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Abstract—Graphics processing units (GPUs) are becoming
increasingly popular in modern HPC systems. Hardware for data
movement to and from GPUs such as NVLink and GPUDirect
has reduced latencies, increased throughput, and eliminated
redundant copies. In this work, we use discrete event simulations
to explore the impact of different communication paradigms
on the messaging performance of scientific applications running
on multi-GPU nodes. First, we extend an existing simulation
framework to model data movement on GPU-based clusters. Sec-
ond, we implement support for the simulation of communication
paradigms such as GPUDirect with point-to-point messages and
collectives. Finally, we study the impact of different parameters
on communication performance such as the number of GPUs
per node and GPUDirect. We validate the framework and then
simulate traces from GPU-enabled applications on a fat-tree
based cluster. Simulation results uncover strengths but also
weaknesses of GPUDirect depending on the application and their
usage of communication primitives.

Index Terms—performance prediction, simulator, GPGPU, het-
erogeneous architectures

I. INTRODUCTION

The use of general-purpose graphics processing units (GPG-
PUs) in modern high performance computing (HPC) systems
is becoming increasingly popular, with seven of the ten fastest
machines on the Top500 list using GPUs to speed up com-
putation in November 2022 [1]. The continued improvement
in GPU communication technologies has made GPUs first-
class computation devices with the ability to directly exchange
messages with one another, both within and across compute
nodes. Hardware for data movement to and from GPUs such
as NVLink and enhancements in system software such as
GPUDirect has reduced latencies, increased throughput, and
eliminated redundant copies during data movement between
different system components.

While GPUs on HPC systems have dramatically increased a
node’s computing capabilities, the interconnect bandwidth per
flop/s has not increased at the same rate even on high-end sys-
tems such as Summit and Sierra. The objective of this work is
to explore the impact of using a large HPC system with multi-
GPU nodes and modern GPU communication paradigms such
as NVLink and GPUDirect on the messaging performance of
scientific applications. Moving data directly between GPUs
using technologies such as GPUDirect requires modification
to the application code. To assess the performance impact
of making such changes before the developer makes exten-

sive modifications, we use parallel discrete event simulations
(PDES) to study such what-if scenarios.

Most current network simulators treat the compute node
as a black box and only model network communication to
and from the node. In order to simulate direct communication
between GPUs, GPUs need to be treated as first class objects
in the network simulation. We use the TraceR-CODES [2]
simulation framework that replays MPI execution traces using
PDES to predict the communication performance of parallel
codes. Explicitly simulating communication between the GPU
and the network requires modifications to the traces used for
simulation and also to the network simulation framework. We
extend the Score-P OTF2 library [3] to annotate MPI calls
with locations of the MPI send/receive buffers, which allows
us to identify whether the buffers are in GPU memory or host
memory. This allows us to predict the performance of the code
if the buffers were read from GPU memory instead of host
memory for instance.

We also extend TraceR-CODES to explicitly model GPUs,
and communication between GPUs or between the host and
GPUs with both point-to-point and collective MPI commu-
nication. We add functionality to replay any MPI messages
that send data from CPU buffers as though they were sending
data from GPU memory instead, using GPUDirect communi-
cation. We utilize these what-if capabilities to evaluate how
application performance differs when using different commu-
nication paradigms, and identify the main factors contributing
to GPUDirect benefits today. We also identify communication
patterns largely unaffected by GPUDirect today, which can
help in procurement, application tuning, and future enhance-
ments of GPUDirect. Several scientific applications are yet to
take advantage of GPUDirect. For those, our results provide
guidance in determining the potential impact of GPUDirect
before investing time into code refactoring.

II. BACKGROUND

We provide a brief overview of modern GPU-based archi-
tectures and the TraceR-CODES simulation framework used
for performance predictions in this work.

a) GPU-based Node Architectures: Over the last decade,
GPGPUs have been used to drive scientific computations
and have led to tremendous improvements in performance
and energy efficiency, particularly for numerical kernels [4].
The development of frameworks and languages, such as



NVIDIA’s Compute Unified Device Architecture (CUDA) [5]
and the Open Compute Language (OpenCL) [6], have further
contributed to establishing GPUs as first-class computational
devices in HPC systems. Recently installed supercomputers
such as Sierra and Summit rely predominantly on GPGPUs
for their peak flop/s. The logical design of a node on the
Sierra system is shown in Figure 1, featuring four high-end
GPUs connected to two Power 9 CPUs via NVLink. The CPUs
have access to non-volatile memory (NVMe) serving as burst
buffers. Summit has six GPUs per node in a similar design.

