) . ee S
£ 20009 ** 000 2
2
3 15001
& 1000 &
T 5004 -
2 . J5] Good GPFS Bad BB

0

0 1000 2000 3000 4000

I/O Bandwidth on GPFS (MB/s)

Fig. 11. I/O bandwidth of IOR benchmarking runs on PFS vs BB. Each point
on the plot represents a run with a certain I/O feature combination. The x-axis
is the I/O bandwidth on the PFS and y-axis is the I/O bandwidth on BBs.
The plotted value is the average over five repetitions of that I/O configuration
as mentioned in Section III. The red boxes highlight the most extreme runs
we picked for deeper analysis.

We pick the highlighted runs (red boxes) in Figure 11 to
conduct detailed analyses. The upper left one performs much
better on BBs than on GPFS. The lower middle one performs
much better on GPFS than on BB. We refer to them as “Good
BB Bad GPFS” and “Good GPFS Bad BB” in later text. Since
they perform very differently on the two I/O sub-systems,
they may indicate bottlenecks in the individual systems. We
trace these extreme runs with Recorder, and then do detailed
analyses with PrismIO.

Lassen GPFS bottleneck analysis: We first present the anal-
ysis for the “Good BB Bad GPFS” configuration on Lassen.
The I/O bandwidth per process for that run on GPFS is 155.01
MB/s, whereas on BB it is 3236.24 MB/s. Such a significant
gap indicates there must be performance issues on GPFS for
this run. We first use PrismIO’s io_time function, and find
that the run on GPFS spends 37.8% of the I/O time in metadata
operations. We then use the timeline function introduced
in Section IV to visualize the I/O function traces (Figure 10).
We immediately observe a significant load imbalance of open
and read over MPI processes when using GPFS: the first 32
processes on one node run much slower than the second 32
processes on the other node. This does not seem to be the case
when the same configuration is run using BBs. We checked
the source code of IOR and logically all processes do exactly
the same thing, so it is likely an issue with the I/O sub-system.
To further drill down, we check if this slowdown is happening
because a particular node is problematic or if it is a broader
system issue.

We run IOR with the same configuration but on more nodes.
Figure 12 shows the timeline of IOR runs on 4, §, and 16
nodes. We notice that there is a single node that performs
much better than the other nodes, so we checked if it is the
same physical node in these three runs. Unfortunately, we did
not observe a unique node. Therefore, we conclude that it is
an issue with GPFS in balancing metadata operations such
as open. We checked with Lassen system administrators and
confirmed that the most likely reason is that GPFS does not
have metadata or data servers. When writing a large number
of files to the same directory, one of the nodes becomes the

125/ 250 5001 —— close
1001 200 400+ —— lIseek
~ ~ ~
& 751 E 150 5300, —— open
= & 100 & 200 read
o g 1
s 50 > b
25- 50 100
0 = 0 01
.77 .77 V.77 177 177 178 L7070 172 172 172 173 1.70 171 172 173 174 175
Time (s) Time (s) Time (s)

(a) IOR on Lassen GPFS (4 nodes)

(b) IOR on Lassen GPFS (8 nodes)

(c) IOR on Lassen GPFS (16 nodes)

Fig. 12. 1/O timeline of IOR runs with “Good BB Bad GPFS” configuration using Lassen GPFS on 4, 8, and 16 nodes. Each node has 32 MPI processes.
Irrespective of the number of nodes used, there is one specific node that performs much better than other nodes.

60 607 — close
— lseek
< 401 < 404 — open <
e e — write g
o o o
Z 201 Z 201 z
250 5.00 750 10.00 1250 15.00 17.50 250 500 750 1000 1250 1500 17.50 250 500 750 10.00 1250 1500 17.50
Time (s) Time (s) Time (s)

(a) Lassen GPFS

(b) Lassen BB

(c) Lassen BB with direct I/O

Fig. 13. Timeline of I/O function calls in IOR traces from GPFS and BB using the configuration from the extreme point “Good GPFS Bad BB”. We run

them on two nodes and 32 processes per node.

metadata server for that directory and thus the MPI processes
on it are much faster in metadata operations than processes on
other nodes.