Fig. 1. Organization of a compute node on the Sierra supercomputer at
Lawrence Livermore National Lab (LLNL).

The trend of delegating more and more computation to
GPUs has spurred the development of modern interconnects
such as NVLink [7] and communication methods such as
GPUDirect [8]. While previous generations of GPUs were
connected over slower Peripheral Component Interconnect
Express (PCI-E) interfaces (green lines in Figure 1), newer
GPUs with NVLink (depicted using blue lines) significantly
increase throughput between GPUs, and GPUs and CPUs on
a node. Prior to GPUDirect, data subject to communication
between GPUs on the same node or between GPUs on
different nodes required multiple copies, i.e., from GPU high-
bandwidth memory (HBM) via NVLink and over the memory
bus (red) to the host DRAM on the sender. We refer to this
mode as HostCopy throughout the paper. GPUDirect avoids
these extra copies by enabling data to be sent directly to the
NIC from the GPU device’s DRAM via NVLink and PCI-E.
The GPUDirect transfers are still initiated by the CPU but the
memory copies between the CPU DRAM and GPU HBM can
be avoided.

b) Parallel Discrete Event Simulation with TraceR-
CODES: Parallel Discrete Event Simulation (PDES) uses a
sequence of events to model a system with each event resulting
in a change in the state of the system.

The TraceR-CODES (https://github.com/hpcgroup/TraceR)
simulation framework can be used to predict the performance

of production applications by performing packet-level simula-
tions of communication in parallel workloads running in HPC
environments. CODES provides models for several network
topologies such as fat-tree, dragonfly, torus etc. Rensselaer’s
Optimistic Simulation System (ROSS) is the discrete-event
simulation engine used by TraceR-CODES. ROSS models
each component in the system (MPI processes, switches, etc.)
as a Logical Process (LP) that communicates with other LPs
using time-stamped messages. We go into detail about some
of the components of TraceR.
CPU LPs: Each CPU LP in TraceR acts as an MPI rank for
an application. A list of timestamped MPI operations, usually
read from a trace file, is associated with the CPU LP. These
LPs communicate with each other through the network model
using events during simulation. They also model compute
loops by waiting for the appropriate time read from the trace.
MPI Model: The MPI model in TraceR is responsible for
modeling the MPI layer of an application. It dictates the
protocol to utilize for point-to-point MPI messages (explained
in Section III), the algorithms for collective communication,
and the expected behavior for synchronous and asynchronous
sends and receives.
OTF2 Traces and Reader: Simulations using TraceR-
CODES require capturing MPI execution traces for each
parallel application. In order to collect these traces, we use
the Score-P library that generates traces in the OTF2 format.
The OTF2 Reader in TraceR takes the application trace file as
input and associates operations in the trace file to each of the
MPI ranks (CPU LPs). For each MPI operation it records the
necessary information in order to replay the operation during
simulation: type of MPI operation, the destination/source for
MPI Send/Receive messages, the root for collective commu-
nication, the size of the payload, etc.

III. SIMULATING COMMUNICATION & GPUS

In the current implementation of TraceR, GPUs and their
communication are not modeled explicitly. For this study,
to be able to model the impact of NVLink and GPUDirect
technologies, we had to add the notion of independent GPU
LPs to the simulation framework. Since TraceR uses OTF2
traces to simulate applications, we also need to extend Score-
P and OTF2 traces to record additional information that can
distinguish GPUDirect MPI calls from regular HostCopy MPI
calls. Below, we describe the changes to Score-P and the OTF2
traces, the model of the GPU LP and the associated operations
and communications.

a) Score-P and OTF2: We extend the Score-P MPI
backend to query the CUDA runtime for the location of the
buffer pointer passed to the MPI call and then annotate the
OTF2 trace file with information about the location of this
buffer. We annotate each MPI event with a flag denoting
whether the buffer was in CPU memory or GPU memory.
On the simulator end, we enhance the OTF2 reader in TraceR.
During initialization of the simulation, the tasks for each server
LP are read from the trace file, flagging each operation as
either MPI call or a GPUDirect call using the annotations.



Further, we enhance TraceR-CODES to support replay of
regular MPI HostCopy calls as GPUDirect calls, which enables
simulation of GPUDirect using traces collected for a non-
GPUDirect version of the code.

b) The GPU Logical Process: We augment the server LP,
which represents an MPI process in our simulation, with an
additional GPU LP. There is a one-to-one mapping between
a server LP and a GPU LP, which gives each MPI process
exclusive control over its GPU. This means that in the current
implementation, each MPI rank can only control one GPU.
So, if there are n GPUs on a node, we simulate n MPI
processes on it. As the simulation proceeds, server LPs are
assigned events by the simulator from the execution traces
during simulation initialization. The GPU LPs wait to receive
events from other LPs to execute their corresponding tasks.

During the simulation initialization process, TraceR reads
the respective tasks that need to be assigned to each process
or server LP. The GPU LPs are not assigned tasks during
initialization but receive events from either their associated
server LP or other GPU LPs, both inter-node and intra-node.
The time between these communication triggered events is
used to model either an idle GPU or a GPU engaging in
active computation. The parameters added to TraceR-CODES
to support GPU LPs and modeling of their associated com-
munication are shown in Table I.

TABLE I
NEW TRACER-CODES PARAMETERS FOR GPUS

Parameter Description Value

gpu copy enabled Enable HostCopy 1 (for HostCopy)
simulation 0 (for GPUDirect)

gpudirect enabled Enable GPUDirect 1 (for GPUDirect)
simulation of regular 0 (for HostCopy)
MPI calls

gpu copy delay Latency for cudaMemcpy 20000ns

gpu copy per byte Copy cost per byte 0.07ns
for cudaMemcpy

gpudirect delay Cost of GPUDirect 4000ns
memory pinning

c) Simulating HostCopy: The simulation of HostCopy
communication uses the packet-level modeling already im-
plemented in TraceR albeit with the added time to copy the
message buffer from the host DRAM to the GPU, or vice
versa. An MPI operation is recorded as a HostCopy operation
when the OTF2 reader in TraceR determines that the location
of the message buffer is the CPU. We add parameters to denote
the latency and per-byte cost of cudaMemcpy calls (Table I).
In the simulation, this delay is added to the messaging time
to facilitate comparison with GPUDirect performance. Apart
from this delay, the simulation proceeds as if simulating
regular MPI communication.

d) Simulating GPUDirect: MPI implementations use two
different protocols for send/receive operations based on the

size of the message: eager and rendezvous. The eager protocol
allows a sender to send the message to the receiver without
having to receive an acknowledgment from the receiver. The
eager protocol is used for smaller message sizes (decided
by the EAGER LIMIT parameter in MPI). The rendezvous
protocol is used for larger message sizes and requires the
sender to receive a notification from the receiver that the
corresponding receive has been posted and a buffer is available
for the incoming message.

We extend TraceR to add various GPU LP-related events
to enable simulating GPUDirect communication. These events
support coordination between the GPU LPs and their associ-
ated CPU LPs:
• GPU SEND: This event is used by the sender server LP
to inform its associated GPU LP that it should initiate a
GPUDirect send.
• GPU RECV: The GPU RECV event is used by the sender
GPU LP to inform the receiver GPU LP of an incoming
GPUDirect message. This event also carries the MPI payload.
• GPU SEND DONE: This event is used by the sender GPU
LP to inform the sender CPU LP that GPUDirect communi-
cation has been completed.
• GPU RECV DONE: The receiver GPU LP uses this event
to inform the receiver server LP that a GPUDirect message
has been received.

A timeline of the simulation of the GPUDirect rendezvous
protocol as implemented in TraceR-CODES is shown in Fig-
ure 2. The sender server LP sends a Request to Send (RTS)
to the receiver server LP. Once a corresponding receive has
been posted, the receiver informs the sender with a Clear
to Send (CTS) message. The sender server LP then informs
its associated GPU LP to initiate a GPUDirect send to the
receiving GPU LP. Once the message has been transmitted
to the receiver GPU LP, the sender and receiver GPU LPs
inform their respective server LPs using GPU RECV DONE
and GPU SEND DONE events, respectively.

In addition to simulating point-to-point GPUDirect com-
munication, we also implement the modeling of GPUDirect
for some of the most popular MPI collectives encountered
in HPC applications, namely MPI Broadcast, MPI Reduce,
MPI Allreduce, MPI Allgather and MPI Alltoall. The imple-
mentation of these collectives has been facilitated by using
control messages between the CPU and GPU as well as
GPUDirect communication between the GPUs. We use tree-
based implementations for modeling GPUDirect collective
communication. Our algorithms are based on the implemen-
tation of collectives in TraceR for standard MPI collectives,
which dominate the benchmarks studied.