Lassen BB bottleneck analysis: Similar to the analysis above,
we also dive deeper to analyze the bottlenecks of Lassen BBs
for the “Good GPFS Bad BB” configuration. The configuration
is also run on 2 nodes with 32 processes per node. Figure 13
(a) and (b) show the timeline for I/O function calls of each pro-
cess in that configuration on GPFS and BB, respectively. This
time we observe a significant load imbalance over processes
in BB. Some processes perform much worse than others,
and such processes are spread across both nodes. However,
faster processes in the BB run actually perform better than in
the GPFS run, and have have unexpectedly high bandwidths,
which indicates that they are most likely taking advantage of
the SSD hardware cache. As the SSD hardware cache is part of
the BB architecture, in most real-world use cases, applications
use it by default. To confirm this hypothesis, we run these IOR
runs with the same configurations but with direct I/O enabled,
in which case all I/O traffic would skip any kind of cache and
directly go to storage.

Figure 13 (c) demonstrates the I/O timeline of the same run
on BB but with direct I/O enabled. All processes now take the
same long time on BBs. This confirms that the load imbalance
over ranks on BBs is due to the SSD hardware cache. GPFS
is a shared file system so its hardware cache is likely to be
occupied by millions of other workloads, while the hardware
cache of node-local BBs is not filled until the total amount of
I/0O exceeds the cache size. When the hardware cache is filled,

processes performing I/O that cannot use the cache run much
slower than processes that are able to use the cache. Therefore,
the empirical conclusion that large I/O may not perform well
on BB is not always true. A single large I/O can perform better
on BB than on GPFS if the BB hardware cache is not full.
Users can do large I/O on BB, as long as the total amount of
I/O at a time does not overwhelm the hardware cache.

The above detailed case studies demonstrate that PrismIO
can help in identifying detailed I/O performance issues in
parallel executions. The above analyses used PrismIO’s Python
API and the timeline visualization.

B. Overall trends

From the previous case studies, we also identified that con-
figurations with certain values of some I/O features are better
suited to using BB. To summarize such trends, we look at two
specific I/O features: transfer size and I/O pattern. We look at
all values of each of these features that we experimented with
and for each fixed value, we plot the fraction of configurations
that perform better when using GPFS vs BB. Figure 14 shows
the percentage of configurations that perform better on Lassen
BB as the values of the two features change. We can see that
as transfer size grows, the fraction of runs that perform better
on BB decreases. Similarly, the fraction of runs that perform
better on BB is higher when the I/O pattern is reading than
writing. We can conclude that although overall BB results
in better performance than GPFS, it is preferable for smaller
transfer sizes and read operations (over write operations).

I Better on BB [Better on GPFS

1.0

Percentage
o ©
[e)] (o]

o
>

o
N

0.0 16k 128k 1m 8m 64m overal

Transfer Size

(a) transfer size

I Better on BB [Better on GPFS

1.0

Percentage
o o
o ©

o
>

©
N

0.0-
RO RAW RAR WAW WO WAR overall

I/O Pattern
(b) I/O pattern

Fig. 14. Plots showing the percentage of runs that perform better on Lassen BB versus GPFS for different transfer sizes and I/O patterns.

VII. MACHINE LEARNING MODELING RESULTS

In this section, we present a comprehensive evaluation of
our ML models. First, we report test accuracy for all classifiers
we have tried on the IOR benchmarking data. Second, we
evaluate our prediction workflow with four real applications
and report the accuracy of the models on real applications.

A. Comparing different ML models

We use the percentage of correct predictions to evaluate our
classifiers. In other words, we compare the predictions with
the ground truth and calculate the percentage of predictions
that match the ground truth. We refer to this metric as the
accuracy. We tried nine different classifiers (Figure 15), and
among them, the Decision Tree classifier gives the highest test
accuracy of 94.47%. Therefore, in the rest of the experiments,
we use the Decision Tree classifier.

The Decision Tree classifier can also output importances
for all input features. Figure 16 plots the importance of all
features. Since our model predicts whether a combination of
I/O features performs better on GPFS or BB, higher feature
importance for model prediction implies that the feature can
be a key factor that distinguishes GPFS and BB. It may also
imply underlying bottlenecks of a certain system. On the other
hand, features with very low importance may be insignificant
for prediction and accuracy. We observe that transfer size and
the number of reads/writes per open are the most important
features, after which the importances drop considerably.

To reduce the number of features we need to use in practice,
we eliminate the least important features recursively until the
accuracy starts to drop significantly. After selecting the set of
important features, we retrain the Decision Tree classifier with
the smaller feature set.