We add a parameter to represent the cost of pinning the GPU
memory address with the GPU DMA engine in preparation
of sending the message (gpudirect delay in Table I). GPU
memory is pinned in BAR using the CUDA kernel driver [9].
This introduces an overhead especially for small messages. We
simulate NVLink communication using the intra-node band-
width and node copy queues (NCQ) parameters in TraceR-
CODES. The former specifies the bandwidth of the intra-node
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Fig. 2. GPUDirect messaging in TraceR-CODES.

bus to be used in the simulation, in this case NVLink. The
latter indicates the number of queues to be used for the intra-
node communication.

e) Validation: We validate our simulation models by
timing an MPI Send/Recv between a pair of nodes on Lassen
for both the HostCopy and GPUDirect scenarios for a range
of message sizes. We time the MPI calls for 100 iterations
and validate against the average time of the latter 90 iterations
(ignoring the first 10 due to caching effects). We then simulate
the traces of the Send/Recv pairs for each message size with
both our GPUDirect and HostCopy models. Figure 3 depicts
the results of the validation experiments. Both plots use log
scales on their y-axes denoting elapsed time and plot the
size of an MPI message on the x-axis. We can see from the
validation results that the time for Send/Recv pairs increases
linearly with the size of the message. For both GPUDirect
and HostCopy, we observe that our models are quite accurate
with the average error for GPUDirect is less than 16% for
messages that are of size 32KB or greater and for HostCopy
is less than 13%. While we see a larger error for GPUDirect
for small messages, they do not have a significant impact on
our simulations since SW4lite and Minisweep (see Sect. IV)
exclusively use large messages (680KB to 11.5MB for SW4lite
and 4MB to 8MB for Minisweep). Messages of size less than
32KB account for only about 4% and 0.6% of the messaging
payload for AmgX and Lulesh, respectively.

IV. EXPERIMENTAL DESIGN

We first describe the system and network for simulation
studies and the four applications subject to trace generation.

a) Simulated GPU-based System: We set up a GPU
cluster with 810 nodes and 45 leaf-level switches connected by
a 3-level tapered fat-tree network EDR Infiniband [10]. This
is resembling the Lassen supercomputer [11], with a 1.5:1
tapering on the fat-tree. While we collect traces on the Lassen
supercomputer as well as model the simulated system based
on Lassen, we run our simulations on the Quartz system at
LLNL [12]. Quartz is a ≈3000 node machine with Intel Xeon
CPUs and a Cornelis Omni-Path network.
Node Configurations: We keep the number of nodes in the
system constant but vary the number of GPUs per node – 1, 2,

4 and 6 GPUs/node. Each MPI process gets exclusive use of
its GPU. Therefore, we simulate 1, 2, 4 and 6 processes/node
configurations for the different numbers of GPUs/node. This
allows us to compare the performance on different GPU-based
systems such as Sierra (4 GPUs/node), Summit (6 GPUs/node)
and Piz Daint (1 GPU/node). We set the intra bandwidth
parameter to the bandwidth of NVLink in Lassen and Sierra,
which is 75 GB/s. We also set the GPUDirect delay, CUDA
host copy delay and CUDA copy per byte parameters based
on experiments on the Lassen supercomputer.

Simulation Considerations: We base our simulations on the
following design decisions:
• Communication protocol: While HostCopy simulations use
both the eager and rendezvous protocols based on message
size, GPUDirect simulations use only the rendezvous protocol.
This reflects the Open MPI implementation, which does not
use the eager protocol under GPUDirect [13]. Our experiments
focus on bulk MPI messaging since the vast majority of HPC
applications use this paradigm for communication.
• Exclusive GPU use: Each MPI process in our simulation
has exclusive access to a GPU. While multiple processes can
share a GPU, in practice, most HPC applications exclusively
allocate a GPU to a process.
• Process-to-node mapping: We use a linear mapping to
allocate processes to nodes, where processes are assigned to
nodes in MPI rank order.

b) Applications: We collect traces from four proxy ap-
plications for the simulation experiments. All applications are
run in weak scaling mode, and we only instrument the main
computation loop in each application to generate traces. For
each application, we collect traces on Lassen using 4 MPI
processes per node with an exclusive GPU. We chose appli-
cations specifically to cover a wide variety of patterns with
point-to-point and collective messages as well as small and
large message sizes, all of them using MPI and GPUs (with
CUDA) for computation. We describe the proxy applications
and their input parameters below.
AmgX [14] is NVIDIA’s version of a Distributed Algebraic
Multigrid Solver Library. It is a GPU-accelerated solver for
sparse linear systems. For our trace collection, we use the 7-
point Poisson example application in AmgX. We collect traces
for 32, 64, 128 and 256 processes while weakly scaling the
application to maintain the same problem size per process.
LULESH [15] is a shock hydrodynamics proxy application
developed at LLNL. The number of MPI processes it can use
is constrained by n3, where n ∈ N . Given this constraint we
collect traces for 27, 64, 125 and 216 processes with weak
scaling. We collect traces for a structured mesh size of 1443

running for 100 iterations repeatedly for 10 times.
Minisweep [16] is a deterministic Sn radiation transport
miniapp developed at Oak Ridge National Laboratory. Similar
to AmgX, we perform weak scaling of Minisweep on Lassen
and collect traces for execution sizes of 32, 64, 128 and 256
processes over 10 iterations.
SW4lite is a proxy application for SW4 [17], a code for
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Fig. 4. Time spent in computation vs. communication (MPI routines) over different number of processes.