B. Model evaluation using production applications

In the previous sub-section, we showed a test accuracy
of 94.47% for unseen IOR runs. However, IOR is a bench-
mark and we know the I/O features of IOR apriori from

Accuracy of Classifiers

100% -
(o,
B
o 0% oo o I
80% 1 »‘: { ’:‘ KXY .'2 %%
0% T 0% T o o N o % HR %o % %!
Y RS R R 0%
(020 T 0% T 0% N 2% N o0 R
oS %! I« Y R 14
> o R4 IS Y KXl %)
g 60%71 S ooy 5 &
g Y KX b oS % I o3, 0|
5 Y KX b oS %! I o3, R
R4 1KY oo T o % I %o %]
Y oS %o I ¢ o2 I o2 B %% 14
o o, oo T oo I oS I %o I o, %
< 40% 1 f4 kR SRR RS R
0% T o % N 0% I %% JRN oo RN % K1
A IR X Y R RN 1R
B R R ORY RS 0%
oS T %o T oo, I o TR o N %% 1S
oo T ¢ T %o I %o N %! I o' 0%
Y K RY B Y R R
% 1R -----Ko%----- R~ IR 8-~ 1 K
20% 1 R B R RS Doss [5054 XY
oS T %o T oo T o TN o % RN %% X g
[SoS I %o R o R K g
[2oS I %o I o K KK g
oo I o %o TN %o 12! I 0%] b
0% - % | %% %% Ked 6% X e
% S '%,) 4, e QS Y 4—‘4/ % N
U sy o S,) .
Yo, %, O % Y, Oo, %
20 A A ¢ 8,
1) o e & e
N < GJ‘(Xy
0
7

Fig. 15. Accuracy of all tested classifiers. We model whether to put files on
BBs based on the I/O features of an application. We train classifiers with IOR
data produced in our experiments. The dataset contains 2967 samples and we
do a 90-10 split for training and testing. We do 10 random splits and evaluate
the model and take the average accuracy to minimize the possible impact
from certain data splits. We pick the classifier with the highest accuracy to
use in our model.

the configurations of IOR runs. To further evaluate our pre-
diction workflow on real applications, we test it with four
unseen applications: LAMMPS, CM1, Paradis, and HACC-
I0. LAMMPS is a molecular dynamics application, CM1 is
an extreme climate simulator, Paradis is a dislocation dynamics
application, and HACC-IO is the I/O proxy application of
HACC, which is a cosmology application.

First, we run these applications on both Lassen GPFS and
BBs, and trace them with Recorder. Although we only need
a trace on one of the I/O sub-systems to make the prediction,
we need both to obtain the ground truth values. We run them
with configurations from example use cases provided in the
documentation or repositories of these applications. Second,
for each run, we apply our prediction workflow on either

Feature Importance

0.25 1
0.20 - §
(0]
20.15
<
had
2
£ 0.10
0.05 1 é % K ﬂ
0.00 LKL &L & B 1 : EE@@E@@Q@
& %0, 805, % 9 e . M S0, L0 L
90,;;30“/2 * %:’;EZ% %/,(’)’qf;»,ﬂz%j °//e:o?/gy+o U
"%"/é‘@ WG g eco"/'@g;.) 4,
] /O@ﬁ (‘/o .. N /O//
o, Yo% (0}

7

Fig. 16. Feature importances when using a Decision Tree classifier. A higher
value signifies that the feature is more important. For example, the feature
importance of transfer size is 0.23, which suggests that it is important in
deciding whether to use burst buffers.

the GPFS trace or BB trace. As discussed in Section V, the
model predicts which I/O sub-system to use for each file.
Third, we get the ground truth of whether to use BBs for each
file by comparing its I/O bandwidth on GPFS and BBs. We
use the PrismIO io_bandwidth function to obtain the I/O
bandwidths for reading/writing each file. Finally, we compare
the predicted I/O sub-system with the ground truth to calculate
the accuracy metric.

Since our model predicts whether to use BBs for a file
based on its I/O features, each individual file produced by the
runs should be a sample. However, although these applications
write a large number of files, many of them have exactly the
same /O features. For example, one LAMMPS run in our
experiment has 386 different files, but most of them are dump
files. LAMMPS does multiple dumps and it writes files in the
same way for each dump. Such files will have exactly the same
I/O features and the same prediction, meaning they cannot be
used as different samples. Therefore, to create more samples,
we run the applications by varying their input configurations
such as problem size, the number of processes, interfaces, etc.
This results in multiple configurations per application with
different I/O features and thus more samples. We group files
with the same I/O features and treat them as a single sample,
and use average bandwidth to figure out the ground truth for
the group. In total, we have 121 samples in our test data set.

Figure 17 demonstrates the test accuracy for production
applications. We achieve 95.86% accuracy on the whole test
data set. For the individual applications, we achieved 92%,
96.55%, 96.67%, and 100% accuracy for LAMMPS, CMI,
Paradis, and HACC-IO respectively. This shows that training a
classifier model using the highly configurable IOR benchmark
leads to a significantly high test accuracies for even production
applications which were not present in the training data, and
may have more complex I/O patterns.

100% Model accuracy on unseen real applications
4 - aie

X3

,v
2958
X

4
A

z'zgz
RRRRRK

e
020

80% 1

KX
0’0
XX
Pe%ete

A
53
A" .’.

%
9

908

%%
XX

60% -

%

95000
&

1Pe%e%e

v
&
%%

Accuracy
XX
5
.’.

TSRS
LHKKK
22585
KRS

X

<

059

Q
o0
0%

BIKS
BIKK]

XK
2

40% -

val

g

,v
X
020

20% A

.,.
XX
R
XXX
0% 099,99
%
%

.
ZS
3%
2
X
XX
%
9
b0t

%
X

o
Ya%%Y%

39;
%
155
'...
—~
RZ
o

RS

T

0% 25 a
HACCIO Overall

LA

PS CMI Paradis

X

Fig. 17. Accuracy of our prediction workflow for four real applications. We
trace these four applications and feed their trace into our workflow to obtain
predictions for the better-performing I/O sub-system. For prediction, users
only need one trace on any system. But since we need to use ground truth
to compute the accuracy, we run them on both systems and compute the
bandwidth of each file from their trace. Overall we achieve a good accuracy
of 95.86%.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented PrismIO, a Python-based library
that enables programmatic analysis of I/O traces. It provides
an API for users to analyze I/O performance efficiently. Using
PrismIO, we showed two case studies that demonstrate the
use of PrismlIO for detailed I/O analyses, and for explaining
the causes of performance issues on Lassen GPFS and burst
buffers. The case studies demonstrate the potential of PrismIO
in making data analytics of I/O traces quick and convenient
for the end user.

We also presented an ML-based workflow that predicts
whether to put files on burst buffers or not based on the
I/O characteristics of an application. We used IOR to create
training data and showed that the model achieved 94.47%
accuracy on unseen IOR data. We also developed feature
extraction functions in the PrismlO API to automate the
process of creating training data from new applications. We
demonstrated that the ML model achieves 95.86% overall
accuracy on four real applications.

In the future, we plan to apply the same methodology
to build prediction workflows for other platforms that have
burst buffers. Moreover, the current feature extraction APIs
are not fast enough, therefore, we plan to improve their
performance by designing faster algorithms and creating APIs
that extract multiple features at the same time. We believe that
this will make our prediction workflow more efficient for large
application runs.

ACKNOWLEDGMENT

This work was performed in part under the auspices of the
U.S. Department of Energy (DOE) by Lawrence Livermore
National Laboratory under Contract DE-AC52-07TNA27344
(LLNL-CONF-858971). This material is based upon work sup-
ported in part by the National Science Foundation under Grant
No. 2047120. This research used resources of the Oak Ridge

Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. DOE under Contract No. DE-AC05-000R22725.

[1]

[2]
[3

=

[4]

[5

=

[6]

[7

—

[9]
[10]

(11]

[12]

REFERENCES

A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the i/o of hpc applications under congestion,” in 2015 IEEE
International Parallel and Distributed Processing Symposium, 2015, pp.
1013-1022.

N. T. Hjelm, “libhio: Optimizing io on cray xc systems with datawarp,”
2017.

T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu, “An ephemeral
burst-buffer file system for scientific applications,” in SC ’16: Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2016, pp. 807-818.

K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R.
de Supinski, and S. Matsuoka, “Design and modeling of a non-blocking
checkpointing system,” in SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1-10.

B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello,
“Veloc: Towards high performance adaptive asynchronous checkpointing
at large scale,” in 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2019, pp. 911-920.

K. Sato, K. Mohror, A. Moody, T. Gamblin, B. R. d. Supinski,
N. Maruyama, and S. Matsuoka, “A user-level infiniband-based file sys-
tem and checkpoint strategy for burst buffers,” in 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2014,
pp. 21-30.