solving seismic wave equations in Cartesian coordinates. We
capture traces for SW4lite for 100 iterations and weakly scale
the application for 32, 64, 128 and 256 processes.

c) Communication Behavior: We use Vampir [18] to
analyze the collected application traces to ascertain the amount
of time each application spends in computation vs. the time it
spends in MPI routines. This analysis provides a preliminary
estimate of how much of the application runtime can be
affected by either GPUDirect, or the different node configura-
tions. We aggregate the time spent in all MPI communication
functions to get the total MPI time of the application. Figure 4
shows the results from this analysis.

AmgX (Figure 4(a)) spends a small amount of time in MPI
routines ranging from 5.3% for 32 ranks to 7.2% for 256
ranks indicating that even large improvements in MPI time
will not significantly improve the overall performance of the
application. Each MPI rank communicates with 4 other ranks
and exchanges the same number of messages.

For Minisweep (Figure 4(c)), the overall execution time is
dominated by the MPI routines. MPI time ranges from 76.0%
for 128 ranks to 81.7% for 64 ranks. Minisweep can greatly
benefit from improvements in communication time as each
rank communicates with 2-26 other ranks.

For applications such as LULESH (Figure 4(b)) and



SW4lite (Figure 4(d)) we observe that a moderate amount
of time is spent in MPI routines. LULESH spends between
28.1% (for 64 ranks) to 31.9% (for 125 ranks) of its execution
time inside MPI routines. Similarly, SW4lite spends between
34.3% (for 64 ranks) and 42.5% (for 256 ranks) in MPI
routines. The benefit accorded to the overall execution by
reducing messaging time for these applications will largely
depend on the quantum of improvement in messaging time.
Both these applications have each MPI rank communicating
with 2-4 other ranks with the same number of messages. Slight
variations in communication/computation ratio are caused by
variations in the state of the system when the traces were
collected and due to the communication characteristics of the
application for different rank sizes. This static analysis can be
used to determine if it is worthwhile to invest in improving the
MPI performance of the application either using GPUDirect
or by changing the number of ranks on each node.

V. RESULTS

This section presents the results obtained from simulating
executions via the traces for the node configurations described
previously. For each application, we also simulate the effect
of implementing GPUDirect. We assess the performance of
GPUDirect and HostCopy by comparing the time each applica-
tion spends in MPI routines (for GPUDirect) and MPI routines
+ CUDA memcpy calls (for HostCopy) for both the weak
scaling and the strong scaling scenarios. Finally, we discuss
the impact of the node configuration on each application by
varying the number of ranks (GPUs) per node.

Performance improvements of GPUDirect benefit inter-node
communication in large due to omission of cudaMemcpy calls
since any MPI communication uses the same interconnect
irrespective of HostCopy or GPUDirect.

a) Weak Scaling Scenario: Figure 5 depicts speedups
in communication time for GPUDirect over HostCopy per
application under weak scaling.
Observation 1: Some applications benefit more than others
from GPUDirect communication. Lulesh has only up to a 3%
improvement in communication performance while SW4lite
shows up to a 75% improvement in communication perfor-
mance with GPUDirect.

There is a substantial improvement in communication time
for SW4lite (Figure 5d) when using GPUDirect in lieu of
HostCopy, with a 15.8%-74.4% speedup of the former over the
latter. For AmgX (Figure 5a), we observe that GPUDirect is
faster by 16.2%-17.6% compared to HostCopy. For Minisweep
(Figure 5c), this difference ranges from 0.1% for 128 ranks to
7.9% for 64 ranks, and for LULESH (Figure 5b) the difference
is small (less than 3%).
Observation 2: The impact of reduced communication on
overall application runtime under GPUDirect varies signif-
icantly depending on communication to computation ratio.
Assessing both this ratio as well as the improvement due
to GPUDirect helps in determining viable candidates for a
GPUDirect implementation. Our experiments show that AmgX

with only 5% communication is not a viable candidate while
SW4lite with 40% communication is ideal.

SW4lite spends up to about 42% of its execution time in
MPI calls with up to a 74% improvement in communication
performance when GPUDirect is used. Such applications can
be expected to exhibit significantly improved execution times
with GPUDirect. Although there seems potential, later results
indicate hidden costs (e.g., due to DMA) that outweigh the
benefits, i.e., message size alone is not a sufficient condition.
Minisweep (Figure 4c) spends up to about 81% of its execution
time in communication. For such applications, the modest
improvement under GPUDirect (up to 7.9%) can have a signif-
icant impact on the overall execution time of the application.
In contrast, AmgX spends only about 5.3%-7.2% of its time in
communication (Figure 4a). Even though this results in up to a
18% improvement in GPUDirect performance over HostCopy,
the small time AmgX spends in communication limits the
overall benefit in execution time under GPUDirect. Finally,
LULESH spends a non-trivial amount of time in MPI (up to
32%), but small improvements in communication performance
makes it unsuitable for retrofitting with GPUDirect.
Observation 3: The improvement in GPUDirect performance
for an application depends on the characteristics of the MPI
messages. The size of MPI messages as well as collective vs.
point-to-point communication characteristics have an impact
on GPUDirect performance.

The benefit of using GPUDirect over HostCopy is most
evident when MPI message sizes are large. In particular, Min-
isweep utilizes predominantly large MPI messages of either
4MB or 8MB. Similarly, SW4lite uses message sizes of about
64KB (50% of MPI messages) or about 12MB (the remaining
50% of messages). For Minisweep we see that GPUDirect
performance can be worse than HostCopy in certain cases
(e.g., Figure 5c for 2 GPUs at 64 and 128 processes) even
though Minisweep utilizes large message sizes. This is because
(as is evident from Fig 4c) Minisweep spends a vast majority
of its time in communication and is bound by the intra
and inter node bandwidths. Furthermore, using GPUDirect
adds additional overhead of pinning GPU memory addresses
to the GPU DMA engine, sometimes resulting in inferior
performance to HostCopy. AmgX has a large distribution of
message sizes: About 8% of messages are greater than 500KB,
17% have sizes of 100KB-500KB, and 71% range from
1KB-100KB. Experiments further indicate that AmgX benefits
from GPUDirect collectives, dominated by MPI Allreduce.
For smaller message sizes, the performance improvement is
modest. The size of MPI messages ranges between 24B to
7KB for LULESH accounting for more than 44% of MPI
messages, and an equal number (44%) of MPI messages are
in the 7-512KB range. Only about 11% of MPI messages are
around 1MB. This results in only a negligible improvement
in GPUDirect performance. While other factors also play a
role, results show that message size is a significant factor for
benefits from GPUDirect.

b) Strong Scaling Scenario: We conducted experiments
using strong scaling traces collected for each application and



 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

32 64 128 256

Sp
ee
du
p

Number of processes

1 GPU/Node
2 GPUs/Node

4 GPUs/Node
6 GPUs/Node

(a) AmgX

 0.9

 0.95

 1

 1.05

 1.1

27 64 125 216

Sp
ee
du
p

Number of processes

(b) Lulesh

 0.9

 0.95

 1

 1.05

 1.1

 1.15

32 64 128 256

Sp
ee
du
p

Number of processes

(c) Minisweep

 1

 1.2

 1.4

 1.6

 1.8

 2

32 64 128 256
Sp
ee
du
p

Number of processes

(d) SW4lite

Fig. 5. Weak Scaling: Predicted speedup in comm. time for GPUDirect over HostCopy (baseline), see text for std-dev.
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rank size. We also conducted experiments while strong scaling
the applications from 32-256 ranks (Figure 6). We see the
speedup in communication time achieved with GPUDirect
(instead of HostCopy) for each configuration. Results indicate
improvements of GPUDirect similar to that in the weak scaling
experiments across all applications. For AmgX, GPUDirect
results in improvements of 18%-29% over HostCopy, and for
SW4lite improvements range from 18%-77%.

Marginal improvements exist under GPUDirect for Min-
isweep with only a 11% improvement over HostCopy in the
best case, just as for weak scaling. Experiments with LULESH
also show that GPUDirect is only approx2%-6% faster than
HostCopy during strong scaling.

c) Effect of Node Configuration: We investigated the
effect of node configurations on the communication perfor-
mance of applications. HPC centers procure machines with
varying performance characteristics, the Sierra and Lassen
supercomputers at LLNL have four GPUs per node while
Summit at ORNL has 6 GPUs per node. Piz Daint at CSCS has
one GPU per node. Increasing the number of GPUs per node
increases the peak performance of the machine while keeping
the number of nodes constant, thus reducing the network and
server costs. GPUs on different nodes communicate over the
inter-node network, which is Infiniband for Lassen, Sierra and
Summit. GPUs on the same node communicate over the intra-
node networks, e.g., NVLink.