'W. Bhimji, D. Bard, M. Romanus, D. Paul, A. Ovsyannikov, B. Friesen,
M. Bryson, J. Correa, G. K. Lockwood, V. Tsulaia, S. Byna, S. Farrell,
D. Gursoy, C. Daley, V. Beckner, B. Van Straalen, D. Trebotich,
C. Tull, G. H. Weber, N. J. Wright, K. Antypas, and n. Prabhat,
“Accelerating science with the nersc burst buffer early user program,”
1 2016. [Online]. Available: https://www.osti.gov/biblio/1393591

A. Ovsyannikov, M. Romanus, B. Van Straalen, G. H. Weber, and
D. Trebotich, “Scientific workflows at datawarp-speed: Accelerated
data-intensive science using nersc’s burst buffer,” in 2016 Ist Joint
International Workshop on Parallel Data Storage and data Intensive
Scalable Computing Systems (PDSW-DISCS), 2016, pp. 1-6.

“Tor.” [Online]. Available: https://ior.readthedocs.io/en/latest/index.html
Y.-F. Guo, Q. Li, G.-M. Liu, Y.-S. Cao, and L. Zhang, “A distributed
shared parallel io system for hpc,” in Fifth International Conference on
Information Technology: New Generations (itng 2008), 2008, pp. 229—
234.

Using Ic’s sierra systems. [Online].
hpc.lInl.gov/documentation/tutorials/using-lc-s-sierra-systems
L. Cao, B. W. Settlemyer, and J. Bent, “To share or not to share:
Comparing burst buffer architectures,” in Proceedings of the 25th High
Performance Computing Symposium, ser. HPC *17. San Diego, CA,
USA: Society for Computer Simulation International, 2017.

Available:

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

B. R. Landsteiner, D. Henseler, D. Petesch, and N. J. Wright, “Archi-
tecture and design of cray datawarp,” 2016.

L. Pottier, R. F. da Silva, H. Casanova, and E. Deelman, “Modeling
the performance of scientific workflow executions on hpc platforms
with burst buffers,” in 2020 IEEE International Conference on Cluster
Computing (CLUSTER), 2020, pp. 92-103.

Pydarshan documentation
3.3.1.0 documentation.

[Online].

pydarshan
Available:

https://www.mcs.anl.gov/research/projects/darshan/docs/pydarshan/index.html

P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,
and R. Ross, “Understanding and improving computational
science storage access through continuous characterization,” ACM
Trans. Storage, vol. 7, mno. 3, oct 2011. [Online]. Available:
https://doi.org/10.1145/2027066.2027068

C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, “Recorder
2.0: Efficient parallel i/o tracing and analysis,” in 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2020, pp. 1-8.

G. K. Lockwood, S. Snyder, S. Byna, P. Carns, and N. J. Wright, “Under-
standing data motion in the modern hpc data center,” in 2019 IEEE/ACM
Fourth International Parallel Data Systems Workshop (PDSW), 2019, pp.
74-83.

T. Wang, S. Byna, G. K. Lockwood, S. Snyder, P. Carns, S. Kim, and
N. J. Wright, “A zoom-in analysis of i/o logs to detect root causes
of i/o performance bottlenecks,” in 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2019,
pp. 102-111.

A. Bhatele, S. Brink, and T. Gamblin, “Hatchet: Pruning the overgrowth
in parallel profiles,” in Proceedings of the ACM/IEEE International
Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC 19, Nov. 2019, ILNL-CONF-772402. [Online].
Available: http://doi.acm.org/10.1145/3295500.3356219

A. Bhatele, R. Dhakal, A. Movsesyan, A. K. Ranjan, and O. Cankur,
“Pipit: Scripting the analysis of parallel execution traces,” 2023.

D. Quintero, J. Bolinches, J. Chaudhary, W. Davis, S. Duersch, C. H.
Fachim, A. Socoliuc, and O. Weiser, “Ibm spectrum scale (formerly
gpfs),” 2020.

H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the
i/o performance of hpc applications using a parameterized synthetic
benchmark,” in SC "08: Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, 2008, pp. 1-12.

J. M. Kunkel, J. Bent, J. Lofstead, and G. S. Markomanolis, “Establish-
ing the i0-500 benchmark,” 2017.

W. McKinney, Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython. O’Reilly Media, 2017.

, “Data structures for statistical computing in python,” in Proceed-
ings of the 9th Python in Science Conference, S. van der Walt and
J. Millman, Eds., 2010, pp. 51 — 56.