While Figure 5 shows speedup numbers for communication,
we also need to consider absolute time to understand the
impact of the number of GPUs. Figure 7 depicts the execution
time of Minisweep across various node configurations while
weakly scaling. The overall execution time can be split into
computation and communication time. Because we are weakly
scaling, the computation time remains about the same across
different rank sizes. Increasing the number of GPUs (ranks)
on a single node reduces the number of nodes required for an
execution with the same number of ranks. Adding more GPUs
opens up more opportunities for intra-node communication
(over NVLink) since there are more ranks on the same node.
In our simulations, we allocate each rank to its own GPU.
Observation 4: Adding more GPUs (and subsequently more
ranks) decreases the performance of applications. Further-
more, larger application runs are impacted more than smaller
ones. The communication performance of Lulesh is not im-
pacted by adding more GPUs to the node while Minisweep
experiences a communication degradation with more GPUs,
namely up to 242% for 6 GPUs/node.

The experiments show that while the high-speed intra-node
network is used, the overall communication runtime of an
application increases when more ranks are added to the same
node. SW4lite and Minisweep see the largest performance
penalty when more ranks are allocated to the same node in
terms of speedup (Figure 5) and absolute time (Figure 7). For
SW4lite, the total communication time increases by 23.9%-
39.8% for 32 ranks and up to 118%-227% for the 256 ranks
when increasing the number of ranks from one per node to
6 per node whereas the overall execution time increases by

9.1% for 32 ranks to 50.4% for 256 ranks. This is because
SW4lite spends only about 40% of its time on communication.
Similarly, Minisweep suffers a performance penalty of 47.6%-
52.6% for 32 ranks and up to 222%-242% for 256 ranks when
going from one rank per node to six ranks per node. This
also has a severe effect on the overall execution time since
Minisweep spends a vast majority of its execution time on
communication. The execution time increases by 36.9% for
32 ranks and up to 169.7% for 256 ranks. For AmgX, the
communication performance decrease is smaller, ranging from
2.4%-3.3% for 32 ranks and from 6.2%-7.4% for 256 ranks
when comparing one rank per node to six ranks per node.
Finally, the communication performance for LULESH remains
roughly the same regardless of the number of ranks allocated
to each node. For 27, 64 and 125 ranks, the communication
performance remains the same, and for 216 ranks, an increase
in communication time of only about a 1% is observed
when modulating the number of ranks per node from one
to six. The standard deviation in the communication time for
different ranks is quite low: 0.34-0.42 for AmgX, 0.09-0.11 for
Lulesh, 0.01-0.02 for Minisweep, and 0.07-0.12 for SW4lite.
This indicates that the traces do not experience high jitter;
otherwise, the standard deviation would be significantly higher.

The rise in communication cost while increasing the number
of ranks per node is due to higher contention for the shared
NIC on the node. As the number of ranks per node increases,
more ranks are engaging in MPI communication with ranks
outside the node. This causes contention on the node-local
NIC. While there is sufficient bandwidth available on the intra-
node interconnect, the increased requirement for inter-node
communication causes a bottleneck at the node boundary.

Under strong scaling, the communication performance of
applications degrades as more GPUs are added to the node, just
as for weak scaling before. For AmgX, communication time
increases modestly by 3.2% for 32 ranks and up to 10% for 64
ranks while the increase in communication time for Lulesh is
negligible (< 1%). Yet, SW4lite and Minisweep have signifi-
cantly reduced communication performance as more GPUs are
added to the node, increasing communication by 39.5%-181%
for SW4lite and by 55.7%-225.8% for Minisweep.
Observation 5: Adding more compute resources to a node
requires careful consideration of the trade-offs, the expected
application workload and optimized rank-to-node allocation
schemes. Adding more GPUs to the node requires improve-
ments in network bandwidth if communication performance is
to be maintained.

HPC centers can increase the peak compute performance
of the system by adding more GPUs to each node while
keeping the server and networking costs in check. Conse-
quently, operational expenditure can also be curtailed. This
strategy is becoming common in HPC centers, i.e., they
increase the number of GPUs on each node to four (Sierra
at LLNL) or even six GPUs per node (Summit at ORNL).
But interconnects have not kept pace with the increase in
compute performance of modern CPUs and GPUs creating
bottlenecks at the shared NIC. HPC centers should conduct
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studies of the trade-offs between cost and performance. We
conducted simulation experiments with Minisweep by in-
creasing the network bandwidth linearly with the number of
GPUs on the node (shown in Figure 7). Our results show
that the decrease in communication performance is avoided
with interconnects having larger bandwidths. Here the intra-
node NVLink interconnect starts to become the bottleneck.
HPC centers need to evaluate the applications that dominate
utilization on their system. Some applications (e.g., AmgX
and LULESH) either show little or no performance penalty
when more compute resources are added to the node. Others,
like SW4lite and Minisweep, show significantly decreased
performance. Furthermore, we observe across applications that
choosing 1-2 GPUs per node has no significant effect on
performance, but a further increase to four or six GPUs per
node can severely degrade performance.

Finally, an application-conscious optimization of the allo-
cation of ranks to nodes can increase the use of the intra-node
interconnect if local communication dominates, which reduces
the pressure on the shared NIC. This requires prior analysis
of the MPI messaging characteristics for each application.
The proportion of intra-node communication can be increased
by allocating more communicating ranks to the same node,
particularly for small groups of frequently communicating
ranks with less communication between such groups.

VI. RELATED WORK

Prior work has assessed the performance of different GPU
interconnect topologies. Li et al. [19] evaluate the performance
of interconnect topologies such as NVLink, PCIe, NV-SLI,
NVSwitch and GPUDirect on 6 high-end servers and HPC
platforms. They observe that intra-node multi-GPU commu-
nication is dependent on the choice of GPU combinations.
Potluri et al. [20] study the performance of GPUDirect on
PCIe-connected GPUs in a multi-node HPC environment. The
authors show that using GPUDirect increases inter-GPU band-
width significantly while decreasing communication latency.

Jiao et al. [21] characterize GPU applications based on
performance and energy efficiency. They study applications

with varying compute and memory intensity to conclude
that performance and efficiency of GPUs in an HPC con-
text depends on the computational patterns employed by
the application. Pennycook et al. [22] utilize the NAS LU
benchmark to compare existing HPC clusters and future large-
scale systems. The authors use the LU performance model to
extrapolate the performance of the benchmark to future large-
scale distributed GPU clusters. Choi et al. [23] model the end-
to-end performance of GPU HPC applications using PDES
while Arafa et al. [24] focus on the prediction of computational
performance of GPU applications. Chapuis et al. [25] use
PDES to predict the GPU performance by using a model that is
a combination of cycle-accurate GPU models and more coarse-
grained analytical models. Their work focuses on the compute
performance of individual GPUs and not on modern GPU
communication paradigms or the resulting MPI performance.
Groves et al. [26] develop a prediction model for NVSHMEM
instead of our focus on GPUDirect. In contrast to all this prior
work, ours contributes a PDES framework to comprehensively
study the impact of multi-node GPU applications on HPC
messaging performance with modern GPU communication
paradigms using GPUDirect, which is novel.

VII. CONCLUSION

This work enhances the TraceR simulation framework with
novel capabilities to treat GPUs as a first-class computation
device, enabling us for the first time to model multi-GPU
nodes without actually having to port application code to
GPUDirect. It complements TraceR with support for GPU-
aware MPI communication, both for point-to-point messages
and collectives in order to accurately simulate HPC systems
with multi-GPU nodes. It also extends the trace collection util-
ity, Score-P, with a feature to annotate MPI operations so as to
indicate the use of GPUDirect without a need to refactor appli-
cation code for GPUDirect. The framework gains the ability to
support what-if analysis of modern communication paradigms
such as GPUDirect. The performance of GPUDirect, in a
what-if scenario, is then compared against the traditional
method of copying data through host memory. These novel
capabilities also allow us to study the impact of the number
of GPUs per node on application and network performance.
Using this framework, the communication performance of
four important HPC applications is evaluated. Results indicate
that applications experience asymmetric benefits from using
GPUDirect, i.e., some will benefit significantly while others
do not. Given our what-if analysis, this allows applications
programmers to selectively decide which applications to refac-
tor for GPUDirect. Furthermore, HPC centers are facing
an important tradeoff between maximized performance vs.
minimized capital and operational expenditure, i.e., a choice
between adding more GPUs to fewer nodes vs. deploying more
nodes with fewer GPUs — a decision that also depends on
the application mix, as our results show. Finally, the simulator
can be combined with performance models like the roofline or
analytical models to further improve prediction performance.
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